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We discuss interrelations between several ideas in quantum gravity. One is the Swampland pro-
gram, which states that a low-energy effective field theory should satisfy non-trivial constraints to
have an ultraviolet (UV) completion in quantum gravity. Another is the concept of ensemble averag-
ing in holography, where a coarse-grained description is obtained by an integral over a moduli space.
To examine the relation between the two, we study ensemble averages of generalized Narain-type
theories associated with a general even quadratic form and their holographic duals. We establish
the emergence of global symmetries and discuss their consistency with the Swampland conjecture
forbidding exact global symmetries. Out of all the zero-form symmetries, the quantum symmetries
in the bulk are truly emergent, while classical symmetries are identified as vestiges of T-duality of
the Narain-type theories. The latter mechanism can be formulated very generally as a “folding”
of T-duality orbits via the Siegel-Weil Theorem. We also discuss the interrelations between the
Swampland distance conjecture, on one hand, and ensemble averaging and spectral decompositions,
on the other. The spectral decomposition also illustrates how ensemble averaging sits within the
low-energy limit of certain string compactifications. Our analysis suggests fascinating links between

the Swampland, the Landscape, and ensemble averaging.

Introduction: Swampland versus Ensembles

In recent years two approaches to understanding quan-
tum gravity have emerged. On one hand, there is the
Swampland program [1, 2], which posits the existence
of non-trivial consistency conditions for low-energy effec-
tive field theories (EFTs) to be embedded in an ultra-
violet (UV) theory of quantum gravity. On the other,
there is the holographic approach that leverages duali-
ties between (D + 1)—dimensional anti-de Sitter (AdS)
spacetimes and D-dimensional conformal field theories
(CFTs).

Standard holographic dualities are argued from the
top-down in particular string compactifications—the
quintessential example being the correspondence between
Type IIB on AdSs x S® and 4D N = 4 Super-Yang
Mills theory [3]. However, there are also bottom-up
holographic constructions that utilize ensemble aver-
ages of theories. Known examples of this form include
Jackiw-Teitelboim (JT) gravity [4, 5] and Narain Ensem-
bles [6, 7].

Ensemble average dualities are puzzling from both the
standard holography and Swampland viewpoints. In-
deed, at first glance ensemble averaging appears counter
to the one-to-one holographic dualities of the standard
approach. Furthermore, ensemble-averaged theories pro-
vide loopholes to several Swampland conjectures, includ-
ing one of the most well-known conjectures excluding
exact global symmetries in theories of quantum gravity
[8-13]. Based on these considerations, there have been
arguments that ensemble averaging is explicitly excluded
by the Swampland program, at least in ten-dimensional
string theory [14].

In this Letter, we address the relationship between en-
sembles, holography, and the Swampland by outlining the
physical and mathematical framework to embed Narain

ensembles into a more standard approach to holography.
We first establish emergent ensemble symmetries that are
global symmetries in the 3D gravity dual of generalized
Narain ensembles [15] [16]. We then relate ensembles to
a pre-averaged duality involving Maxwell-Chern-Simons
theory and its embedding in string compactifications.
This allows us to make contact with several Swampland
conjectures. Finally, we utilize the theory of automorphic
forms to illustrate that the ensemble average of the gen-
eralized Narain CFTs is a coarse-grained description of
Maxwell-Chern-Simons and how additional fluctuations
serve to break the emergent ensemble symmetries.

Global Symmetries in Chern-Simons Theories

Let us first discuss the global symmetries in the bulk the-
ory after the ensemble average. The bulk is an Abelian
U(1)PT4 Chern-Simons theory whose action is given by
17]
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Here @Q);; is an integer-valued matrix of signature (p,q)
with @Q;; € 27Z. This matrix defines an even inte-
gral quadratic form Q[¢, 0] := ijil Qi;007 € 7 and
QY = Ql¢, 4.

This theory is an Abelian topological quantum field
theory (TQFT), which is completely determined by the
anyon data: the anyon fusion algebra, the topological
spin of the anyons (and the chiral central charge, which
we have chosen to be p — ¢) [18-20]. [21]

For the TQFT defined by Eq. (1), the set of anyons
is labeled by an element of the the discriminant group
2 := A* /A, where A is an even integral lattice A := {¢ €
ZPt1] Q) € 2Z} and A* denotes the dual lattice of A.



The anyon fusion algebra is simply defined by a natural
addition of two elements of . The discriminant group is
a finite Abelian group of order |2| = |A*/A| = |det(Q)].

The topological spin 6 of an anyon a € Z is given by

0(cr) = exp (inQla]) . (2)

The other anyon data can be derived from & and 6: the
braiding phase of two anyons is

_0(a+p) _ :
B(a, ) = 8(0)03) — exp (2irQ|a, A]) , (3)
and the modular S- and T-transformations by
Sap = Bla. §) Tap=c¢" e 0(a)dap- (4)

An Abelian Chern-Simons theory has global one-form
and zero-form symmetries [22] which arise from automor-
phisms of the TQFT data [23] [24]. The one-form sym-
metry group is nothing but the discriminant 2 (cf. [25]).
The zero-form symmetry group is defined via a permu-
tation of the anyons (i.e., elements of Z) preserving the
anyon data (2,0): [26]

Aut(2,

0) :={o € Aut(2) |0(a) = 0(0 - )V € A}.

()

Some classical symmetries arise from the symmetries
of the Lagrangian—if (2, 0) arises from a quadratic form
@, the classical symmetry group is the symmetry of the
Lagrangian in Eq. (1)

Oq(p,¢;Z) :={S € GL(p+4¢,2) | 2"'QL =Q}, (6)

which naturally induces an element of Aut(Z,6). Oth-
erwise, a symmetry is a quantum symmetry when it is
not manifest in the Lagrangian. Notice that different
quadratic forms @, Q' can lead to the same anyon data
(2,0), in which case the two Lagrangians associated with
Q, Q" are quantum-equivalent [18-20] [27]. In general,
whether a symmetry is classical or not depends on the
choice of the classical Lagrangian (i.e., the duality frame).

Holography of General Narain Ensembles

To discuss the emergence of global symmetries, let us
next discuss the ensemble averaging in the CFT duals.
We follow a general discussion in Ref. [15], which gener-
alized the previous discussion for even self-dual lattices
in Refs. [6, 7] (see also Refs. [28-33] for variations).

The Narain-type theory [34, 35] is defined by the same
data as the bulk theory, namely a quadratic form Q. The
moduli space of the CFT is pg-dimensional and is given
by a double coset

Mg = Oq(p, ¢ Z)\(O(p,¢; R) /(O (p;

R)xO(¢;R)). (7)

There is a family of CFT partition functions associated
with an element « of the discriminant group:

~ 09(r, T;m)
P (TN (7)
Here the theta function 92 is given by

Z ewrﬁ Q)
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19Q (1,7;m) Jimra G 9)

where the moduli dependence enters through the Hamil-
tonian H (see Ref. [15] for more details).

Under the generators of SL(2,Z), the theta functions
transform as

mi(p—q)

9T +1;m)=e 12

Z Taﬁﬁg(r; m),

BeED
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192<—T;m>—e 1 (P 73 ZSagﬁ T;m)
Be2
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where S, T are the modular matrices (4) for the anyons.

We now consider the ensemble average of the general
Narain CFTs. Since the label « transforms non-trivially
under a general element of Og(p, ¢; Z), the theta function
Yo in Eq. (9) is defined over the moduli space

M@,a = 0q.a(p,¢:Z)\(O(p,¢;R) /(O(p; R) x O(q;ﬂ?)),)
11
where Og o (p, ¢; Z) is a subgroup of Og(p, ¢; Z) preserv-
ing a. Note that this moduli space is a cover of the
moduli space Mg = Mg a=0-
We can now define the ensemble average of the parti-
tion functions in Eq. (8) via

1
0D = e [ lamld8mm).  (12)
Vol(M@.a) Jmg.a
where [dm] denotes the canonical measure associated
with the Zamolodchikov metric of the moduli space. For

p+ g > 4, this average can be evaluated to be given by
Siegel-Eisenstein series [7, 15, 36, 37]

Qe d
_ V& (e, d)
EQ(Tv T) = 5(¥€A+ ap q
o (C’d)_ZLDO (cr+d)2(cT+d)2

—~

where J, is equal to unity for « = 0 and zero otherwise.
The summation Eq. (13) can be interpreted as a sum
over geometries in the gravitational theory [6, 7]: the
sum over (¢, d) is a sum over the “SL(2,Z) black holes”
Mc,q) [38, 39], where M 1y and M oy correspond to
thermal AdS and the BTZ black hole [40], respectively.
The size of the contribution from each geometry is de-
termined by a coefficient given by a quadratic Gauss sum

1Q(c,d) == \¢ o (M), where
1 i ptg
A2 (M) = ——— e~ TP
7 VIDq (14)
x> o= (aQ[te+a]—2Qc+a,B1+dQ[B))
LeeN/(cA)



This expression is known to coincide with the lens space
partition function of the Chern-Simons theory [41, 42]
(with insertions of Wilson lines labeled by «,f3), as
pointed out in [15]. It appears in the modular trans-

formation under a general element M = (i Z),
IE (am) = > UL 5 (M, 7) 05 (5m), (15)
Be2

US J(M,7) = (et +d)> (cF+ d)EAT 5(M),  (16)
which follows from the repeated use of Eq. (10).

Emergence of Global Symmetries in the Boundary CFT

We can now describe the emergence of a global sym-
metry after averaging generalized Narain CFTs. By defi-
nition, a zero-form symmetry o preserves the anyon data
(2,0) up to a permutation of anyon labels. Since the
anyon data determine the modular S, T-matrices (4) and
hence the partition function, we find that Eisenstein se-
ries are simply permuted:

EC (1,7) = EQ(1,7). (17)

Of course, this is expected since the zero-form symmetries
are also the global symmetries of the boundary theory.
The question we address in this section is to discuss how
this symmetry arises in the process of ensemble averag-
ing.

When the zero-form symmetry is a quantum symme-
try, the symmetry changes the functional form of the
theta function, and the symmetry is not simply a permu-
tation of the theta function. The symmetry is then truly
emergent which appears only after ensemble averaging.

By contrast, for a classical zero-form symmetry ¥ €
O¢(p,q;Z), we know that the symmetry preserves the
CFT partition function.

0L (1,78 - m) = 0% (1, 7;m). (18)

It is straightforward to check this statement explicitly.
More physically, this essentially follows from the fact that
the moduli space (7) is already quotiented by the action
of the T-duality group Oq(p, ¢; Z) (6). Note that before
the ensemble average the T-duality group acts both on
the anyon label and the moduli, while after the average
it acts only on the anyon label. What this means is that
the T-duality group of the original theory is “folded” into
an emergent global symmetry via ensemble averaging—a
process we call duality origami.

While we discussed the case of generalized Narain the-
ories, we can formulate this folding in general. Let us
consider the ensemble average of an observable O(m, x)
of a theory T (m) (CFT or otherwise) over a moduli space
m € M [43]. The ensemble average of O(m,x) is defined
as

(O)(x) := [dm] O(m, z), (19)

s

where [dm] is an appropriate measure of the moduli
space.

Let us first assume that (1) there exists a symmetry
G which preserves the moduli space M as well as its
measure: [d(g-m)] = [dm]. Let us also assume that (2)
G acts covariantly on the observable O as O(g-m,g-x) =
O(m,x). We call G to be an ensemble symmetry when
the two conditions are satisfied. Note that an ensemble
symmetry is not a symmetry of a boundary theory in the
standard sense: an element g € G maps one theory (at
m in the moduli space) to another (at g - m), and hence
it relates two different theories inside the same ensemble.

Once we have an ensemble symmetry, one can easily
derive

(O)(g-z)=(0)(z) for geC (20)
from the two conditions of ensemble symmetries. Since
the dependence of the moduli m is now removed, we find
a global symmetry acting on a single theory—this global
symmetry is an emergent symmetry after the ensemble
average.

We can formulate this as a general lesson in ensem-
ble averages: a symmetry connecting different theories
in an ensemble can be turned into an emergent global
symmetry of a single theory after averaging. This is an
interesting loophole to the holographic argument [12, 13]
that there are no global symmetries in theories of quan-
tum gravity.

Emergence of Global Symmetries in the Bulk

Let us next discuss the emergence of global symmetries
in the holographic bulk. Prior to the ensemble average,
the bulk is related to the Maxwell-Chern-Simons theory
[15, 44]

1 p+q 1 . ) ;
Shcs = T6n2 Z y —2762)\” dA" N xdA’ | + Scs,
ij=1

(21)
where e? is the coupling that has dimensions of mass,
and A\~! is a dimensionless, symmetric, positive definite
matrix with a determinant one. Given that e? is dimen-
sionful, the Maxwell term is irrelevant and therefore the
Chern-Simons term is expected to dominate in the IR.
This corresponds to the topological limit €2 — co, which
leaves only the Chern-Simons term. The effect of the
Maxwell term, however, still remains, since the quanti-
zation conditions for the gauge fields in the topological
limit depend on the parameters A\, and hence on a point
of the corresponding moduli space Mg.

As pointed out in [15], with standard boundary con-
ditions imposed, the wavefunction of Maxwell-Chern-
Simons theory matches the partition function of an irra-
tional CFT with dependence on Narain moduli space (up
to an overall constant) [44], thereby realizing the holog-
raphy duality prior to averaging. The same T-duality



symmetries described earlier still exist for the Maxwell-
Chern-Simons theory, where the mapping between dif-
ferent points in moduli space corresponds to a mapping
between different points in theory space for the Maxwell-
Chern-Simons theory.

Maxwell-Chern-Simons theory of Eq. (21) is believed
to describe the long-distance limit of string theory on
AdSs x K7, where K7 is a compact 7-manifold [44] [45].
Although the gauge fields of Maxwell-Chern-Simons the-
ory couple to other degrees of freedom in the correspond-
ing low energy supergravity description, it was conjec-
tured in [44], based on the decoupling of topological
modes at long distance, that the complete partition of
string theory on AdS3 x K7 is described by a linear com-
bination of the partition functions 9%, which are now
regarded as the wavefunction of Maxwell-Chern-Simons
theory in the topological limit. Our discussion of the
holography is therefore relevant not only for quantum
gravities in three spacetime dimensions, but also for the
ten-dimensional string theory.

Emergent Global Symmetries and Swampland Distance
Conjecture

Once we are in string theory, there is an alternative
method to obtain global symmetries: going to the infin-
ity of the moduli space. Indeed, the Swampland distance
conjecture [2] states that there is a tower of states in the
infinite distance limit, where we often expect an emer-
gence of a global symmetry [46, 47].

In our situation, the natural limit for the modulus 7
is to choose 7 — ioco, or its SL(2,Z) images; these are
the cusps for the fundamental region of the torus (as
in Eq. (13)), and are in the infinite distance limit of
the moduli space. Geometrically, each cusp corresponds
to a geometry [15], and in the infinite distance limit to
the cusp, one of the cycles of the associated geometries
shrinks to zero size (so that three-dimensional gravity re-
duces to two-dimensional gravity). As we have discussed
before, this means that the leading divergence at the cusp
is given by the lens space partition function, which is the
quantity associated with the post-averaged bulk theory.

It is interesting to compare the two different types of
emergence of global symmetries discussed above. One is
obtained by taking an infinite-distance limit of a modu-
lus and is associated with the Swampland distance con-
jecture. Another is obtained by ensemble averaging of
the CFT moduli space. In both cases, we are led to
exactly the same expression, namely the lens space par-
tition function. We believe that the general lesson from
this is that ensemble averages and Swampland conjec-
tures are intrinsically tied together and that ensemble
averages in holography play a natural role inside the
Swampland program and string theory. [48]

Fluctuations around Ensemble Averages and Breaking of
Emergent Symmetries

When we seriously take the correspondence between
ensemble averaging and distance conjecture, one natu-
ral question is how the global symmetries are broken in
honest theories of quantum gravity. In the case of the
distance conjecture, this is achieved by staying at a finite
distance in the moduli space. The natural counterpart in
ensemble averaging is to consider the “fluctuations” away
from the averaging, and this should break any emergent
global symmetry in the bulk. The question is then how
to formulate these ideas into a precise mathematical for-
malism.

Remarkably, the relevant mathematics is already
known in the literature, as the Roeckle-Selberg spec-
tral decomposition. This is a decomposition of a square-
integrable modular form as in [49, 50]. This technology
was applied to the partition functions of Narain CFTs
defined via even, self-dual lattices in [51], where it was
shown that the ensemble average arises as the moduli-
independent piece of the spectral decomposition. For
our generalized CFTs, we require a spectral decompo-
sition for non-holomorphic modular forms of congruence
subgroups with non-zero weight. For square-integrable
forms f(7,7), the decomposition is [52-54]

f(,7) =i<f,ui>ui(7)+§<f,vj>vj(7)
5L (o)) (L)

(22)

Here {u;} is the orthonormal basis of cusp forms, {u;}
the residues of the Eisenstein series, E, are Eisenstein
series labeled by the cusps aj of the relevant congruence
subgroup, and (—, —) is the Petersson inner product; see
[54, Theorem 6.7.1] for more information. When we ap-
ply this decomposition to the combination measuring the
deviation from the ensemble average

F(r7) = P g u(r,7m) — Equ(r, 7)), (23)

the terms in the decomposition are all moduli-dependent
and represent deviations from the ensemble average,
hence triggering the breaking of the the emergence of
global symmetries. This suggests that the counterparts
of the “tower of states” in the Swampland distance con-
jecture should be included inside the moduli-dependent
terms of the spectral decomposition. We also expect that
such an analysis will be related to the discussion of worm-
holes before averaging in [55]. It is an interesting question
to study this point further.

One of the surprises of quantum gravity and string
theory is that they have successfully incorporated a wide
variety of ideas. It is therefore natural to expect that



Swampland and ensembles, which at first seem to be in
tension with each other, are combined nicely in string
theory, and that such a combination will lead us to deeper
insights into the mysteries of quantum gravity.
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