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Abstract

The material system YMn2O5 has several low temperatures phases, where magnetism and

ferroelectricity occur. Especially, the origin of ferroelectricity in the commensurate phase is an

open question. Literature agrees upon a magnetically driven principal mechanism from changes

in the Mn spin con�guration, which may be based either on magnetostriction due to symmetric

exchange, the antisymmetric inverse Dzyaloshinskii-Moriya interaction or a combination of the

two. These mechanisms are accompanied by speci�c atomic displacements of ions in the struc-

ture. The space group Pbam (55) of the paraelectric phase does not allow the respective polar

displacements and a re�nement of the charge structure in a lower symmetric phase has not been

successful so far, mostly because conventional structure analysis lacks the sensitivity required

to resolve the expected positional displacements. We applied the new Resonantly Suppressed

Di�raction (RSD) method, which is sensitive to minuscule structural changes in the sub-pm-

range, in order to resolve potential ionic displacements within a polar space group and shed new

light on this controversial discussion.

We measured the energy dependent RSD spectra of carefully selected re�ections above and

below the phase transition temperature TCM = 39K. With the data above TCM, we re�ned the

static and dynamic displacements of the paraelectric phase to receive an improved initial model

for the structural characterization of the ferroelectric phase. Subsequently, we re�ned 50 static

displacement parameters in the lower symmetric space group Pb21m, which allows polarization

in b-direction and present the �rst structure re�nement of the commensurate phase in YMn2O5.

We found a signi�cant displacement of Mn ions and the O partial structure, which results in

a calculated absolute spontaneous polarization Ps = (1.3 ± 0.4)mCm−2, in good agreement

with a measured value Ps = (0.88±0.06)mCm−2. With the presented investigation, we �nally

con�rm that Ps has an ionic contribution and is predominately induced by magnetostriction.
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Figure 1. Room temperature P phase of YMn2O5 in space group Pbam (55).

I. INTRODUCTION

YMn2O5 is non-polar at room temperature and crystallizes within the crystallographic

space group Pbam (55) (see Fig. 1). Mn occupies two di�erent Wycko� positions in the

unit cell, one with octahedral and one with pyramidal oxygen coordination [1].

The material undergoes four phase transitions by lowering the temperature [2�4], see

Fig. 2. At TN1 = 45K, the structure becomes weakly ferroelectric and antiferromagnetic

with a 2-dimensional incommensurate modulation (2D-ICM). Subsequently, a ferroelec-

tric and 1-dimensional incommensurably modulated magnetic phase (1D-ICM) appears

between TD = 40K and TCM = TC1 = 39K. However, most articles only report either

TD or TCM [4�8]. Down to TN2 = TC2 = 19K the structure is commensurately modulated

magnetic (CM) in c with an electric polarization in b direction. Below the 19K tran-

sition temperature, the spontaneous polarization changes sign, the structure is weakly
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Figure 2. Overview of the four low temperature phase transitions of YMn2O5.

ferroelectric and the magnetic moments arrange 2-dimensionally incommensurate, again.

We are interested in the structural changes of the CM phase, which forms between

19K and 39K and has an electric polarization in b direction [9, 10]. The CM phase is

usually described contradictorily as ferroelectric within the crystallographic space group

Pbam (55), which is nonpolar and therefore prohibits ferroelectricity (Fig. 1). Apparently,

the atomistic origin of ferroelectricity in the CM phase is still not clear. Previous work fa-

vors two magnetically induced mechanisms based on changes in the Mn spin con�guration

- one caused by magnetostriction due to symmetric exchange [9, 11, 12], and the other

one caused by the antisymmetric inverse Dzyaloshinskii-Moriya interaction [3, 13], or a

combination of both [3, 14�16]. The mechanisms infer certain ionic displacements within

the crystal structure. Some of the preceding articles on YMn2O5 reported hints about

structural changes between the room temperature and the CM phase [4, 6, 17�21]. How-

ever, most work did not interpret these data because the magnetic structure was in focus

of the research [2, 4�6, 9, 12, 13, 15, 22�34]. Others were explicitly searching for changes

but attempts to solve the structures of the CM phase have been inconclusive [35, 36].

Therefore, it is still not clear to what extend the ferroelectric transition can be evidenced

in the crystal structure [20, 21, 37]. A possible polar structure in the CM phase is obtained

by symmetry descent to space group Pb21m which allows a polarization in b direction and

which was theoretically proposed [10, 17, 38], but not yet been experimentally observed

in YMn2O5, because ionic displacements are much smaller than in typical displacive-type
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ferroelectrics [35].

In this work, we use a recently developed Resonant X-ray Di�raction (RXD) tech-

nique to enhance the sensitivity to atomic displacements, to shedding new light on this

controversial question discussion about the origin of ferroelectricity in YMn2O5. RXD

combines di�raction and core-hole spectroscopy and makes use of di�erent physical as-

pects of the electronic resonance, such as enhanced elemental contrast [39, 40], destructive

interference to determine tiny atomic displacements [41] and polarization anisotropy to

study short-range order [42, 43], magnetic properties [44, 45], defect structures [42, 46]

or electronic properties [47, 48]. Here, we make use of destructive interference in RXD,

referred to as Resonantly Suppressed Di�raction (RSD), which were demonstrate for the

�rst time in the structural re�nement of an electric-�eld induced polar surface layer in

SrTiO3 [41, 49]. Here RSD is used to illuminate ionic contributions to the polarization as

a response to the formation of the CM phase.

The identi�cation of ionic contributions to the spontaneous polarization comprises in

particular the relevant polar displacements in b direction. To ensure a precise knowledge of

the initial structure in terms of static positions as well as dynamic atomic displacements,

given by the Atomic Displacement Parameters (ADPs), the paraelectric P phase has been

reassessed by means of RSD, prior to the re�nement of the CM phase. The results of the

structure solutions of P and CM phase are discussed in regard to the goodness-of-�t and

a structural origin of the ferroelectricity is provided in conclusion.

II. METHODOLGY

RSD is based on the work of Richter et al. [41] and use resonantly tuned extinction

evoked by the counterbalance of scattering contributions from di�erent elements in the

crystal structure. This e�ect is expressed by a vanishing structure factor and strongly

depends on the crystal structure, the re�ection and the X-ray energy. Under such speci�c
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conditions, the intensity of a Bragg re�ection approaches zero. The minimum position

of the energy-depend intensity is very sensitive to any structural change and provides

superior contrast to study atomic displacements on the picometer scale [41].

Following the main idea of the RSD concept, the selection of Bragg re�ections is such

that the di�raction intensity is minimized while scanning the X-ray energy through the

absorption edge and the signal-to-noise ratio is maximized. Re�ections are chosen ac-

cording to a optimized strategy to minimize the required beam time. Based on a starting

guess of the structure, calculations of all Bragg re�ections yields sensitive candidates for

the measurement. Possible sensitive re�ections are reassessed in terms of contrast, lo-

cation of the minimum, and parameter sensitivity. The selected re�ections are evualed

consequently during the experiment again, with each set of measured re�ections or newly

de�ned structural degree of freedom. This selection and evaluation of sensitive re�ections

is not straight forward. In an iterative procedure (more details in Supplemental Material

SM Sec. S II), we analyzed the steadily acquired experimental data to obtain an updated

list of re�ections that are sensitive to prevailing parameter ambiguities.

The structure re�nement is based on �tting simulated RSD spectra to the experimental

ones to minimize di�erences, varying the structural degrees of freedom as well as speci�c

experimental parameters. The relative deviation between measurement and calculation

was minimized using python's lm�t module [50] for the residuals R, which we de�ned

as the di�erence between simulated and experimental logarithmic intensities, which is

equivalent to the assumption of a constant relative error. The simulated intensities are

calculated using the kinematic approximation [51] as

Ikin ∝ A(E) · |F (E,Q)|2, (1)

with the absorption factor A(E) ≈ 1/µ(E) for thick crystals, the photon energy E, the
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momentum transfer vector Q and the structure factor F (E,Q). The latter is de�ned as

F (E,Q) =
N∑
i=1

oi · fi(E,Q) · exp(−Mi) · exp(iQ · ri), (2)

with the N atoms i, their occupancy of the crystallographic sites oi, their atomic scat-

tering factors fi(E,Q), their positions in real space ri and their Debye-Waller-Factors

exp(−Mi), which are related to the atomic displacements ui in direction of Q according

to Mi = 1/2⟨(Q · ui)
2⟩, i.e. the mean square projections of the atomic displacements ui

on Q [52] (more details, see SM Sec. S III). The quality of the �t is evaluated by the

reduced χ2 value de�ned as

χ2
ν =

(
N∑
i=1

R2
i

)
/(N −M), (3)

with the number of data points N , the number of variables in the �t M .

The general procedure of the analysis is as shown in Fig. 3. In this work, the mea-

sured RSD spectra above and below TCM have been �tted in two steps. First the high-

temperature P phase has been re�ned in terms of ADPs and static atomic displacements

on the basis of the data above TCM, then changes in the static displacements have been

re-evaluated on the bases of the data below TCM.

III. EXPERIMENTAL DETAILS

A. Sample preparation

The YMn2O5 crystal (growth described in [53]) has a cuboid shape with an approximate

size of 1mm × 1mm × 2mm. We oriented the crystal with a laboratory single crystal

X-ray di�raction machine D8 Quest from Bruker AXS [54]. As presented in Sec. I, the

spontaneous polarization occurs along the crystal axis b. Therefore, we deposited platinum

electrodes onto the {010} faces as electrical contacts. The sample is glued between two Pt
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Figure 3. Left: Identi�cation of sensitive re�ections. Those re�ections are characterized by

a structure factor approaching zero and a respective local minimum of the energy dependent

Bragg intensity, which provides contrast by several orders of magnitude. Middle: Re�nement of

structural parameters on the basis of the experimental data (black dots), in particular within

the vicinity of the local energy minimum. By a simultanoues �t of the sensitive re�ections, the

relevant dynamic and static atomic displacement parameters are determined. Even minuscule

displacements can be revealed (gray: tabulated structure, red: re�ned �t). Right: Final structure

solutions with highly precise positions and ADPs (sub-pm resolution).

electrodes on a sapphire plate (setup in Fig. 5), which served as electric isolation against

the cold head. This sample con�guration has been used for the electric characterization

as well as for biasing the forming ferroelectric domains upon cooling below TCM.

B. Electric characterization of the phase transition temperature

The transition from P phase to ferroelectric CM phase induces pyroelectricity as well.

Hence, in addition to the semiconducting charge transport behavior in the presence of
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an external electrical �eld, the phase transition manifests itself in a pyroelectrical contri-

butions to the electric current during cooling or heating. On macroscopic average, this

e�ect can only be observed if there is a preferred orientation of domains such that the in-

dividual current contributions do not cancel each other. Therefore, we cooled the sample

in a static electric �eld to align the domains in the CM phase [55] (more details about

the experiment in SM Sec. S I) and obtain a measurable current signal, which is shown

in Fig. 4.

The measurements with and without electric �eld show no di�erences in the polariza-

tion. Thus, the ferroelectric domains have a preferred orientation after phase transition

to the CM phase even without external bias, as is reported in literature [24, 32, 37, 55],

probably due to robust magnetic domains [24, 32, 56]. Ferroelectric switching of the

polarization by a sign change of the electric �eld, which correspond to the �ndings

of [32, 37, 57], was not detected. The absence of ferroelectric switching is not an in-

trinsic structural property and may be related to structural inhomogenities and defects,

which could be removed by annealing the sample [37]. Furthermore, the pyroelectrically

measured polarization depends on the history of the domain population, as previous cool-

ing and poling processes show [24, 32]. The measured polarization without electric �eld

is Ps = (0.88± 0.06)mCm−2.

The data in Fig. 4 clearly shows the P to CM phase transition approximately at the ex-

pected temperature. To ensure stable single-phase synchrotron di�raction measurements,

we therefore chose temperatures of 50K for investigation of the P phase as well as ≈30K

and below for the CM phase.

C. Synchrotron experiment

RSD measurements were performed during two synchrotron experiments carried out

at beamline BM28 (XMaS) of the European Synchrotron Radiation Facility (ESRF) and
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Figure 4. Temperature-dependent polarization at di�erent electric �elds (calibrated to zero at

50K). The theoretical phase transition temperatures TN1 = 45K, TD = 40K and TCM = 39K are

marked with dashed lines. A distinct jump of polarization starting below TCM is clearly visible,

with but equivalently pronounced also without electric �eld as well as with opposite poling, even

above the coercive �eld strength of 2.2 kV cm−1. The lightly colored areas, indicated the error

level, which mainly occurs from accuracy of the used electrometer. The determined polarizations

correspond within the error range.

beamline P23 of the Deutsches Elektronen-Synchrotron (DESY). For each of these, a

di�erent sample holder was designed (see Fig. 5). At BM28, we glued the sample with the

electrode side directly onto a platinum patch (bottom contact) of a sapphire plate, which

served as electric insulation to the cooling �nger. The opposite contact was realized by

a thin Au wire glued to a second Pt patch on the sapphire plate (Fig. 5 (a)). For the

experiment at DESY/P23 we used the same sample setup as explained in Sec. IIIA (see
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Figure 5. Electrical setup used for the experiment (a) at beamline BM28 (ESRF) with a closed

cycle cryostat and (b) at beamline P23 (DESY) with a He �ow cryostat.

Fig. 5 (b)).

Beamline BM28 was equipped with a 6 circle Huber di�ractometer and a Pilatus3 300K

2D detector. The sample was �xed on a displex cryostat (closed cycle) with two Be domes

used as X-ray vacuum window and heat shield. At beamline P23, a 5 circle di�ractometer,

a LAMBDA 2D detector and a He �ow cryostat have been used. We measured energy

dependencies (RSD spectra) of several Bragg re�ections close to the Yttrium absorption

edge at 17.038 keV. The sample temperature has been set above the phase transition to

50K and below to 30K or 25K at ESRF/BM28 or DESY/P23, respectively. As has been

con�rmed from the electrical characterization, the phase transition is completed for 30K

and 25K and only the CM phase is present (see Fig. 4). We applied an electric �eld of

1.0 kV cm−1 during the measurements below TCM to align the ferroelectric domains and

thus to facilitate structure analysis, although the presence of an electric �eld is not strictly

required (cf. Sec. III B).

Due to the large unit cell of YMn2O5 and the high photon energy, the Renninger

e�ect [58] of multiple di�raction was a major issue contaminating the data. We performed

an azimuthal scan (rotation about the normal of the di�racting lattice plane) at each
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re�ection and each energy to eliminate contributions of the Renninger e�ect from the

measured energy dependence [59] (more details SM Sec. S V).

In total we measured 18 re�ections and obtained the respective RSD spectra to re�ne

the P phase. Subsequently, we used the same selection of re�ections to reveal the addi-

tional static displacements during the P to CM phase transition. As a result, further RSD

data of these re�ections below the phase transition temperature have been collected fol-

lowing the same procedure (azimuth-energy mesh scans). However, it is clear that static

displacements along the b directions manifest themselves particularly in re�ections with

a large momentum transfer component along this direction.

IV. RESULTS

A. Re�nement of the static and dynamic displacement parameters of the P phase

In the following section, we determine the static and dynamic displacements of the

structurally well-known P phase in order to get a precise reference for the re�nement of

the CM phase. From the comparison of experimental and calculated RSD spectra in Fig. 6

follows that structure solutions found in crystallographic databases are not adequate to

reproduce the experimental data. The observed deviations in the curves originate mainly

from inaccurate ADPs, because the static structure of the P phase is well known.

The structure re�nement with the RSD method is based on the multidimensional

simultaneous �t of the energy dependent intensity of Bragg re�ections (cf. SM Sec. S III).

The spectra of the re�ections were computed with the python package pyasf [60] based

on the kinematic theory of di�raction, which we found suitable comparing the witdth of

the rocking curve with dynamic di�raction theory (see SM Sec. S IV). Evidently, the

sample is an imperfect, mosaic crystal. In addition, the studied re�ections are typically

weak so that extinction and other dynamic e�ects can be neglected. In the re�nement,
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we minimized relative di�erences of measurement and calculation, which is justi�ed since

the errors are dominated by the instrumental stability. A detailed description of all �t

parameters is given in SM Sec. S III. To obtain a good agreement between modeled and

measured data, we tested di�erent approaches including ADPs in isotropic and anisotropic

setting as well as the consideration of small static displacements of atoms compared to

previously reported crystal structures. In the latter case, we have de�ned �t parameters

for all atomic coordinates that are not restricted by their site symmetry. Figure 6 gives

on overview about the process of the data analysis, showing the initial structure, the best

�t with isotropic dynamic, anisotropic dynamic as well as anisotropic dynamic and static

displacements. Details about the improvement of the �t procedure and the best �t results

of these models are described in the SM Sec. S VI.

In the following, we concentrate on the most complex model with the highest num-

ber of free parameters: anisotropic ADPs with static displacements. Here, we re�ned 43

structural parameters (13 static and 30 dynamic displacements). The best �t result has a

reduced χ2 of 8.5× 10−6. All results are physically reasonable and have low error values.

A further improvement of the model is not possible, since all free structural parameters

within the space group have been optimized in physically reasonable ranges. Remaining

discrepancies between simulation results of the best �t and experiment are due to exper-

imental error which is dominated by the stability of the energy scans, the crystal shape

and remaining Renninger e�ect after correction. Furthermore, the re�nement of re�ec-

tions with a �at minimum is di�cult for the �t routine, resulting in higher discrepancies

for these re�ections (e. g. 744 and 724). Table I lists the ADPs obtained in the best �t

result. We visualize the deviations between the re�nement and the initial atomic posi-

tions (from ICSD No. 165870 [36]) in Fig. 7 with colored and grayish balls, respectively.

We can now give an improved structural model for the P phase with remarkably small

errors, in terms of precision and within the made assumptions, in the order of ⪅ 0.03 pm
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Figure 6. Experimental RSD spectra next to simulation above the phase transition temperature.

The initial structure from Kagomiya et al. [36] (gray, χ2
ν = 1.6×10−4), the �t results with isotropic

ADPs (green, χ2
ν = 5.4×10−5), �t results with anisotropic ADPs (cyan, χ2

ν = 3.8×10−5) as well

as the best �t results with anisotropic ADPs and static displacements (red, χ2
ν = 8.5× 10−6) are

shown in comparison. Remaining discrepancies are due to systematic uncertainties and small

errors from the Renninger �lter routine.

for each Wycko� position (see Tab. II).

B. Structure re�nement of the CM phase

To re�ne the structure of the CM phase, we investigated di�erences in the RSD spectra

above and below the phase transition (comparison of both sets of spectra, see SM Sec. S13).
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Table I. Results for the anisotropic ADPs at 50K from the best RSD �t. Errors result from the

3σ level of the reduced χ2 distribution following [61] (see SM Sec. S VI).

U11

(
×10−3 Å2

)
U22

(
×10−3 Å2

)
U33

(
×10−3 Å2

)
U12

(
×10−3 Å2

)
U13

(
×10−3 Å2

)
U23

(
×10−3 Å2

)
Y1 0.00(156) 4.37(66) 1.53(77) −0.99(91)

Mn1 0.36(111) 3.38(92) 2.44(88) 0.18(91)

Mn2 2.91(80) 0.00(26) 2.50(90) −1.29(99)

O1 2.05(51) 0.52(67) 4.12(117) −0.88(72)

O2 0.00(70) 0.31(66) 0.00(20) −1.52(81)

O3 1.48(87) 0.27(60) 0.00(86) 0.35(97)

O4 0.01(44) 0.02(36) 1.97(77) −1.62(71) −1.82(68) −1.51(82)

Y

Mn (octahedron)

Mn (pyramid)

O

a

b

c
c

a

b

Figure 7. Visualization of the static atomic displacements before (grayish balls) based on ICSD

No. 165870 [36] and after re�nement of the P phase (colored balls), in two di�erent projections.

Especially the signi�cant positional shifts within the oxygen partial structure of the P phase

re�ect the substantial improvement of the structure solution.

Here, we are speci�cally interested in changes of the local intensity minima and their

location on the energy axis, which are particularly sensitive to atomic displacements [41].

These changes of the minima in the spectra are small, but signi�cant.
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Table II. Re�ned Wycko� positions of YMn2O5 at 50K from the results of the best �t in

space group Pbam (55). Numbers with decimals are free parameters, whereas rational posi-

tions are �xed. Error result from the 3σ level of the reduced χ2 distribution following [61] (see

SM Sec. S VI). Additionally, we added the total displacement u for each atom in pm.

element label Wycko� symbol x y z u (pm)

Y Y 4g 0.1393(4) 0.1665(2) 0 5.3(4)

Mn Mn1 4f 0 1/2 0.2544(6) 1.8(5)

Mn Mn2 4h 0.397(2) 0.3434(3) 1/2 12.7(13)

O O1 4e 0 0 0.268(2) 1.7(9)

O O2 4g 0.085(5) 0.457(2) 0 58.0(40)

O O3 4h 0.125(3) 0.411(2) 0.5 25.0(30)

O O4 8i 0.416(2) 0.2061(6) 0.246(3) 15.6(15)

As we know from literature and Sec. III B the spontaneous polarization emerges in

crystallographic b direction. A lower-symmetric subgroup of the P phase space group

Pbam, which allows polarization in b, is Pb21m [62], as has been already suggested in

literature [10, 17, 38]. We used the re�nement results from Sec. IVA as starting model

and transformed the structural parameters to the Pb21m symmetry. In the re�nement, we

assumed the ADPs and machine function (see SM Sec. S III) as unchanged and only opti-

mized the static displacement parameters, which already count a number of 50 parameters

in the CM phase. Fig. 8 shows the experimental data at 25K and 30K, respectively, as

well as the re�ection intensities simulated with the re�nement results of the P phase (gray)

and the CM phase (red). The additional structural degrees of freedom of the CM phase

signi�cantly improve the simulated spectra (red) in contrast to the high-symmetry re-

stricted spectra. The reduced χ2 improves from 3.3 × 10−4 to 1.96 × 10−5. The results

of the re�ned static atomic displacements are listed in Tab. III and respective shifts are

visualized compared to static displacements of the P phase in Fig. 9. Again, in terms

of precision and within the made assumptions, remarkably small errors in the order of
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Figure 8. Simulation of RSD spectra of the re�ned CM phase (red) in comparison to the best

re�nement of the P phase (gray), as well as the experimental data below the phase transition

temperature. With the additional degrees of freedom in space group Pb21m the reduced χ2 is

improved from 3.3 × 10−4 (unre�ned parameters from P phase) to 1.96 × 10−5. The simulated

RSD spectra of the CM phase show in particular an improved concordance with the most sensitive

energy position of the intensity minimum.

⪅ 0.4 pm for each coordinate on a Wyckoe� site are reached by the RSD method. The

structural changes induced by the phase transition from P to CM phase incorporate total

displacements u in the order of 5 pm to 58 pm.
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Table III. Re�ned Wycko� positions of the CM phase of YMn2O5 from the results of the best

�t in space group Pb21m(26). Numbers with decimals are free parameters, whereas rational

positions are �xed. Errors result from the 3σ level of the reduced χ2 distribution following [61]

(see SM Sec. S VIII). Additionally, we added the shift of the y coordinate ∆y and the total

displacement u for each atom.

element label Wyck. symbol x y z ∆y (pm) u (pm)

Y Y11 2a 0.405(4) 0.167(3) 0 0.3(30) 11(3)

Y Y12 2a 0.109(5) 0.810(4) 0 −47(3) 20(4)

Y Y21 2b 0.382(4) 1/6 1/2 0 5(3)

Y Y22 2b 0.123(4) 0.848(8) 1/2 60(6) 15(6)

Mn Mn11 4c 0.253(5) 1/2 0.121(2) 0 5(3)

Mn Mn12 4c 0.252(5) 0.500(4) 0.632(2) −0.1(34) 6(3)

Mn Mn21 4c 0.670(4) 0.338(2) 0.254(3) −13(2) 18(3)

Mn Mn22 4c 0.847(5) 0.651(2) 0.255(4) −16(2) 7(15)

O O11 4c 0.27(5) 0.02(4) 0.131(7) 14(3) 18(4)

O O12 4c 0.30(5) −0.05(4) 0.639(7) −42(34) 58(14)

O O21 2a 0.39(2) 0.472(9) 0 13(8) 41(15)

O O22 2a 0.88(3) 0.05(3) 0 8(25) 35(13)

O O23 2b 0.39(2) 0.472(9) 1/2 13(8) 41(15)

O O24 2b 0.88(2) 0.05(3) 1/2 8(25) 33(16)

O O31 4c 0.38(1) 0.46(1) 0.246(4) 33(8) 42(9)

O O32 4c 0.08(2) 0.63(2) 0.23(1) 33(16) 53(16)

O O41 4c 0.623(2) 0.20(2) 0.135(3) −2(16) 35(3)

O O42 4c 0.14(1) 0.32(2) 0.137(1) 25(26) 33(13)

O O43 4c 0.62(2) 0.24(2) 0.633(3) 33(16) 46(16)

O O44 4c 0.14(1) 0.31(2) 0.636(1) 16(16) 28(11)

V. DISCUSSION

A. Results of the re�nement of the P phase

As shown in Sec. IVA, we re�ned the structure of YMn2O5 in the P phase at 50K

with RSD and obtained small but substantial di�erences in atomic positions with respect
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Mn (pyramid)
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Figure 9. Visualization of the static atomic displacements (colored balls) of the CM phase in

comparison to those of the P phase (gray) in two di�erent projections. Remarkable is in particular

the most prominent movement of Mn3+ ions outside of the pyramid's basal plane.

to the structure solution from [36], especially for the oxygen partial structure with a

maximum static displacement of 58 pm, next to signi�cantly improved values for the

ADPs. The general sensitivity of the RSD method to displacements, estimated by means

of the uncertainties in the structure solution of the P phase can be speci�ed with a range

between 0.4 pm to 4 pm with an average of 1.7 pm. This corresponds to the sensitivity of

the RSD method, as already found in [41].

The agreement between simulation and experiment has been gradually enhanced by

increasing the complexity of the underlying structure models, starting from database en-

tries and isotropic ADPs and reaching up to anisotropic ADPs with completely uncoupled

static displacements. These improvements are clearly documented in the reduction of χ2
ν

by a factor of 20, cf. SM Sec. S VI. In order to verify the stability of the obtained

�t results and identify correlations (SM Sec. S VI), we explored the parameter space by

repeating the �t with varied starting parameters while keeping selected parameters �xed
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within a certain pre-de�ned range. To get dense projections for each �t parameter, we

performed about 107 − 108 individual �ts on the TUBAF HPC cluster (ca. 350TFlop/s

CPU). Most of the parameters show no interdependencies with other parameters, only a

few correlations and respective increase in the error envelopes have be found within the

experimental data (see SM Sec. S VI).

B. Results of the re�nement of the CM phase

Due to the high sensitivity of the RSD method to displacements in sub-pm range, we

were able to re�ne the structure of the CM phase and can give the �rst structure solution

of this phase in space group Pb21m with formula per units Z = 8 in a 1×1×2 supercell

with lattice parameters a = 7.244Å, b = 8.463Å and c = 11.314Å (Fig. 9). Again,

we performed about 107 individual �ts to get a signi�cant statistical coverage within the

parameter space for all 50 �t parameters in well-de�ned ranges with physical reasonable

limits of ±0.06 for all positional degrees of freedom (in fractional coordinates). To prevent

a positional phase drift of the whole structure in the polar direction, we �xed one atom

at the origin for all �ts. Additionally, we again varied the start parameters randomly

and kept two random selected parameters �xed during an individual �t to probe the

development of the reduced χ2 development in parameter space and to reveal parameter

correlations. Most parameters converge in stable local minimum in the reduced χ2 space,

but especially parameters of a displacement in the commensurately doubled z direction

show two minima. However, no signi�cant linear correlations between parameters with

two minima and other parameters could be found (cf. SM Sec. S VIII). Thus, this may

be an indication for disorder in the average structure rather than for two or more classes

of separate possible structure solutions. Respective correlations exhibit a pronounced

fourfold symmetric-antisymmetric X-shape (Fig. S15 in SM Sec. S VIII).

Relative errors of the re�ned static displacement parameters are below 18% for all
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elements and for the electron-rich elements below 4%. The re�nement shows a signi�cant

movement of the ions due to the phase transition, with a maximum of 58 pm within

the O partial structure, in particular within the O pyramid. Mn inside of the pyramid

has a strong movement with 18 pm along the pyramidal axis, whereas Mn inside the

octahedron only moves about 6 pm. Remarkably, without prede�ned tendency within the

�t routine, the re�ned static displacements show an opposite movement of the positively

charged Mn3+/Mn4+ and the negatively charged O2� partial structure, complying with

the expected anionic/cationic movement given by the direction of the external electric

�eld (see ∆y in Tab. III). Uncertainties in the structure solution of the CM phase can be

speci�ed with a range between 3 pm to 16 pm with an average of 9.3 pm.

The re�ned crystallographic space group Pb21m corresponds well with the �ndings from

the investigation of the magnetic structure with neutron di�raction, where the magnetic

point group is re�ned with m2m [11, 32, 35] allowing a polarization in b direction, as well

as with magnetoelectric measurements, which already proposed Pb21m for the CM phase.

[35]

C. Origin of ferroelectricity in the CM phase

By means of the novel RSD method, we �nally discovered the atomistic origin of the

ferroelectricity in the CM phase. As described in Sec. VB, the movement of the ions,

especially of Mn and O partial structure, obeys the development of an oriented dipolar

structure. The spontaneous polarization PS, induced by this ionic movement, can be

estimated with an approach outlined by Weigel et al. [63], based on considerations of

Peng et al. [64]. With using the positional shifts uj,l between P phase and CM phase from

experimental data for each atom j and Born E�ective Charges (BEC) Z∗
j,kl computed by
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�rst-principle methods (for details cf. SM Sec. S IX), PS can be calculated with:

PS,k =
e

VUC

N∑
j=1

Z∗
j,kl · uj,l. (4)

Einstein's sum convention is applied for the index l = x, y, z and e is the elementary charge,

VUC the unit cell volume, N the number of atoms in the unit cell. Here, we calculated

an absolute spontaneous polarization of Ps = (1.3 ± 0.4)mCm−2 in b direction form

the experimental data. This value is in good agreement with the measured polarization

(see Fig. 4, SM Sec. S I) and with measured polarization reported in literature of around

1.0mCm−2 [35, 55]. The calculated Ps has the strongest contribution from the pyramids

and smaller parts from the octahedrons. The vectorial contributions from the Mn partial

structure are visualized in Fig. 10, which directly re�ect the atomistic movement due

to the phase transition. These �ndings match postulations in literature [12, 22, 35],

which state that the displacement of the Mn3+ ions in the pyramid (total contribution

Ps ≈ 0.04mCm−2) more important for the manifestation of ferroelectricity than that of

Mn4+ ions in the octahedron (total contribution Ps ≈ 0.0001mCm−2). Additionally, we

can con�rm that Y is displaced [37], giving further contributions to the polarization, where

the individual contribution partially compensate each other to a total Ps ≈ 0.01mCm−2.

The remaining contribution is due to the shift in O partial structure, especially the �exible

movement of the oxygen position of the pyramid top, corner-sharing with the octahedron.

As has been summarized, the literature controversially discusses several mechanisms for

magnetically driven ferroelectricty, symmetric exchange (Ps,SE ∝ Si ·Sj, with S the spin

of the magnetically active ions i and j) or antisymmetric inverse Dzyaloshinskii-Moriya

interaction (Ps,DM ∝ Si×Sj) [3, 16]. For comparison, we calculated Ps,SE ≈ 0.74mCm−2

and Ps,DM ≈ −0.08mCm−2 with the magnetic moments from Kim et al. [27]. The

�ndings support in particular those results that favor the contribution of both components

to the polarization, but evidently the symmetric exchange interaction is predominant [12,
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Figure 10. The resulting polarization in the CM phase of YMn2O5 due to structural displace-

ments is visualized exemplary by the Mn vectorial contributions (black arrows). The main impact

results in particular from the displacement of the Mn3+ ions with respect to the surrounding

O-pyramid.

15, 16, 32]. Thus, magnetostriction due to symmetric exchange interactions shifts ions to

optimize the spin-exchange energy [9, 11, 12, 22].

In addition, our results con�rm that the polarization Ps = Ps,Ion + Ps,El in the

CM phase have an ionic contribution Ps,Ion induced by shifts of the ions due to the

phase transition and not exclusively electronic contribution Ps,El due to spin-dependent

hybridizations of O and Mn orbitals [38, 65]. Furthermore, Ps calculated from structural

parameters shows a better agreement with the experimental values than an estimation of
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Ps based on Spin interactions.

VI. CONCLUSION

We investigated the origin of ferroelectricity of the CM phase in YMn2O5 using the

novel resonant X-ray di�raction method called RSD with a sensitivity to atomic dis-

placements in pm range. We started with the re�nement of dynamic and static atomic

displacements of the P phase above TCM to receive a highly precise structure model as a

basis for structural changes during the phase transition to the CM phase. We signi�cantly

improved the structure solutions of the P phase found in crystallographic databases. For

the re�nement of the P phase we had in total 43 structural degrees of freedom, which

converged to a stable minimum. We used the re�ned P phase as initial model for the

re�nement of the CM phase and optimized 50 static displacement parameters in space

group Pb21m. With the superior con�dence levels in the lowered symmetry, we present

the �rst structural model of the CM phase in YMn2O5.

We successfully applied the RSD method for the �rst time to a signi�cantly more

complex material systems with lower symmetry and more atoms in the asymmetric unit

than for our �rst application on SrTiO3, receiving a stable and physically reasonable

solution.

Next to providing new insights to the structural subtleties of the P as well as of the

CM phase of YMn2O5, we have shown that the new RSD method is capable of re�ning

structures with more than 50 structural degrees of freedom (for the CM phase, 30 ADPs

and 13 static displacements for the P phase), based on RSD spectra of 18 re�ections

(compared to 4 free structural parameters in our �rst application of the method for po-

lar SrTiO3). The methodical advancements in this work result is signi�cantly increased

number of structural degrees of freedom for the YMn2O5 structure solutions and an im-

proved iterative algorithm for the identi�cation of relevant re�ections (see SM Sec. S II
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and Sec. S VI).

The investigations of the RSD spectra below TCM show signi�cant displacement of

the ions, especially a shift of O and Mn partial structure in opposite directions. Here,

the displacement of Mn3+ within the pyramid has the strongest contributions to the

ferroelectricity. The presented �ndings give an answer to the origin of ferroelectrictiy

in YMn2O5 as well as con�rm structural predictions and suggestions from literature.

The physical mechanism behind the ferroelectriy is magnetostriction, which shifts ions

to optimize the exchange-interactions. These shifts are very small, but with the high

spatial resolution of RSD, we were �nally able to experimentally determine the atomistic

displacements and con�rm an ionic contribution to the spontaneous electric polarization.
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