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Condensed matter physics of gauge theories coupled to fermions can exhibit a rich phase structure, but

are nevertheless very difficult to study in Monte Carlo simulations when they are afflicted by a sign

problem. As an alternate approach, we use tensor network methods to explore the finite density physics of

Abelian gauge theories without dynamical matter. As a concrete example, we consider the Uð1Þ gauge

invariant quantum link ladder with spin-1
2
gauge fields in an external electric field, which causes the

winding electric fluxes to condense in the ground state. We demonstrate how the electric flux tubes arrange

themselves in the bulk, giving rise to crystalline patterns, whose period can be controlled by tuning the

external field. We propose observables to detect the transitions in ground state properties not only in

numerical experiments, but also in future cold-atom realizations. A systematic procedure for reaching the

thermodynamic limit, as well as extending the studies from ladders to extended geometries is outlined.
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I. INTRODUCTION

Finite chemical potentials are expected to give rise to

novel phases and correlations otherwise absent in the ground

state of quantum field theories or quantum many-body

systems. Two physically relevant examples are quantum

hromodynamics (QCD) and the Hubbard model. Markov

Chain Monte Carlo (MCMC) methods to solve QCD

regulated on the lattice can explain properties of hadrons,

such as their masses, binding energies, and scattering cross

sections. At finite baryon densities, μB, relevant for e.g., the

description of the interior of neutron stars or the very early

Universe, the MCMC methods suffer from the infamous

sign problem. The Hubbard model, on the other hand, is a

pedagogical system to describe a variety of phases of

strongly correlated electrons. At finite doping, it is expected

to host high-temperature superconducting phases and pro-

vide a model for many physically interesting materials. Once

again, the regime of nonzero doping is difficult to investigate

numerically using Monte Carlo methods due to the sign

problem.

Finite density physics of scalar and fermionic theories

in various space-time dimensions have been extensively

investigated [1–7]. We extend such studies which dealt

with point particles to pure gauge theories without

dynamical matter fields containing loop operators. The

simplest scenario is a Uð1Þ Abelian lattice gauge theory in

a finite volume and in (2þ 1) dimensions, where gauge-

invariant winding electric flux strings can be excited by

coupling a chemical potential to each of the global Uð1Þ
center-symmetry generators. Each sector is labeled by a set

of integers ðZ1;Z2Þ, indicating the number of windings in

a specified spatial direction. Moreover, these sectors are

topological in nature, and states in a given winding number

sector cannot be smoothly deformed to another sector.

Further, the electric flux tubes are nonlocal extended

excitations, unlike the pointlike bosonic or fermionic

particles, and their properties at finite densities could in

principle be considerably different.

Flux tubes have been played a prominent role in the

description of various physical phenomena. Nielsen and

Olesen [8] introduced the field theory of a vortex-line model,

also identified with dual strings. These are flux tubes, similar

to the ones that occur in the theory of type-II super-

conductors, and are responsible for most of the low-energy

physics in the strong coupling limit. Classical and semi-

classical analysis involving electric fluxes interacting with a

gas of monopoles, giving rise to confinement, have been

discussed in [9,10]. Non-Abelian generalizations of such

operators, called disorder operators, were introduced
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by ’t Hooft to analyse the phases of non-Abelian gauge

theories [11].

We consider the condensed matter physics of these flux

tubes in (2þ 1)-dimensional U(1) gauge theory. Previous

studies have used the path integral formulation by either

exploiting the dual representation of Abelian lattice gauge

theories [12,13], or by using the multilevel algorithm [14]

and explored properties such as the profile of the electric

flux lines connecting static charges, the variation of the

potential between two charges with increasing the repre-

sentation of the charges, and the flux-tube spectrum [15].

Among other things, this provides valuable insights about

the attractive or repulsive nature of the flux tubes.

In this article, we use the Hamiltonian formulation of a

Uð1Þ quantum link ladder (QLL) [16]. This theory is known

to have novel crystalline confined phases which carry

fractional electric flux excitations [17], possess anomalously

localized excited states [18], and are the building blocks of

spin-ice compounds [19,20]. While it is known how to

simulate the theory with an improved cluster algorithm at

zero and finite temperature [21], this method has not been

extended to deal with the scenario at finite winding chemical

potential. Instead, we use tensor network methods (see for

review [22]) to perform an ab initio study of the system at

finite winding density. Thanks to the rapid development of

quantum simulators, the key elements for realizing this

microscopic model on digital and analog quantum com-

puters are already available [23–28]. The finite density

physics investigated in the article is ideal to be observed in a

quantum computing setup. The open boundaries and gauge

invariance realized with quantum spin operators are very

natural for quantum simulators.

II. THE Uð1Þ QUANTUM LINK LADDER

To illustrate our ideas, we consider the setup of the Uð1Þ
QLL with the gauge fields represented by quantum spins in

the spin-1
2
representation on a rectangular lattice Lx × Ly,

with Ly ¼ 2 and Lx ¼ 6;…; 64, illustrated in Fig. 1. Each

link degree of freedom has a two-dimensional Hilbert space,

and the gauge field operator raises (or lowers) the electric

flux basis state: Ur;î ¼ Sþ
r;î
, U†

r;î
¼ S−

r;î
, Er;î ¼ Sz

r;î
. The

Hamiltonian consists of two types of plaquette operators:

H□ ¼ −J
X

□

ðU□ þ U†

□
Þ þ λ

X

□

ðU□ þ U†

□
Þ2; ð1Þ

where U□ ¼ Ur;îUrþî;ĵU
†

rþĵ;ĵ
U†

r;ĵ
. One could have added

the square of the electric field energy
P

r;î E
2

r;î
, but for the

spin-1
2
representation, this is a trivial constant and can be

neglected. As shown in Fig. 1, the first operator flips any

flippable plaquette, while the second operator counts the

total number of flippable plaquettes. Only two of the 16

states on a plaquette are nontrivially acted upon by the

plaquette operators. The reduction in the number of physical

states is due to a local Uð1Þ symmetry, generated by the

Gauss law

Gr ¼
X

î¼x̂;ŷ

ðEr−î;î − Er;îÞ ¼
X

î¼x̂;ŷ

ðSz
r−î;î

− Sz
r;î
Þ: ð2Þ

Physical states satisfyGrjψi ¼ 0, which implies the absence

of any charge on the lattice. In addition, the model has

several global symmetries; the lattice translation symmetry

(by one lattice spacing), the reflection and the rotation

symmetry. In addition, there is the Z2 charge conjugation

symmetry, U → U†, E → −E. However, the main object of

our interest are the Uð1Þ2 global winding number sym-

metries, generated by the operators,

Wy ¼
1

2Ly

X

r

Szr;ŷ and Wx ¼
1

2Lx

X

r

Szr;x̂; ð3Þ

where the sum over r runs over all lattice sites. These

operators commute with the Hamiltonian and thus classify

the eigenstates in terms of the number of times the flux loops

wind the system either along the x- or the y-direction.
Therefore, it is natural to couple chemical potentials with

strengths μx, μy to the Hamiltonian and extend the full

Hamiltonian as H ¼ H□ − μxWx − μyWy.

The windings Wx;y are good quantum numbers for

periodic boundary conditions. However, for using open

boundary conditions [as we impose in the longer directions,

since we use matrix product states (MPS) in our calcu-

lations], one can show that an external field ðhx; hyÞ that

couples to the x-links and y-links, respectively, serves the
same purpose, keeping Wx;y to be good quantum numbers.

With the external field, there is a nontrivial contrib-

ution from the kinetic energy term,
P

r;x̂ðEr;x̂−hxÞ
2þ

P

r;ŷðEr;ŷ−hyÞ
2¼−hx

P

r;x̂Er;x̂−hy
P

r;ŷEr;ŷþconst¼−

2hxWx−2hyWyþconst, which is equivalent to coupling

the system with μx;y. We will use the latter notation for the

rest of the article.

FIG. 1. Ladder geometry of the lattice. The periodicity in ŷ is

indicated by the dashed lines. Two flippable plaquettes (↺, ↻)

and a nonflippable plaquette (=↻) are also shown. The dotted lines

indicate that links pointing in ŷ (x̂) need to be summed to obtain

the y-(x) windings.
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III. NUMERICAL METHODS

We begin by noting that the model considered here a rich

ground state phase diagram [17] and realizes novel crys-

talline confined phases. The physics of excited states have

revealed the existence of quantum scar states, and atypical

real-time dynamics [18]. While the former used an efficient

cluster Monte Carlo algorithm, the latter used large scale

exact diagonalization (ED). In this work, we aim to go for

system sizes beyond the reach of ED, but efficient algo-

rithms at finite μ are nontrivial to construct. While the

existing cluster algorithms can update all sectors at finite

temperatures, it is unclear on how to extend this algorithm

for finite μ. Therefore, we use density matrix renormaliza-

tion group (DMRG) on MPS states to simulate the ground

state phases with increasing values of μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2y þ μ2x

q

. The

μx ¼ 0 is kept throughout the calculations to ensure that

there is no condensation of strings in the x-direction. Further
details about the implementation can be found in the

Supplementary Material [29].

IV. CONDENSATION OF STRINGS

The effect of increasing μy on various system sizes is

shown in Fig. 2. The more familiar examples of condensa-

tion phenomena are known from bosons and fermions,

which are point particles. We notice that with flux strings,

too, one has the silver blaze problem [30], in which the

ground state is unaffected by the chemical potential until a

threshold value μcðLxÞ is reached, after which the vacuum

becomes unstable to the creation of net flux strings

periodically winding around Ly. On the smaller lattices,

one can clearly observe the steplike structure that results,

with each step indicating the number of winding strings that

have condensed in the vacuum. This is accompanied with a

checkerboard pattern in the flippability as shown in the

Supplementary Material [29]. Plotted in terms of the

winding density, we notice the smooth approach to the

thermodynamic limit in the data for lattices when reaching

Lx ¼ 64 (see Fig. 2). Note in particular that both the

threshold chemical potential, μcðLxÞ, at which condensation
phenomena starts, and the saturation chemical potential

μsðLxÞ have well-defined thermodynamic limits. In Fig. 3

we show the behavior of μcðLxÞ with increasing volume. It

is interesting to note that the finite volume dependence is

very well described with the same formula that governs the

dependence of a massive particle in finite volume [31]. We

note that the step behavior of magnetization with an external

magnetic field at zero temperature is well-known for

frustrated spin systems [32]. Recently, a similar behavior

has been reported for the ladder Rydberg systems [33].

While we have demonstrated the thermodynamic limit

for Ly ¼ 2 ladders, more work is essential to extend the

results to other geometries. In particular, the 2d system can

be thought of as a sequence of ladders, with increasing Ly

at each step. At each fixed Ly, we can first take the Lx → ∞

limit. Thus, strings that are in general nonlocal in Ly can

condense in such a geometry. For a confining theory,

increasing Ly → ∞ is expected to yield μcðLx → ∞; LyÞ
that increases linearly with Ly. We postpone the demon-

stration of the thermodynamic limit of larger ladders in a

future study, and turn to understanding the nature of the

phases that are realized in the ground states at finite density.

V. CRYSTALLINE STRUCTURES

As we demonstrate now, once the winding strings start

condensing in the ground state, they modulate existing

crystalline properties. At μy ¼ 0 and λ ¼ −1, the ground

state breaks both translation invariance and charge con-

jugation spontaneously [17]. The novel feature at finite μy

FIG. 3. Finite size dependence of μcðLxÞ ¼ a expð−bLxÞ þ μ∞c
on Lx. From the fit, we determine μ∞c ¼ 0.269. The error bars are

the magnitude of the finite step Δμy
¼ 0.0025 taken to identify

the phase transition point.

FIG. 2. Staircase structure of the winding numbers hWyi with
increasing μy. The plateaux correspond to ground states where the

winding flux remains fixed as μy is varied. In the thermodynamic

limit, the curve becomes continuous. For large μy, the curve

saturates just as for fermion (or hard-core bosons).
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is the repulsion of condensed strings in the x-direction and

their subsequent arrangement in periodic intervals. This

necessarily modulates the pattern of electric fields, Er;î,

from the zero density case.

In Fig. 4, we show the spatial distribution of the fluxes in

the x-direction, Er;x̂, at three different μy values for the

largest lattice Lx ¼ 64, representative of three distinct

regimes. We call these three different winding regimes;

dilute gas regime, half-filled and close to saturation regime.

The first regime occurs when the system has just started

to condense isolated strings, and the system can be treated

as a dilute gas of strings. The top panel of Fig. 4 at μy ¼
0.313 illustrates this case. The three regions where the

hEr;x̂i ≈ 0 marks the location of the winding strings

wrapping along the y-direction. We infer that the preference

of the strings to stay as far away from each other as possible

is indicative of their repulsive interaction. Moreover, in

between the location of the fluxes, the hEr;x̂i displays a

regular oscillatory pattern, as also expected for μy ¼ 0. This

arrangement of the fluxes maximizes the total number of

flippable plaquettes, as preferred by the λ ¼ −1 term in the

Hamiltonian.

On increasing the filling fraction of the winding density,

we notice that the long-wavelength modulations of the

electric flux disappear. As shown in the representative

middle panel, for μy ¼ 1.3, the long-range modulations

of hEr;x̂i disappear. The short range oscillations of the

horizontal fluxes are still present with twice the period than

the previous case; the dashed and the solid lines take

their maximum positive and negative values (≈� 0.25)

16 times. This regime corresponds to the half-filling of

winding strings, now distributed evenly through the system,

removing traces of previous spatial modulations. Making

the system denser causes one to approach the saturation

regime, where the electric fields further rearrange to produce

a smooth, coherent oscillation. The bottom panel in Fig. 4,

for μy ¼ 1.91 shows the coherent oscillations for Lx ¼ 64

in this regime, spread over 12–15 lattice spacings.

We can also understand the physical properties from the

sum of the electric fields on the vertical links, Er;ŷ, which

provides the analog of the “particle number density”.

Following our previous discussions, we also expect these

profiles to show modulations, which are plotted in Fig. 5(a)

for our biggest lattice Lx ¼ 64. Three distinct regimes are

also visible in this plot. The set of blue curves represents the

regimewhere the system has just started to condense isolated

strings. It is clear that as μy is slowly increased, the winding

strings condense in such a way as to maintain maximal

separation from each other and the highly polarized boun-

daries. The first such string excitation sits in the middle of

the lattice, as shown by the maximum in the density profile.

The case with three peaks in Er;ŷ (at x ¼ 10a; 30a; 50a)

correspond to the profile of Er;ŷ at μy ¼ 0.313 shown in

Fig. 4. The presence of the fluxes (wrapping vertically)

(a)

(b)

FIG. 5. Winding number regimes of the quantum link ladder.

(a) The winding number distribution as a function of the distance

to one boundary for the three different regimes. (b) The wave

number as a function of the chemical potential for the states

where the particle number is nonzero or nonsaturated. The three

different winding regimes are highlighted with colored markers/

lines: dilute gas regime (blue circle), half-filled (orange circle)

and close to saturation regime (green circle).

FIG. 4. Horizontal electric field, hEr;x̂i, for the Lx ¼ 64 lattice

for three different regimes of winding density. The dashed lines

correspond to the upper rung and solid lines to the electric field

on the lower rung of the ladder.
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makes the plaquettes nonflippable, which is exactly the

locations where the horizontal fields are minimum and the

vertical fields maximum, demonstrating that the strings

affect all the local properties.

On increasing μy, the Er;ŷ looses the modulations that

identify individual fluxes, and a smooth distribution, modu-

lated more at the boundaries than in the bulk are visible.

Closer to the saturation region upon further increasing of μy,

again longer ranged smooth modulations of the “particle

density” appear, which now stretch over several lattice

spacing. Interestingly, this length scale seems to be dynami-

cally generated in this regime and rather sensitive to the

external μy. The wave number of the oscillations can thus be

controlled by tuning the μy.

Figure 5(b) shows the wave number of the oscillations as

a function of μy, obtained by identifying the dominant wave

number that contributes in the Fourier transform of the

vertical electric flux profiles, Er;ŷ. The information in this

observable is thus the same as in the structure factor up to a

global factor, which is given as a Fourier transform of the

electric flux correlation function at a particular momentum

k (the wave number is k=2π in our context). Even in this

plot, the aforementioned three regimes in μy are clearly

visible. The first nontrivial excitations for small μy, present

long range oscillations whose wave numbers keep decreas-

ing until they saturate to a small value. This is the regime

where the system is approximately half-filled, and for the

Lx ¼ 64 spans from μy ¼ 1.2;…; 1.3. In this region, the

translational invariance is approximately recovered. When

the chemical potential is increased, the oscillations rise

again with a much faster rate, as already apparent from the

earlier observables.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have explored the phenomenon of string

condensation in an Uð1Þ Abelian lattice gauge theory

realized as a spin-1=2 QLM. We have demonstrated that

our ladder system posses a smooth thermodynamic limit for

a fixed Ly. The system starts to condense strings with the

increase in μy, and the system exhibits at least three different

regimes before saturation is reached. Through the profiles of

the horizontal and vertical electric fluxes, we have shown

that the winding strings arrange themselves in patterns

which behave distinctly in each of the three regimes. In the

dilute regime, isolated string excitations can be identified,

while the half-filled regime is marked by an approximate

restoration of translation invariance. In the dense region,

there is a dynamically-generated length scale which changes

rapidly with μy before the system saturates. Our observables

are perfectly suited to be measured in cold atom experi-

ments of lattice gauge theory models [34–39].

There are several directions in which the analysis can be

extended. The most obvious is to repeat the calculation for

larger ladders and study the different regimes that manifest

themselves. Other observables, such as the central charge,

and finite-size scaling of correlation functions could be

useful in attempting to understand if there is a phase

transition between the different regimes. The nature of

the origin of the length scale in the dense region is also an

open question, which might be understood better from an

effective field theory approach. Another obvious question is

if similar phenomena can also be observed in QLMs in the

spin-1 representation, which are very similar to the lattice

gauge theory formulation by Wilson.
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