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Messner,1 G. Palmer,1 M. Schnepp,2 C. Werle,1 P. Winkler,1 W. P. Leemans,1, 2 and A. R. Maier1

1Deutsches Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
2Department of Physics Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

Applications of laser-plasma accelerators (LPA) require independent control of electron beam
parameters. However, due to the complex coupling of the many variables governing the laser-
plasma interaction, precisely tuning these parameters based on simple scalings is often impossible
or at least sub-optimal. Here, we apply multi-objective Bayesian optimization to derive optimal
tuning curves for LPAs, both in simulations and experiments. For electron energies between 150
and 250MeV, we demonstrate tuning of the charge over a range of nearly 100 pC, while preserving
optimal beam loading conditions with energy spreads below 5%. The derived tuning curves can
explain the sometimes counter-intuitive interplay between laser and plasma control variables that
is necessary to find the best trade-off between competing beam properties.

Over the past few years, laser-plasma accelerators
(LPA) [1, 2] have shown rapid progress [3–5] promising
compact and cost-effective drivers for medical [6, 7], high-
energy physics [8, 9], and photon science [10–12] applica-
tions. Past experiments often focused on showcasing the
enormous potential of LPAs with record beam properties.
Real-world applications, however, will in addition require
to precisely and independently control beam parameters
over an extended tuning range. LPAs have previously
demonstrated some tunability [13] but reaching the de-
sired level of control is a very challenging task: Multiple
tuning parameters can act directly or indirectly on the
same beam property, and beam parameters may influence
or even counteract each other through the complex laser-
plasma interaction. For example, beam loading [14–17]
couples bunch charge and energy spread. Simply vary-
ing one property (e.g., higher charger) can easily deterio-
rate (e.g., higher energy spread) the other. Consequently,
tuning the electron beam phase space represents a multi-
objective optimization problem, with the goal to identify
solutions that provide the best trade-offs between multi-
ple, conflicting objectives. The set of all of these optimal
trade-offs forms a hypersurface through the space of pos-
sible solutions that is commonly referred to as the Pareto
front. Gaining insight into the Pareto front is crucial for
achieving optimal beam properties, as it helps to identify
and reconcile the underlying conflicting mechanisms.
In this Letter, we present Pareto-optimal tuning curves

to control the energy, charge, and energy spread in
our laser-plasma accelerator. We utilize multi-objective
Bayesian optimization (MOBO) [18–20] to sample the
system’s Pareto front and derive tuning curves that pro-
vide accurate control over the relevant beam proper-
ties. We demonstrate the concept using simulations and
present a method to handle the added complexity from
noise under experimental conditions. Our experiments
show that we can maintain optimal beam loading condi-
tions over a broad range of beam configurations, allowing
for flexible charge adjustments while minimizing negative
impacts on energy spread at different specific design en-

ergies.
Bayesian optimization [21] (BO) is a method for effi-

ciently finding global extrema in black box functions that
are costly to evaluate and potentially noisy. Recently, it
was explored as a way to find optimal operation points in
conventional [22–24] and plasma accelerators [25, 26]. To
avoid costly evaluations of the black box function, e.g.,
the accelerator, BO builds a surrogate model (typically
a Gaussian process [27] model) of the system that allows
to make cheap and noise-free predictions. With the sur-
rogate model, an acquisition function is defined, which
encodes the search strategy to identify the next point for
physical evaluation. The acquired (experimental) data is
used to refine the surrogate model and further guide the
optimization.
In multi-objective optimization problems, there is not

a unique optimal solution, but the goal is to find op-
timal trade-offs between many objectives, which define
the Pareto front. A trade-off is considered optimal, or
non-dominated, if it cannot be improved in one objective
without deteriorating another. To find a set of solutions
that is approaching the systems’s Pareto front, MOBO
maximizes the hypervolume that is spanned by the non-
dominated solutions. For this, MOBO uses the expected
improvement of the hypervolume as the acquisition func-
tion. As the hypervolume increases, the non-dominated
solutions converge to the true Pareto front of the system.
So far, application of MOBO has been limited to sim-

ulation studies that recently have demonstrated its fea-
sibility for optimizing conventional [28] and laser-plasma
[29] accelerator setups. Implementation of the method
under experimental conditions adds significant complex-
ity due to measurement noise and shot-to-shot variations
of the laser, and has not yet been shown successfully.
In the following, we derive a method to construct

tuning curves for our laser-plasma accelerator based on
MOBO. First, we illustrate our approach using particle-
in-cell simulations [30] with the code fbpic [31, 32], based
on the LUX laser-plasma accelerator operated at DESY.
Our setup is schematically shown in Fig. 1. The plasma





3

tion zfoc and Ar concentration cAr have to be tuned in
opposite directions from what would be expected when
increasing the charge with these parameters individually.
Instead, the focus is moved away from the mixed gas re-
gion, the Ar concentration is reduced, and gas density
and laser energy are increased. The higher gas density
increases the plasma density and the amount of Ar. To-
gether with the higher laser energy, this results in an
increase of the injected charge and a modification of the
wakefield strength, which prevents excessive beam load-
ing. Shifting the focus downstream prevents diffraction
of the drive laser towards the end of the plasma and main-
tains optimal beam loading throughout the acceleration
process. Moreover, a slight decrease in Ar concentration
is necessary to match the injected current profile to the
wakefield at the increased plasma density.
The tuning behavior changes completely once the gas

density approaches the upper limit of the tuning range
(0.72×1024cm−3) at around 100 pC (region B). Now, to
even further increase the charge, the focus needs to be
tuned in the opposite direction, i.e., upstream, and the
Argon concentration needs to be increased again slightly.
The laser energy that was previously also reaching the
maximum of the permitted range is slightly reduced.
As shown in Fig. 2f, this way of precisely balancing the

input parameters maintains a flattened phase space over
a wide range of charges, while keeping the beam energy
fixed. The residual energy spread increase is primarily
caused by correlated energy spread, building up only in
the head and tail of the bunch. In contrast, the beams
from the simple focus scan develop a significant energy
correlation and energy deviation.
To derive an actual tuning curve that can be used in

practice, the discrete, optimized working points have to
be generalized. We fitted a multivariate kernel ridge re-
gression model [34] to the data, that maps the desired
beam charge Q to the set of input parameters X, i.e.,
laser energy, focus position, gas density, and Ar concen-
tration, that provide this charge at Pareto-optimal en-
ergy spread: X(Q). The model is shown in Fig. 2b-e,
with the solid line indicating the continuous variation in
input parameters as we continuously increase the beam
charge. Using these tuning curves, the beam energy
spread closely follows the Pareto front, compare Fig. 2a
(solid line). Following our tuning curve, we can precisely
set the beam charge, while providing the best possible
energy spread and retaining the design energy.
Realizing the same concept experimentally is signifi-

cantly more challenging, due to added measurement noise
and shot-to-shot variations (jitter) in the experimental
conditions.
Conceptually, we need to distinguish several sources

of noise. First, the optimizer might set the machine to
a certain target state (e.g, laser energy and focus posi-
tion), that could be different for the actual shot. We can
account for this with online shot-to-shot measurements

0.5

0.5

z fo
c

(m
m

) (b)
2.0
2.3

E la
se

r
(J

)(c)

0.25
0.50

V A
r

(m
l/s

) (d)

2
4

V H
2,

1
(m

l/s
)(e)

50 100
Q (pC)

0
1

V H
2,

2
(m

l/s
) (f)

50 100
Q (pC)

2
4

V H
2,

3
(m

l/s
)(g)

20 40 60 80 100
Q (pC)

0

2

4

6

E/
E 

(%
) 150 MeV200 MeV250 MeV

(a)

FIG. 3. Experimental results: (a) Pareto fronts of the beam
charge and energy spread for beams within ±10MeV of the
target energies with corresponding input parameters (b-g),
i.e. the shift of the focus position ∆zfoc, laser energy Elaser

and the flows of the gas supplies V̇ .

of the laser parameters. Second, all measurements suffer
from at least some measurement noise, that we cannot
avoid. This random noise leads to uncertainty in the
predictions of the surrogate model that can only be mit-
igated with additional data.
To cope with these effects, we recorded 40 shots at each

setpoint. If we would simply take the average of the elec-
tron beam data from these shots, we would be averaging
over the shot-to-shot variations of the laser and effec-
tively treat them as random noise, which would lead to
additional uncertainty of the surrogate model. Instead,
at each working point, we trained a local Gaussian pro-
cess model using the online measurements of the laser
energy and focus position as inputs and the electron pa-
rameters as outputs. This allowed us to disentangle the
effects of the laser jitter and interpolate the properties
of the electron beam for the exact input parameters that
were requested by the optimizer. Then we used this in-
formation to train the surrogate model that guided the
optimization. While previous experiments [26] trained
the surrogate model directly on all individual shots, the
computational cost associated with the MOBO algorithm
when dealing with large datasets led us to adopt this ap-
proach of local modeling.
To explore the capabilities of our setup, we performed

a series of experiments with MOBO runs at 150, 200 and
250MeV. As before, the objectives for the optimization
were the beam charge, relative energy spread, and de-
viation from the reference energy. The resulting Pareto
fronts with their corresponding input parameters after
100 iterations, i.e., 4000 individual shots, are shown in
Fig. 3.
For all three target energies we find low energy spread

setpoints over a significant range of beam charges. Con-
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sistent with the simulations, the energy spread grows
with increasing charge. For lower target energies, the
achievable charge increases as one would expect from an
aspect of energy conservation. As a result, for 150MeV,
it was possible to tune the beam charge between 50 and
130 pC, while maintaining a relative energy spread of less
than 5%. Up to a charge of 100 pC, the energy spread
only shows a modest growth and stays below 2.5% but
rapidly increases from there on. This behavior implies
that the available input parameter range did not support
optimal beam loading beyond this point. Therefore, ad-
ditional charge can only be loaded into the wakefield at
the cost of significantly distorting the accelerating field.
For the two higher energy cases, this quick increase of
the energy spread is present already at low charge, in-
dicating that here beam loading conditions immediately
worsen so much with increasing beam charge that a sig-
nificant energy correlation is imprinted.
Fig. 3b-g shows, that the three different energies pop-

ulate very different islands in the input parameter space,
especially for ∆zfoc, V̇Ar and V̇H2,3. Also the way some
parameters are tuned varies from energy to energy. For
example, for 150MeV, the focus is moved downstream to
increase the charge similar to the lower charged beams
in the simulated setup before. For the other two cases
it is moved upstream towards the mixed gas comparable
to the higher charge cases in the simulations. This again
hints that these two cases are already in a regime that
is dominated by strong beam loading. Assuming this is
true, we expect that these cases would behave similar
to the 150MeV case when provided with more laser en-
ergy and exhibit lower energy spread over a wider tuning
range. The fact that these three cases behave so diverse
in regard to the input parameters highlights the com-
plexity of, first, finding beams with acceptable quality
and then, second, being able to control them.
A general feature that is shared by nearly all config-

urations in Fig. 3 is that the flow through the last gas
inlet V̇H2,3 is higher than through the middle one V̇H2,2.
By creating a slight density ramp the slippage between
the electrons and the laser can be compensated through
contraction of the wakefield which is a way to increase
efficiency and load more charge.
The Pareto fronts in our experiment, Fig. 3, have fewer

sample points compared to the previous simulations, as
a result of the optimizer being run for a lower number
of iterations. Consequently, providing a continuous tun-
ing curve is even more important. The data shows a less
non-linear behavior than the simulations before, possibly
because it is less converged to the true Pareto front of
the system. In this case, it is sufficient to use a simple
multivariate linear model to describe the main parame-
ter variations. We derived such a model, exemplary for
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FIG. 4. Experiment: Beam charge tuning curve at 250MeV.
A linear model (green line) is fitted to the optimization re-
sult mapping the requested beam charge to the corresponding
input parameters along the Pareto front (b-d). (a) The tun-
ing curve was validated and compared to the measured data
(circles) with predictions from a Gaussian process surrogate
model. For comparison the effect of a laser focus position scan
over 450 µm is shown (red line).
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with Q in units of pC. Here we only considered parame-
ters that made significant contributions to the tuning of
the beam charge, keeping the remaining inputs constant
(Elaser = 2.15 J, V̇H2,1 = 2.24ml/s, V̇H2,2 = 0.84ml/s).
For example, to generate beams with 10 pC, according
to the tuning curve, an operator would set the machine
to ∆zfoc = 19µm, V̇Ar = 0.107ml/s and V̇H2,3

= 2.2ml/s.
The input parameters over the full range of the tuning

curve and the underlying data is shown in Fig. 4b-d. The
tuning strategy is to shift the focus towards the mixed
gas region and to increase the flow of Ar to enhance the
beam charge. To support the additional charge and bal-
ance beam loading, the flow of H2 in the back of the
plasma source needs to go up. This leads to a higher gas
pressure in the plateau region and creates a density ramp
towards the back of the plasma profile, ensuring optimal
performance.
To evaluate the effectiveness of the tuning curve, we

employ the surrogate model obtained from the optimiza-
tion process to forecast the response of the LPA when
adjusted based on the curve. For the example above, the
surrogate model predicts that the LPA generates beams
with (10.9 ± 1.5) pC at (1.2 ± 0.4)% energy spread that
are within (4.3±1.8)MeV of the 250MeV design energy.
The green line in Fig. 4a shows the predicted behavior

of the energy spread when scanning the charge accord-
ing to the tuning curve. The resulting working points
closely align with those measured during optimization,
indicating their proximity to the presumed Pareto front
of the system. Remarkably, this behavior is achieved
using only the three most important input parameters
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identified through our analysis. In contrast, when tun-
ing the charge only with the focus position, the resulting
growth of energy spread is roughly a factor of two larger
than what is obtained with our tuning curve. Provided
with the simple tuning curve, operators can precisely set
the beam charge required for their application, while still
achieving the smallest possible energy spread.
In conclusion, we have demonstrated dedicated con-

trol over electron bunch parameters in our laser-plasma
accelerator using continuous tuning curves, both in simu-
lations and experiments, that have been build via multi-
objective Bayesian optimization of the machine. In par-
ticular, the bunch charge was varied over a range of
nearly 100 pC and at different electron energies (150-
250 MeV), while providing the smallest possible energy
spreads (<5%) by moving the laser and plasma control
parameters along Pareto-optimal tuning curves. Even
more importantly, we could show that the derived tun-
ing curves itself are meaningful expressions of the con-
trol and output parameter relationships, which allowed
us to identify and explain how different physics mecha-
nisms have to be balanced to provide optimal trade-offs
between competing beam parameters.
While we showcase the potential of our our method

with our own LPA, our approach is generally valid and
can be readily applied to other laser-plasma accelerator
setups: We have introduced MOBO as a powerful tool
to study the complex interplay of the many mechanisms
that eventually result in a high-quality laser-plasma elec-
tron beams. We believe, this method will be broadly
adopted in the future.
To drive applications, laser-plasma accelerators need

to be operated with tunability over a broad range of pa-
rameters, while still providing sub-percent-level energy
spread beams. In our experiment, we were limited to
sub-5% energy spread beams. However, studying the
carefully balanced mechanism at the Pareto front indi-
cates, that with additional control parameters, and a
larger range of laser energy and plasma density, we should
be able to extend the range of sub-percent energy spread
beams. We expect that in the future, MOBO will be used
as an important tool to study and design laser-plasma ac-
celerators with the degrees of freedom (control parame-
ters) required to achieve extended tuning ranges. Finally,
tuning curves, as we present here, will allow operators to
precisely and quickly configure the electron beam prop-
erties, which will be crucial for applications.
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