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Federico Meloni6, David Spataro6,7, Cenk Tüysüz1,2 and Yee Chinn
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Abstract. The LUXE experiment is a new experiment in planning in Hamburg, which will
study Quantum Electrodynamics at the strong-field frontier. LUXE intends to measure the
positron production rate in this unprecedented regime by using, among others, a silicon tracking
detector. The large number of expected positrons traversing the sensitive detector layers
results in an extremely challenging combinatorial problem, which can become computationally
expensive for classical computers. This paper investigates the potential future use of gate-
based quantum computers for pattern recognition in track reconstruction. Approaches based
on a quadratic unconstrained binary optimisation and a quantum graph neural network are
investigated in classical simulations of quantum devices and compared with a classical track
reconstruction algorithm. In addition, a proof-of-principle study is performed using quantum
hardware.

1. Introduction

The Laser Und XFEL Experiment (LUXE) [1] at DESY and the European XFEL (Eu.XFEL)
aims at studying strong-field Quantum Electrodynamics (QED) processes in the interactions
of a high-intensity optical laser and the 16.5 GeV electron beam of the Eu.XFEL (e−-laser
collisions), as well as with high-energy secondary photons. A strong background field is provided
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3. Simulated data

Monte Carlo simulated event samples are used to perform this study. The calculation for the
electron-laser interaction processes was performed with the PTARMIGAN [15] Monte Carlo event
generation software. The electron beam parameters were chosen as follows. The incoming
electron energy εe is set to 16.5GeV, the beam spot size to σx = σy = 5 µm, σz = 24 µm, and
the normalised emittance to 1.4 mm·mrad. The simulation of the laser assumes a 40 TW laser,
an energy after compression of 1.2 J and a pulse length of 30 fs. The laser pulse is modelled
as having a Gaussian profile both in the longitudinal and in the transverse direction. The laser
spot waist, which for a Gaussian pulse corresponds to 2σ in intensity, decreases with ξ and varies
between 6 µm and 3 µm.

The particles produced in the electron-laser interactions are propagated through the dipole
magnet and tracking detector using a custom fast simulation that was developed for this study.
The fast simulation uses parameterised smearing functions to model the effects of multiple
scattering and detector resolution. Furthermore, a simplified detector layout is considered. In
this layout, the four detection layers are not split into two overlapping staves, but simply have
a double length with no discontinuities.

To perform these studies, data sets corresponding to electron-laser interactions were generated
with ξ values ranging from three to seven and a laser power of 40 TW. This corresponds to
positron multiplicities ranging between 1 × 102 and 7 × 104. Figure 3 shows the resulting
expected positron energy distribution for the three generated ξ values (left) and the number of
hits/mm2 in the first detector layer as a function of the x and y coordinates for ξ = 7 (right).
The double-peaked structure visible in the xy plane reflects the initial positron momentum
distribution along the y-axis at the interaction point.
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Figure 3. Left: Positron energy distribution for different values of ξ, normalised to unit area.
Based on Ref. [1], using the data sets generated for this work. Right: Number of hits/mm2 in
the first detector layer as a function of the x and y coordinates for ξ = 7.

4. Methodology

The starting point for the pattern recognition are either doublets or triplets, defined as a set of
two or three hits in consecutive detector layers. A pre-selection is applied to the initial doublet
or triplet candidates to reduce the combinatorial candidates while keeping the efficiency as close
as possible to 100% for the doublets and triplets matching with a real positron. Doublets are
formed first and are required to satisfy a pre-selection based on the ratio δx/x0, where δx is the
difference of the x coordinates for the two hits composing the doublet, while x0 indicates the x



coordinate on the detector layer closest to the interaction point. A window of three standard
deviations around the expected mean value of δx/x0 for true doublets, as determined in the
simulation, is used for this selection. This requirement ensures that the particles come from the
IP. Triplets are subsequently constructed by combining doublet candidates with a requirement on

the maximum angle difference δθ =
√

δθ2xz + δθ2yz of the doublet pairs. The maximum scattering

threshold is chosen to be 1 mrad and was optimised taking into account multiple scattering with
the detector material. Since triplets consist of three hits, they are formed either from the first
to the third layer or from the second to the fourth layer.

Figure 4 shows the distributions of δx/x0 for doublets (left) and δθ for pairs of doublets
(right) originating from true positron tracks, shown separately for low-energy (Ee+ < 3 GeV)
and high-energy positrons (Ee+ > 3 GeV), as well as the chosen thresholds. The distributions
are obtained using ξ = 7, but are generally ξ-independent. The δx/x0 distribution shows a
slight dependence on positron energy, while the triplet δθ distribution demonstrates that the
scattering is more pronounced for lower energy positrons. The resulting pre-selection efficiencies
are shown in Figure 5 (left) for both doublet and triplet finding, in the case of electron-laser
interaction for ξ = 7. The pre-selection requirements are found to be nearly fully efficient for
the whole energy range, with a moderate efficiency loss, at the level of 16% for positron energies
below 2 GeV, mostly due to multiple scattering with the detector material. Figure 5 (right) also
shows the number of doublets and triplets passing the pre-selection criteria as a function of ξ.
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Figure 4. Left: Distribution of doublet δx/x0 with red dashed lines indicating the range of
the pre-selection. Right: Distribution of angle difference δθ for the doublet pairs composing the
triplets with a red dashed line indicating the upper limit allowed by the pre-selection.

Three pattern recognition methods are employed and systematically compared to reconstruct
tracks from the detector hits. The first method formulates the tracking problem as a quadratic
unconstrained binary optimisation (QUBO), similar to the one used in Ref. [8], which is then
processed with quantum algorithms. The second method uses a hybrid quantum-classical graph
neural network approach [11], but is limited to specific scenarios compatible with the available
devices. Finally, the results obtained with the quantum approaches are compared to an optimised
classical approach based on a Kalman filter [16, 17], which is taken to be the reference for the
state-of-the-art using no quantum computers.
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Figure 5. Left: Doublet and triplet-finding efficiency as a function of the positron true energy.
The combined efficiency is also shown. Right: Doublet and triplet multiplicities as a function
of ξ (lower x-axis), corresponding to the average number of positrons (upper x-axis).

4.1. Quadratic unconstrained binary optimisation

In this approach, the pairs of triplet candidates that can be combined to form tracks are identified
by solving a QUBO problem. The QUBO is expressed via the objective function

O =

N
∑

i

∑

j<i

bijTiTj +

N
∑

i=1

aiTi, (2)

where Ti and Tj are triplets of hits and ai and bij are real coefficients. The triplets Ti and Tj

assume binary values. The solution of the QUBO determines whether each triplet is considered
false and rejected, by being set to zero, or true and selected, by being set to one. The linear term
of the QUBO weighs the individual triplets by their quality quantified by the coefficient ai. The
ai coefficient is set to the value of δθ scaled to populate the [−1; 1] range. The quadratic term
represents the interactions between triplet pairs, where the coefficient bij characterises their
compatibility. The coefficient bij is computed from the doublets forming the two considered
triplets. It is taken to be the norm of the sum of the standard deviations of the doublet angles
in the xy and yz planes, translated and scaled to populate the [−1;−0.9] range. If the two
triplets are in conflict, the coefficient bij is set to one. If the triplets are not connected, it is set
to zero.

The QUBO in Eq. (2) can be mapped to an Ising Hamiltonian by mapping Ti → (1 +Zi)/2,
where Zi is the third Pauli matrix. Minimising the QUBO is equivalent to finding the ground
state of the Hamiltonian. The Variational Quantum Eigensolver (VQE) [18] method, a hybrid
quantum-classical algorithm, was used to find the ground state. In this work, the data is
processed using the VQE implementation available in the Qiskit [19] library. Most results rely on
classical simulations of quantum circuits, where no sources of noise or decoherence are included,
and a simple ansatz with RY gates and a linear CNOT entangler is chosen, as shown in Figure 6.
An ansatz with CNOTs between all possible pairs and a single circuit repetition was found to
lead to results compatible within statistical uncertainties, but was discarded for simplicity. The
selected optimiser is the Nakanishi-Fujii-Todo (NFT) [20] algorithm. The ansatz and optimiser
were selected as those leading to the highest track reconstruction efficiency in previous work [14].

The number of qubits required to represent the tracking problem as a QUBO is determined by
the number of triplet candidates. Due to the limited number of qubits available on the current
quantum devices, the QUBO in this work is partitioned into QUBOs of smaller size (referred



|0〉 RY (θ1) • RY (θ5)

|0〉 RY (θ2) • RY (θ6)

|0〉 RY (θ3) • RY (θ7)

|0〉 RY (θ4) RY (θ8)

Figure 6. Layout of the variational quantum circuit using the ansatz with RY gates and a
linear CNOT entangling pattern. For simplicity, only four qubits are shown.

to as sub-QUBOs) to be solved iteratively. For small enough sub-QUBO sizes, such as the size
7 used in this work, an exact solution using matrix diagonalisation is possible and is used as a
benchmark.

Figure 7 summarises the QUBO solving process. At the beginning of the processing, all
triplet candidates are set to 1. The splitting into sub-QUBOs is done by extracting the sub-
QUBO matrices of the desired size, by picking triplets in order of their impact. The impact
is defined as the change in the value of the objective function when Ti → 1 − Ti. Each triplet
is assigned an additional constant term representing the sum of all interactions with triplets
outside of the sub-QUBO to retain sensitivity to the connections outside of each sub-QUBO
when computing the value of the objective function. After the sub-QUBOs are solved, the
solution is combined. These steps are repeated for a number of iterations. The triplets selected
by the QUBO minimisation are retained and matched to form track candidates.

a
00

a
11

b
10

0

b
n0
b
n1

a
nn

0

0

… … …

…
…

…

…

Variational QuantumAlgorithm

QUBO
T

O (a,b,T) =

T
i

{0,1}

T
1

T
0

…

Classical

Optimiser

Parameterised circuit Ground state

Initial triplet values

Convergence

in energy

1

0

0

…

Final solution

Split into sub-QUBOs

Recombine

T
n

T
1

T
0

…

T
n

Figure 7. Diagram illustrating the QUBO solving procedure.

Alternative algorithms for finding the optimal QUBO solution, such as the Quantum
Approximate Optimisation Algorithm (QAOA) [21], were briefly investigated and were found to



lead to significantly worse performance. A dedicated optimisation and characterisation of the
results of such alternative algorithms is left to future work.

4.2. Quantum graph neural network

This approach is based on a graph neural network (GNN) [22, 23] that consists of both classical
neural network layers and quantum circuits. The graph is constructed from doublets, where the
hits are nodes and the connections between the hits are edges. All nodes of consecutive layers are
connected and only the ones that satisfy the pre-selection criteria are kept. The quantum graph
neural network (QGNN) model follows the implementation of Ref. [11] and consists of three
networks. First, the InputNet takes the input node features, i.e. the three spatial coordinates,
and produces hidden node features. For this purpose, a single fully connected neural network
layer that has 10 neurons with a tanh activation function is used. Second, the EdgeNet takes all
connected node pairs as input and produces a scalar edge feature for each of them using a sigmoid

activation function. This will later be the prediction score of the model for each doublet, as this
model is essentially a segment classifier. Circuit 10 with two layers and 10 qubits is selected for
this task based on previous work [11]. Each layer of this circuit uses RY gates and linear CNOT
entanglers between all possible pairs of qubits. Third, the NodeNet considers each node and
its connecting nodes to update the hidden node features. The architecture of the NodeNet is
similar to EdgeNet, but it uses the tanh activation function for the last layer, as the NodeNet is
an intermediate step, and sigmoid activation functions are known to lead to vanishing gradients.

The quantum graph neural network (QGNN) model first starts with the InputNet. Then, the
EdgeNet and the NodeNet are applied alternately four times to allow the node features to be
updated using farther nodes, as determined in a scan of the optimal model parameters. At the
end, the EdgeNet is applied one last time to obtain the predictions for each doublet connection.
Finally, the edges are discarded if the prediction value is less than a fixed threshold (chosen to
be 0.5 in our simulations) and the rest are retained and used to form track candidates.

4.3. Combinatorial Kalman filter

A tracking algorithm based on A Common Tracking Software (ACTS) toolkit [24] with the
combinatorial Kalman Filter (CKF) technique for track finding and fitting is used as a
benchmark. In this classical tracking method, track finding starts from seeds, which are the
triplets formed from the first three detector layers. To avoid a combinatorial growth in the
number of seeds at high particle density, further constraints are placed on seeds sharing the
same hits by prioritising the better-aligned seeds. An initial estimate of track parameters is
obtained from the seed and is used to predict the next hit and is updated progressively, with
the measurement search performed at the same time as the fit.

4.4. Final track selection

A final step in the track reconstruction is common to all considered methods. Track candidates
are required to have four hits and, as explained in the previous subsections, can be found with
the QUBO approach that combines triplets into quadruplets (see Section 4.1), by employing
the QGNN approach that combines doublets into quadruplets (see Section 4.2), or by using the
classical CKF method (see Section 4.3). After finding these track candidates, the final tracks
now have to be selected among these candidates, using a final step explained in the following.

The track candidates are fitted to straight lines with the least-square method, as the particles
propagate through the tracking detector in absence of a magnetic field. A track candidate is
considered matched if it has at least three out of four hits matched to the same particle. Figure
8 (left) shows the duplication rate, i.e. the fraction of matched particles that are matched to
more than one track candidate, as a function of ξ. The substantially larger duplication rate
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Figure 11. Left: Track reconstruction efficiency as a function of the positron true energy for
ξ = 5. Right: Track fake rate as a function of the measured track energy for ξ = 5. The results
based on hybrid quantum-classical methods rely on classical simulations of quantum devices.
On average, about 10500 positrons are expected to be produced in a BX with ξ = 5.

5.2. Studies with quantum hardware

This section presents a detailed assessment of the performance of the VQE algorithm on QUBOs
of size seven, chosen to be the same as the sub-QUBO size used for the results based on classically
simulated VQE in Section 5.

A QUBO representing two nearby particles, leading to a total of seven triplets, was selected
for this test. The VQE method was applied first in an exact classical simulation assuming an
ideal quantum device with shot noise only, then in a classical simulation involving a noise model
extracted from a snapshot of the measured noise of the ibm nairobi device (fake nairobi) and
finally using real quantum hardware (ibm nairobi).

For each of these scenarios, 512 circuit evaluations (shots) were considered. When performing
the computations with fake nairobi and ibm nairobi, a measurement error mitigation based on
the generation of a calibration matrix was used [25, 26]. The readout error probabilities were
calibrated every 30 function evaluations of the optimiser.

Figure 12 shows the probabilities of the returned results for these three scenarios, where the
correct binary solution 0001111 is also the most probable.

6. Conclusion

This work investigated the use of hybrid quantum-classical algorithms for particle track
reconstruction. Focusing on a VQE approach for a QUBO formulation of track reconstruction
and a QGNN approach, the performance of these hybrid quantum-classical methods was
compared to results obtained from a state-of-the-art classical tracking method.

In order to produce these results, a standalone fast simulation of the LUXE tracking detector
was put in place as well as a software framework to reconstruct tracks up to the maximum
number of positrons expected during the data taking with a laser power of 40 TW.

The results were analysed in terms of reconstruction efficiency, fake rate and energy resolution.
Hybrid quantum-classical algorithms were found to lead to competitive results when compared
to classical algorithms. For large particle multiplicities, a QUBO approach based on VQE using
a classical simulation of a quantum device was found to have moderately higher efficiency than
classical tracking, but with a significant increase in the fake rate. It was not possible, due to
limitations in the computing resources, to evaluate the performance of the approach based on
QGNNs beyond a few thousand charged particles.
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Figure 12. Distribution of the VQE results for a test QUBO composed of seven triplets. The
blue bars indicate the results obtained from 512 shots on the ibm nairobi quantum computer,
compared with a realistic (green bars) and an ideal (blue bars) classical simulation of the
same system. The results from the realistic classical simulation and from ibm nairobi use a
measurement error mitigation technique based on the generation of a calibration matrix [25, 26].

7. Outlook

In this work, it was observed that the impact-based processing order leads to a significant
fraction of trivially-solvable sub-QUBOs with no interacting triplets. Future work will be
aimed at developing alternative algorithms for the sorting of the binary vector representing
the triplet candidates and for the splitting of the problem into sub-QUBOs. To further reduce
the computation time and the rate of fake tracks reconstructed with this method, future work
will focus on optimising the scaling ranges for the ai and bij coefficients.

While the initial study of the VQE performance on real quantum hardware (ibm nairobi)
yielded promising results, a more systematic study of hybrid quantum-classical algorithms using
NISQ-era devices will be performed in future work.

Finally, the choice of the optimiser used for VQE has a significant impact on the probability
to find the true minimum of the cost function, and a careful optimisation will be required when
considering larger sub-QUBO sizes.
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