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Abstract
In this study we investigate simulation results for a virtual

diagnostics concept that is planned for the SASE1 beam-line
at the European XFEL. These virtual diagnostics will be
used to predict photon beam properties like pointing and
divergence. We first use the GENESIS simulation framework
to compute different lasing conditions in the undulator beam-
line, and then use Artificial Neural Networks (ANN) to
predict the pulse properties. The final model will be able
to estimate X-ray pulse characteristics based on properties
like electron beam trajectories inside the undulator sections
along with other diagnostics data. This study will provide
insight towards the development of online virtual diagnostics
in the real machine.

INTRODUCTION
Free Electron Lasers (FELs) are powerful sources of in-

tense and coherent radiation that have become essential tools
for a wide range of scientific and industrial applications [1].
However, FELs are complex machines that require careful
tuning and optimization to achieve the desired output. This
is where Machine learning (ML)-based virtual diagnostics
can play a crucial role. Virtual diagnostics refer to the use
of ML algorithms to analyze data from various beam-line
components and predict the properties of the beam.

One area where machine learning has been applied in
FELs is in the prediction of the output properties of the FEL,
such as the intensity, energy, and polarization of the emitted
radiation [2, 3]. By analyzing data from various beam-line
components, such as undulators and beam-line diagnostics,
machine learning algorithms can predict the properties of
the FEL output, allowing for real-time optimization of the
FEL performance [4, 5].

This paper provides an overview of our virtual diagnostics
concept for the XFEL machine at the Deutsches Elektronen-
Synchrotron (DESY). We present simulation results and the
predicted radiation beam properties using our ML model
in the following sections. Finally, we discuss the necessary
steps for implementing the ML model in the XFEL beam-
line at DESY.

MACHINE LEARNING MODEL
Simulation

The aim of this study is to create a ML based model for
prediction of electron and radiation beam properties. For this
reason, a series of GENESIS [6] simulations were done and
required parameters to train the model and desired outputs
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Table 1: Simulated Beam Properties

Parameter Value Unit
Energy 14 GeV
Normalized Emittance(X/Y) 0.5 µm
Bunch Length 20 µm
Current (Flattop) 4 kA
Radiation Wavelength 0.1 nm

for the training and prediction were extracted. Regarding the
simulations the beam-line is composed of 30 undulator cells
of the length of 5 meters with focusing elements between
these cells.

The beam energy is 14 GeV and a flat-top current profile
of 4 kA for a bunch length of 20 micron is considered here.
The Twiss parameters are matched to the initial cell in order
to have minimum beam size variation along the undulators.
Table 1, shows the beam parameters used in the simulations.
For this study the electron beam trajectory along the undu-
lator cells is used as an input for our ML model and the
radiation properties like radiation pointing, divergence and
spectral intensity regarded as outputs.

Electron beam trajectory can be recorded by using beam
position monitors (BPMs) in a real machine. Therefore, the
horizontal and vertical electron beam offset after each undu-
lator section was recorded in the simulation. Furthermore,
the electron beam trajectories were disturbed by introducing
initial offsets in position and momentum and as a result,
the electron bunch performs transverse oscillations in the
external focusing field imposed by quadrupoles between the
undulator sections. The offset range was chosen such that
the radiation intensity dropped by a maximum of 50 percent.

Figure 1: Radiation pointing prediction.



Figure 2: Radiation divergence prediction.

Pointing Prediction
We utilized horizontal and vertical electron beam offset

after each undulator section as inputs and radiation pointing
as outputs to train the machine learning model. The dataset
consisted of 300 data points, and we employed a grid search
approach to identify the optimal hyperparameters for the
neural network (NN) model. The optimized model consisted
of two hidden layers with 8 and 4 neurons, a batch size of
32, a learning rate of 10−3, and an epsilon value of 10−7.

The model’s performance was evaluated by calculating
the root mean squared error (RMSE), resulting in an ap-
proximate value of 2.5 × 10−3, indicating a high degree of
accuracy in predicting the radiation pointing. Furthermore,
we evaluated the performance of the model using the 𝑅2

score, which measures the goodness of fit between the pre-
dicted and actual values, was found to be 0.998, indicating
an excellent correlation between the predicted and actual
values.

The results of the prediction are depicted in Fig. 1, where
the true and predicted values of the horizontal and vertical
radiation pointing at the end of the beam-line are plotted.

Divergence and Spectral Intensity Prediction
In addition to predicting radiation pointing based on elec-

tron beam trajectory data, we also explored the prediction
of other critical radiation properties such as radiation diver-
gence and spectral intensity. To optimize the ML models,
we conducted a grid search, which resulted in the selection
of the same neural network architecture for both cases. The
selected model consisted of two hidden layers with 64 and
32 nodes, a batch size of 8, a learning rate of 10−3, and an
epsilon value of 5 × 10−7.

The accuracy of the predicted radiation divergence and
spectral intensity was assessed using the RMSE metric,
which was found to be approximately 6.1 × 10−3 and
6.6 × 10−3, respectively. The 𝑅2 score for predicted ra-
diation divergence was 0.996, and for spectral intensity, it
was 0.998.

Figure 3: Spectral intensity prediction.

The results of the prediction for radiation divergence and
spectral intensity are plotted in Fig. 2 and 3, respectively.
The plots illustrate the accuracy of the ML models in predict-
ing these radiation properties, demonstrating the potential of
ML models to accurately predict various critical properties
of X-ray pulses.

TRANSITIONING TO MEASUREMENTS
Based on our analysis, it is evident that the electron beam

trajectory data alone can accurately predict the most critical
properties of X-ray pulses. However, it is important to con-
sider various degrading effects such as undulator detuning,
field error, and beam yaw that can potentially impact the
radiation properties. While our simulations did not account
for these effects, it is crucial to incorporate them while train-
ing the ML models to ensure their accuracy in real-world
scenarios.

Furthermore, our investigation revealed that the ML mod-
els were unable to accurately predict the final output when
there was an initial correlation in the X-Z beam phase space
(R15 > 0). This highlights the importance of training the
ML models with data that includes cases with errors and
expected effects that may arise during real measurements.

Therefore, to optimize the performance of ML models in
predicting X-ray pulse properties, it is essential to consider
the impact of degrading effects and train the models using
data that reflects real-world scenarios, including cases with
errors and expected effects. By doing so, we can ensure the
accuracy and reliability of ML models in predicting X-ray
pulse properties.

Toward an Online ML Model
The European XFEL is able to provide X-rays with en-

ergies ranging from 0.25 keV to 25 keV using three SASE
undulators. These undulators are powered by a supercon-
ducting linear accelerator that uses TESLA technology. The
electron beams are allocated to three distinct beamlines in
each pulse, allowing for simultaneous operation of three
experiments [7, 8].



The implementation of an online ML model for predict-
ing X-ray pulse properties as a virtual diagnostics involves
three stages: data acquisition, feature extraction, and model
training. Here we briefly describe each stage, including the
necessary requirements in developing this concept for the
XFEL beamlines at DESY.

BPMs installed in the beam-lines allow the recording of
the electron beam trajectory as it travels through the undula-
tor sections. The generation of angular and spatial offsets
can be achieved by using orbit correctors located upstream
of the initial cell. The impact of these offsets on the elec-
tron beam properties and final radiation, such as radiation
pointing, divergence, and intensity, can be analyzed using
appropriate downstream diagnostics. The X-ray Gas Mon-
itor Detector (XGMD) measures the total pulse energy of
each individual FEL pulse and FEL imagers can be used to
measure the FEL beam position, shape and pointing.

In the data conversion and feature extraction phase the
recorded data (electron and photon data) are merged and
processed to extract the necessary features and parameters
required for model training. One such feature is the center-
of-mass (COM) of the radiation on the FEL imager screen,
which serves as a proxy for radiation pointing and is used
as the output target in our ML model. Additionally, other
radiation properties such as skewness, kurtosis, and beam
size can be computed from the image on the FEL imager
screen by fitting the data to a Gaussian distribution. To
improve the prediction accuracy, we include XGMD values
as an additional input along with the BPMs data in our model.

After the feature extraction phase, the combined data is
split into training and validation sets for model training and
evaluation. In the training stage neural networks algorithm is
used to build the model and the performance of the model is
evaluated using metrics such as mean squared error (MSE),
RMSE, and 𝑅2 score.

To optimize the performance of the model, we perform a
grid search for hyperparameter tuning, such as the number
of hidden layers and nodes. By systematically exploring
different hyperparameter combinations, we can find the best
set of hyperparameters that yield the most accurate predic-
tions. Once the model is trained and validated, it can be
implemented in real-time to optimize the FEL performance
and improve experimental outcomes.

CONCLUSION
In this study, we have presented our preliminary work

on developing virtual diagnostics for the XFEL machine at
DESY using machine learning techniques. Our ML model,

which is based on simulation data, shows accurate predic-
tions of radiation properties, such as radiation pointing, di-
vergence and spectral intensity, using electron beam trajec-
tory data as inputs. We have also discussed the potential
implementation of a virtual diagnostics system and the neces-
sary steps for its integration into the beamlines of the XFEL
facility at DESY.

Overall, our study highlights the potential of machine
learning in developing virtual diagnostics for XFEL ma-
chines, which can lead to more efficient and reliable oper-
ation of these complex instruments. We envision that our
work will pave the way for further developments in the field
of virtual diagnostics, and ultimately contribute to the sci-
entific community by enabling more precise and efficient
experiments at XFEL facilities
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