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Abstract
The use of fast computational tools is important in the

operation of X-ray free electron lasers, in order to predict
the output of diagnostics when they are either destructive
or unavailable. Physics-based simulations can be computa-
tionally intensive to provide estimates on a real-time basis.
This proposed work explores the use of machine learning to
provide operators with estimates of key photon pulse charac-
teristics related to beam pointing. A data pipeline is set up
and the method is applied to the SASE1 undulator line at the
European XFEL. This case study evaluates the performance
of the model for different amounts of training data.

INTRODUCTION
Free electron lasers (FELs) are powerful light sources

that can produce high-intensity, high-energy laser beams
over a wide range of wavelengths. FELs are used in a
wide range of scientific research applications, including
material science, chemistry, biology, and physics. To
measure the beam properties during acceleration, transport,
and delivery to users, diagnostic tools require increased
accuracy. However, extreme beam conditions and the
increased complexity of experiments pose challenges to
the current state-of-the-art diagnostics. At the European
XFEL in Hamburg [1], machine learning (ML) techniques
have been applied to conduct beam optics matching [2],
predict occurrences of breakdowns of the superconducting
radio-frequency cavities [3] and to calibrate diagnostic
devices [4]. Virtual diagnostic tools offer non-invasive
measurements of the beam when the diagnostic has limited
resolution or availability, using readily available input data.
Such tools have the potential to aid in experiment design,
setup, and optimization, saving valuable operation time, and
interpreting experimental results, especially when current
diagnostics cannot provide necessary information.

This work explores the use of an artificial neural network
(ANN) to estimate photon pulse pointing properties at the
user site based on beam position monitor (BPM) and x-ray
gas monitor detector (XGMD) measurements at the pho-
ton generation side. The photon properties are extracted
from images captured by the FEL radiation imager, which is
used to align the FEL beam by controlling and optimising
its shape and position. This preliminary work explores the
effect of different training dataset sizes in relation to the ac-
curacy of the model, as carried out for the SASE1 undulator.
Determining the minimal data that needs to be acquired on
each run is important to make the process more efficient.
∗ christian.grech@desy.de

METHODS
The acquisition, processing, modelling and evaluation of

data is hosted on the Maxwell High-Performance Comput-
ing (HPC) cluster, allowing flexibility for data access and
control. The complete data pipeline from data ingestion to
model predictions is shown in Fig. 1. Data from the two ac-
quisition systems is filtered and merged, followed by model
tuning, training and finally evaluation of the trained model.
In this section, the main components of this data pipeline
are described in detail.
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Figure 1: Data pipeline hosted on the Maxwell HPC cluster.

Data Acquisition
In order to train the model for a range of different photon

pulse conditions, orbit correctors placed upstream of the
initial undulator cell are controlled to generate angular and
spatial offsets. Each offset configuration is measured for a
period of five seconds. All data is acquired at 10 Hz from
two main sources: the DOOCS DAQ, which captures the
BPMs and XGMDs, whilst the Karabo DAQ captures the
FEL radiation imager images. BPMs along all the undulator
cells are recorded as well as XGMs at the end of the undu-
lator. The FEL imager uses a YAG:Ce screen and a Basler
acA2500-14gm camera [5].

Feature Extraction
The predicted photon pulse properties are extracted

from the FEL radiation imager frames. Each frame is
a pixel matrix with size 2592 x 1944 (columns x lines)
with a 12-bit resolution. Since the region-of-interest (ROI)
in this case is much smaller than the whole frame, the
image is initially cropped by calculating a rough estimate
of the centre-of-mass. This is done by averaging the
pixel intensities along the rows and columns and fitting
a Gaussian curve. The pixel at the peak of the curve is
considered as the center and the region is expanded to six
times the curve’s standard deviation from the calculated
centre. An example of a raw image is shown in Fig. 2a) and
an example of a cropped image in Fig. 2b).

Follow the cropping, a Gaussian curve is refitted on the
reduced image as shown in Fig 3. The extracted features
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Figure 2: (a) Raw image and (b) image after ROI cropping.

Figure 3: Average pixel intensity along (a) 𝑥-direction and
(b) 𝑦-direction in black and the fitted curve in red.

from the fit include the centre-of-mass, beam size, skewness
and kurtosis in both 𝑥 (horizontal) and 𝑦 (vertical) positions.

Model Tuning
Once the data from both acquisition systems is merged

based on the train ID, the dataset is divided into a training,
validation and testing set (60%, 20%, 20% respectively).
Different combinations of hyperparameters are then tested
on a sample of the training dataset. Hyperparameters are
the model variables that the user can modify to tune the
model, such as the number of hidden layers and the number
of nodes in the hidden layer. In this work a grid search is
carried out before the model is trained, which uses a different
combination of all the specified hyperparameters and their
values and calculates the performance for each combination
and selects the best value for training the model. For the
dataset presented in this work, a neural network with three
hidden layers and 84 nodes in each layer is found to be
optimal.

Model Training
The neural network is constructed using the PyTorch

framework [6]. The model input features include 13 BPMs
(𝑥 and 𝑦 positions) and one XGM. The target features are
the eight extracted photon properties. An early stopping
approach is applied, where the training is stopped when the
validation error starts increasing. This ensures the model is
neither underfit nor overfit. The patience parameter controls
how many epochs the training process will continue without
any improvement in the validation loss. If the validation
loss doesn’t improve after ’patience’ number of epochs, the
training process is stopped.

Evaluation
Once the trained model is saved, it can be used to predict

the eight photon pulse properties for different BPM/XGMD

Figure 4: Average 𝑅2 for the eight predicted outputs with
varying amounts of training data

Figure 5: Measured (red) and predicted (blue) properties for
the model trained with 20 minutes of machine data.

values. The performance of the model is evaluated by
calculating the average coefficient of determination (𝑅2)
and root mean square error (RMSE) for the eight properties.
As a case study in this work, the performance of the model
is tested when it is trained using different amounts of data,
ranging from 4 minutes (10 %) to 41 minutes (100 %).
Figure 4 shows the resulting average 𝑅2 and standard
deviation calculated for the eight predicted outputs.

The average and deviation in performance is noted to
converge after 12 minutes. In Fig. 5 the individual measured
and predicted photon pulse properties are shown for the
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recorded testing dataset, when trained with 16 minutes of
data.

CONCLUSION
The use of machine learning techniques, such as ANNs,

can aid in beam optics matching, predict breakdown occur-
rences, and calibrate diagnostic devices. The presented work
explored the use of an ANN to estimate photon pulse point-
ing properties at the user site based on BPM and XGMD
measurements at the photon generation side. The study in-
vestigated the effect of different training dataset sizes in
relation to the accuracy of the model for the SASE1 un-
dulator. This work demonstrated the potential for virtual
diagnostic tools to aid in experiment design, setup, and op-
timization, saving valuable operation time and interpreting
experimental results, especially when current diagnostics
cannot provide necessary information. Future work is still
required to determine the extent of how such models can be
used and under which conditions models can be trained and
used during machine operation or setup.
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