


Table 1: Geometric Parameters of the bend mode converters optimized for a frequency of 300 GHz, based on the analytical

model and S-parameter simulations. The resulting (21 refer to the excitation of the fundamental mode at port 1.

analytic model simulation

Waveguide radius 1 0.6 mm 0.48 mm 0.6 mm 0.48 mm

Radius of 1st bend '1 4.4 mm 1.953 mm 4.4 mm 1.92 mm

Angle of 1st bend \1 43° 58° 43° 58°

Radius of 2nd bend |'2 | 4.445 mm 2.348 mm 4.5 mm 2.25 mm

Angle of 2nd bend |\2 | 133° 148° 133° 148°

Magnitude of TE11 |(
(TE)

21
| −32.7 dB −22.3 dB

Magnitude of TM01 |(
(TM)

21
| −0.156 dB −0.196 dB

Given a waveguide of radius 1, with V1 and V2 being the

imaginary parts of the propagation constants, : = 2c/_

the vacuum wave number, the coupled mode equation of

a general single bend with initial mode amplitudes 01 =

�1 (0), 02 = �2 (0) and radius of curvature ' is solved by
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, Ṽ =

V1 + V2

2
, (3)

where d and 3 are derived from the coupling coefficient,
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D01, D
′
11

are the first roots of the zeroth Bessel function �0 (I),

and the derivative of the first Bessel function �′
1
(I).

Starting with the first bend of the converter, the amplitude

evolution simplifies due to the initial values being 01 =

1, 02 = 0. In Eq. (4), the generic radius of curvature '

is substituted by '1. At I★ = '1\1 the bend is inverted,

implying 01 = �1 (I
★), 02 = �2 (I

★) for the initial condition

of the second bend with '2 < 0. In Eqs. (1) and (2) the

z-coordinate for the second bend must be given relative to

the transition, substituting I with I − I★.

Two cases are studied with fixed waveguide radius. The

first one is set to 1 = 0.6 mm, which implies V1 =

5.487 mm
−1, V2 = 4.844 mm

−1 [16]. To achieve good con-

version, |�1 ( Î = '1\1 + '2\2) |
2 at the end of the second

bend must be minimized. The coupling coefficients scale

inversely with the radius of curvature [10], which results

in strong coupling (d ≫ 1) at '1 ≈ _. However, moderate

coupling d ≈ 1 is beneficial with respect to broad bandwidth.

'1 = 4.4 mm is chosen as a good compromise (d = 0.95).

The angle is adapted to achieve ≈50 % power in both modes

at I★ according to Eqs. (1) and (2). \2 follows from the

condition of a net 90
◦ bend. Feeding the second bend with

the superimposed amplitudes 01 and 02, the power |�2 ( Î) |
2

of mode 2 at the output port is optimized with respect to '2.

At the optimum the conversion reaches 99.97 %. Table 1

summarizes the structure parameters.

The second case considers a smaller waveguide of 1 =

0.48 mm with V1 = 4.981 mm
−1 and V2 = 3.799 mm

−1 due

to potential excitation of TE21 enabled by manufacturing

errors in the large waveguide. Following the same procedure

the optimal geometric parameters are determined and listed

in Table 1.

NUMERICAL VALIDATION AND

REFINEMENT

To include finite conductivity, scattering parameters of the

converters have been simulated in CST Studio Suite 2022

Microwave Studio [17]. Annealed copper is assumed as

conductive wall, f2 = 58 MS m
−1.

For the large waveguide case, Fig. 2 shows how (21

evolves for both modes with varied radius of the second

bend. For minimum transmission in TE11, a slight shift of

the ideal '2 has been found in comparison to the analytic

result, see Table 1. The simulation also quantifies of how

much power is transmitted, converted and lost due to finite

conductivity. Table 1 lists (21 for both modes. Transmission

to the fundamental goes down to 0.05 % power. 96.5 % are

transferred to the desired accelerating mode. The remaining

3.5 % are dominantly dissipated by ohmic losses. Further
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Figure 2: (21 of both modes versus radius of curvature '2

for the large waveguide 1 = 0.6 mm, and at 300 GHz.
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