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1 Introduction

The accelerating expansion of the Universe [1, 2] and the nature of the dark energy driving
it remain some of the greatest challenges in theoretical physics. The simplest mathematical
model consistent with observations is that our universe is in a de Sitter (dS) phase and
dark energy corresponds to a cosmological constant in Einstein’s equations. However, the
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scale of this constant is orders of magnitudes below naive expectations from the Standard
Model of particle physics.

One might hope that natural explanations for the origin and scale of dark energy can
be found in an ultraviolet complete theory of particle interactions and gravity. Our only
viable candidate for such a theory is string theory, and so the quest for understanding
the cosmological constant transmutes into a question of which string compactifications can
yield four-dimensional dS cosmologies.

The construction of such cosmologies within string theory has been and remains one of
the paramount tasks for string theory to connect to the low-energy physics of our universe.
Existing construction schemes with still limited, but increasingly improved, control involve
perturbative moduli stabilization with fluxes, branes and orientifold planes in dS vacua
on negatively curved internal manifolds (such as twisted tori, product Riemann surfaces,
and more general compact 6d hyperbolic spaces) as well as dS vacua on Calabi-Yau (CY)
manifolds with fluxes and either purely non-perturbative or a mix of perturbative and
non-perturbative quantum corrections stabilizing the volume moduli of the CY. For recent
reviews providing a comprehensive overview as well as references to the original literature,
see [3–5].

While the viability of the various constructions is not completely settled, one could
wonder if there exists some reason that dS vacua cannot exist at all in string theory [6]. In-
deed, the refined dS conjecture [7–9] as part of the Swampland program [10] posits that long
periods of accelerated cosmological expansion are severely limited in quantum gravity and
metastable dS minima are forbidden in asymptotic regions of the moduli space (the earlier,
stronger dS conjecture [11] required modification due to explicit counter-examples [12–16]).
The asymptotic dS conjecture can be thought of as a generalization of the Dine-Seiberg
problem [17] in all directions of the moduli space. There is also an even weaker version of
the dS conjecture, the Transplanckian Censorship Conjecture [18], which allows for short-
lived dS minima residing in the interior of moduli space.

The above statements are conjectural, but they are motivated by a number of no-
go results in the literature that forbid dS vacua in specific contexts. The classical 10d

supergravity Maldacena-Nuñez no-go result [19] suggests that any dS constructions must
include non-classical ingredients as D-branes, O-planes, or quantum corrections. In the
context of heterotic string theories, this no-go has been pushed farther to include stringy
effects. The analysis in [20] provides the general criterion which the Kähler manifolds of the
volume moduli space of CY compactifications producing 4d, N = 1 supergravity effective
actions must fulfill to allow for metastable dS vacua to exist. This is a generalization of
the Kähler geometry arguments provided in [21] based on [22].

Next, [23] considered the sub-leading α′ corrections arising from the modified Bianchi
identity of the Neveu-Schwarz (NS) 2-form B2 and concluded that dS vacua are not possi-
ble. This was further extended to an infinite tower of α′ contributions, where a perturbative
calculation showed that AdS and dS are both ruled out [24]. Finally, the powerful world-
sheet argument of [25] ruled out any worldsheet effect giving rise to dS vacua at tree level
in string perturbation theory.
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Apart from worldsheet effects, string compactifications will have non-perturbative con-
tributions in the string coupling gs. Focusing again on heterotic constructions, a simple
example is gaugino condensation, which has a generic strength of order δL ∼ e−1/g2

s . In [26],
partial no-go results were obtained ruling out AdS and dS solutions. However, this was
not a comprehensive argument since threshold corrections [27–32] and worldsheet instan-
tons were not included, hence some heterotic constructions evade the no-go results [33].
There are some results incorporating gaugino condensation, threshold corrections, and
worldsheet instantons in the context of toroidal orbifold compactifications of the heterotic
string [34, 35]. The authors of [34] consider only the dilaton and overall Kähler modulus
of the compactification. Using target space modular symmetry to enumerate all possible
non-perturbative contributions, the authors find that AdS minima are generically present,
while they argue numerically that no dS solutions can be realized. Note that [22] already
contained in its section II a limited version of the statements in [34]. On the other hand, [35]
considered all bulk moduli for certain orbifolds and numerically found only unstable dS
extrema that satisfied the refined dS conjecture [36].

However, gaugino condensation is not the only non-perturbative contribution in gs

present in the heterotic string theory. As argued by Shenker [37], all closed string theories
generically have effects of strength δL ∼ e−1/gs . These are inherently stringy effects, in con-
trast to the purely quantum field theoretical nature of gaugino condensation. As the above
arguments apply only to O(e−1/g2

s ) effects, examining these “Shenker-like” contributions
to heterotic string vacua is the logical extension of previous no-go results.

In this work, we set our sights on this task. We will consider two-modulus models
of heterotic toroidal orbifold compactifications and include Shenker-like effects as non-
perturbative corrections to the dilaton Kähler potential k(S, S̄). We will prove three no-
go theorems that forbid dS vacua for different branches of solutions, and affirm several
conjectures in [34] as corollaries. However, we find that on a separate branch of solutions,
the Shenker-like effects may provide a loophole to the no-go theorems and permit heterotic
dS vacua.

The paper is organized as follows. In section 2, we review the relevant details of
standard heterotic toroidal orbifold compactifications with a focus on the effective two-
modulus model and the interplay of T-duality, threshold corrections, and non-perturbative
effects. Then, we prove a no-go theorem that forbids de Sitter vacua for a class of extrema,
even with Shenker-like effects included in the dilaton Kähler potential. In section 3, we
describe sufficient criteria to evade this no-go result and describe in detail the behavior
of extrema in the fundamental domain of the Kähler modulus. In section 4, we prove an
additional no-go theorem and further restrict the classes of models that could contain dS
vacua. We then review the scant literature on Shenker-like effects and show that they in
principle satisfy the criteria to evade the no-go results we establish. We provide preliminary
examples where dS vacua can be constructed in a bottom-up fashion. We also comment on a
puzzle posed in [38] on non-perturbative effects that are even stronger than those of Shenker
at weak coupling. In section 5, we conclude and discuss multiple future directions. In the
appendices, we include supplemental information for the main text as well as proving a
third no-go theorem in appendix C for orbifolds with moduli mixing in the Kähler potential
arising from anomaly cancellation.
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since their vacuum expectation values (vevs) control the size of the compact dimensions.
However, modular symmetry restricts the set of inequivalent Ti values to the strict funda-
mental domain F̃i, which is defined as the union of the set

Fi =

{
Ti ∈ Hi | |Ti| > 1 & |Re(Ti)| <

1

2

}
, (2.3)

with boundary points that satisfy Re(Ti) < 0. This is the region displayed in figure 1. Of
particular note are the fixed points Ti = i and Ti = e2πi/3 ≡ ρ, which are fixed by cyclic
subgroups of PSL(2,Z)i, as described in appendix A.

The matter fields Φα of the compactification also transform under modular transfor-
mations as

Φα → e
∑

i
ni

αJi(Ti)Φα , (2.4)

where Ji(T ) = ln(ciTi +di) and the numbers ni
α are the weights of the matter field. For an

arbitrary orbifold, the modular symmetry group may not be a simple product of PSL(2,Z)

factors. For example, if one introduces discrete Wilson lines or orbifolds where the 6d

lattice is not a simple direct sum, then the duality group will in general be a congruence
subgroup of PSL(2,Z) [42, 43]. Irrespective of the precise form of the modular symmetry
group, the effective action and the scalar potential

V = eK
(
Kab̄FaF̄b̄ − 3WW̄

)
(2.5)

must be modular functions, i.e. they should transform as modular forms of weight1 (0, 0):
V (γ · Ti, γ · T̄i, . . .) = V (Ti, T̄i, . . .). Here K and W are the Kähler potential and su-
perpotential, respectively, and the Fa are the F-terms of the fields, defined below. The
above condition can also be cast as the restriction that the defining supergravity function
G = K + ln|W |2 is modular invariant.

In the following, we shall neglect all of the moduli and matter fields except for an
overall diagonal Kähler modulus, T , and the dilaton. We shall also neglect Wilson lines
and therefore take the modular symmetry of the effective field theory to be PSL(2,Z). The
Kähler potential of this two-modulus EFT is

K = k(S, S̄, T, T̄ ) − 3 ln
(
−i(T − T̄ )

)
. (2.6)

For the moment, we are using the familiar chiral multiplet formalism for the dilaton with S
being its chiral superfield representation consisting of a scalar (the dilaton), a pseudoscalar
(from dualizing the NS 2-form B2), a Weyl spinor, and an auxiliary field. The function
k(S, S̄, T, T̄ ) is the Kähler potential for the dilaton, which may have dependence on T , as
discussed below. At tree-level, there is no T -dependence in the dilaton Kähler potential,
hence k(S, S̄, T, T̄ ) = − ln(S + S̄) and the 4d universal gauge coupling is

g2
4

2
=

〈
1

S + S̄

〉
. (2.7)

1See appendix A for terminology and details on modular forms.
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Under modular transformations, the combination T − T̄ transforms as a weight (−1,−1)

modular form since (T − T̄ ) → |cT +d|−2(T − T̄ ). Then assuming that k(S, S̄, T, T̄ ) is inert
under PSL(2,Z), the Kähler potential undergoes a Kähler transformation

K → K + 3J (T ) + 3J̄ (T̄ ), (2.8)

where J (T ) is the same as in the phase of eq. (2.4) but with the indices removed. The
invariance condition on G then implies that the superpotential must transform as a weight
(−3, 0) modular form [39]:

W (S, γ · T ) = eiδ(γ)(cT + d)−3W (S, T ) . (2.9)

Technically, we allow the superpotential to furnish a projective representation of PSL(2,Z)

and so it may transform as a weight (−3, 0) modular form up to the phase δ(γ), which
depends only on the matrix γ ∈ PSL(2,Z).

As we are neglecting matter fields, the superpotential we are considering is non-
perturbative in nature and arises from gaugino condensation of some subgroups of the
10d heterotic gauge sector. If the gauge group factor Ga undergoes gaugino condensation,
a non-perturbative superpotential is generated of the form

W ∼ e−fa/ba . (2.10)

Here fa is the gauge kinetic function for Ga and the coefficient ba is related to the beta
function of Ga as µdga

dµ = −3
2bag

3
a and is given by

ba =
1

8π2

(
Ca − 1

3

∑

α

Cα
a

)
, (2.11)

where Ca and Cα
a are the quadratic Casimirs of the adjoint and the α-th matter sectors,

respectively. At tree level, fa = kaS, with ka the level of the Kac-Moody algebra underlying
the gauge group Ga. In this form, it is not clear that eq. (2.10) transforms with weight
(−3, 0) since naively the dilaton is invariant under modular transformations.

This situation is remedied by taking into account the 1-loop effects of threshold cor-
rections [27–32] and anomaly cancellation [44–49]. The physical origins of these effects are
quite simple — the fermions in the 4d theory undergo modular transformations and gener-
ally lead to non-zero anomalies that must be canceled by the 4d Green-Schwarz mechanism.
Furthermore, if the orbifold has N = 2 subsectors, integrating out the heavy string states
will lead to moduli-dependent corrections to the gauge kinetic function. To incorporate
these contributions to the effective model, we include a correction into the gauge kinetic
function

fa = kaS +

(
b′

a − 1

3
kaδGS

)
ln η6(T ) + · · · , (2.12)

and to the dilaton Kähler potential

− ln(S + S̄) → − ln

(
S + S̄ + δGS ln

(
−i(T − T̄ )

))
. (2.13)
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The coefficient b′
a is determined by the quadratic Casimirs and the modular weights of the

matter fields charged under Ga:

b′
a =

1

8π2

(
C(Ga) −

∑

α

Cα
a (1 + 2nα)

)
. (2.14)

The dilaton now transforms as

S → S + δGS ln(cT + d) (2.15)

under PSL(2,Z) in order to maintain modular invariance of the action. If we neglect matter
fields, as in the case of a hidden E8 condensate, then inserting eq. (2.12) into eq. (2.10)
yields

W ∼ e−kaS/ba

(η(T ))6− 2kaδGS
ba

. (2.16)

As described in appendix A, η(T ) transforms with weight (1/2, 0), and combining this fact
with eq. (2.15) we see that the superpotential transforms with weight (−3, 0) and the scalar
potential will be invariant under modular transformations. Hence, threshold corrections
and anomaly cancellation are essential ingredients in the consistency of the 4d EFT arising
from the heterotic string.

While the above makes the consistency of modular invariance in the EFT clear, it
will be convenient for our purposes to adopt a convention where the dilaton is inert under
modular transformations. One is free to re-define the dilaton via a holomorphic function
of other moduli [32, 44] — in particular, we can re-define the dilaton via

S → S + δGS ln η2(T ) . (2.17)

This eliminates the dependence of the superpotential on δGS so that all information on
anomaly cancellation in encoded in the re-defined Kähler potential.2

However, the superpotential obtained from eq. (2.16) with eq. (2.17) is still too primi-
tive — as the dots in eq. (2.12) suggest, there are additional contributions to the threshold
corrections [50, 51].3 These are moduli-dependent but transform trivially under PSL(2,Z).
One can push the power of modular invariance even further to parametrize these effects.
After the dilaton re-definition in eq. (2.17), the Dedekind etas saturate the transformation
law of the superpotential, but the numerator could involve a function of T that is modular
invariant (up to a phase). Then a general non-perturbative superpotential satisfying the
T-duality requirement has the form

W (S, T ) =
Ω(S)H(T )

η6(T )
. (2.18)

2An alternative approach is to utilize the linear multiplet formalism for the dilaton. The dilaton is still

inert under modular transformations, and anomaly cancellation is then achieved by adding a term to the

action while leaving the Kähler potential untouched. We return to this point in section 4.
3These terms include the 1-loop prepotential of the N = 2 sector, which has an interesting relation to

Mathieu moonshine [52].
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Here H(T ) is a modular function with a potentially non-trivial multiplier system. If H(T ) is
regular in the fundamental domain, a theorem [53, 54] states that it has the parametrization

H(T ) =

(
G4(T )

η8(T )

)n(G6(T )

η12(T )

)m

P(j(T )) , (2.19)

with G4(T ) and G6(T ) the weight (4, 0) and (6, 0) holomorphic Eisenstein series and j(T )

the j-invariant (see appendix A). P(x) is a polynomial, and without loss of generality we
take P(0) 6= 0 and P(1728) 6= 0. In eq. (2.18), we can technically allow an arbitrary
function for Ω(S), but we will mostly consider it as arising from gaugino condensation and
one should think of it as having the generic form Ω(S) = h+e−S/ba for a single condensate,
with h an additive constant to describe H3-flux, or Ω(S) =

∑
a e

−S/ba for a racetrack
scenario.4 This superpotential was first proposed in [41].

Note that the terms in H(T ) have the schematic form of δL ∼ e±2πiT — the function
H(T ) can be thought of parametrizing non-perturbative effects in the Kähler modulus.
Thus the superpotential in eq. (2.18) parametrizes non-perturbative effects in the super-
potential for both moduli in the effective model.

The above discussion defines a broad class of effective heterotic toroidal orbifold models
via the superpotential in eq. (2.18) and the Kähler potential from eq. (2.6) with

k(S, S̄, T, T̄ ) ⊃ − ln

(
S + S̄ + δGS ln

(
−i(T − T̄ )|η(T )|4

))
. (2.21)

It is instructive to consider two extreme cases. For the simple Z3 orbifold with an E8

condensate, there is no N = 2 subsector and δGS = 3bE8
/kE8

. If we consider the formalism
where the dilaton transforms under PSL(2,Z), we see that the exponent of the Dedekind
eta in eq. (2.16) vanishes and the modular transformation properties of the superpotential
are encoded entirely in the dilaton. In the formalism where the dilaton is invariant, the su-
perpotential has factors of Dedekind eta, but these vanish at the level of the scalar potential
when the original dilaton variable is used. These features are reflections of the usual state-
ment that the Z3 (and Z7) orbifolds lack N = 2 subsectors and therefore have no moduli-
dependent threshold corrections [28]. On the opposite end of the spectrum, the Z2 × Z2

orbifold with standard embedding has δGS = 0, so the dilaton is invariant under PSL(2,Z)

without any redefinition and the Dedekind etas are required in the superpotential and scalar
potential. These two examples illustrate the diverse ways in which heterotic orbifolds con-
spire to maintain modular symmetry in spite of effects that naively break the duality.

We now largely restrict ourselves to a particular subclass of the models described above.
In particular, we will neglect the T -dependent correction to the dilaton Kähler potential
arising from anomaly cancellation and set the dilaton-dependent term in eq. (2.6) to

k(S, S̄, T, T̄ ) = k(S, S̄) = − ln(S + S̄) + δk(S, S̄) . (2.22)

4A more general superpotential is

W (S, T ) =
1

η6(T )

∑

a

Ωa(S)Ha(T ) , (2.20)

which corresponds to a racetrack scenario with T -dependent coefficients.
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By the inclusion of the additional term δk(S, S̄), we have in mind incorporating non-
perturbative contributions arising from Shenker-like effects, as mentioned in the Introduc-
tion and further described in section 4. For the superpotential we take the general form
in eq. (2.18). We consider T-dependent Kähler potential corrections in section 4, and we
return to the general case of eq. (2.21) in appendix C.

Using eqs. (2.6), (2.22) and (2.18), the F-term supergravity scalar potential is

V (T, S) = eK
(
KSS̄FSF̄S̄ + KT T̄FT F̄T̄ − 3WW̄

)

= ek(S,S̄) Z(T, T̄ ) |Ω(S)|2
[(
A(S, S̄) − 3

)
|H(T )|2 + V̂ (T, T̄ )

]
,

(2.23)

where we defined

A(S, S̄) =
kSS̄FSF̄S̄

|W |2 =
kSS̄ |ΩS +KSΩ|2

|Ω|2 , (2.24)

V̂ (T, T̄ ) =
−(T − T̄ )2

3

∣∣∣∣HT (T ) − 3i

2π
H(T )Ĝ2(T, T̄ )

∣∣∣∣
2

, (2.25)

Z(T, T̄ ) =
1

i(T − T̄ )3|η(T )|12
, (2.26)

with subscripts denoting derivatives and kSS̄ = (kSS̄)−1. We have also introduced the
non-holomorphic Eisenstein series of weight (2, 0), Ĝ2(T, T̄ ) (see appendix A). Note that
each of the functions defined in eqs. (2.24), (2.25) and (2.26) are modular invariant.

This potential has been discussed in several contexts in the literature. Originally
in [40, 41] as an effective field theory for heterotic phenomenology, then in the context
of relating swampland conjectures to modular symmetry in [34], and recently in a study
to connect flavor symmetry and modular symmetry [55]. A fascinating feature of this
potential is that it diverges in the limit Im(T ) → ∞. This has interesting implications
for the Swampland Distance Conjecture [56], as observed in [34, 57]. In the following, our
discussion will align mostly with the first two contexts — we will study vacua of the above
potential with Shenker-like terms included via k(S, S̄).

2.2 Extrema of the two-modulus model

In this section, we study the vacua of the two-modulus heterotic model with the potential
in eq. (2.23). Several aspects of the vacua have been studied in great detail in [34, 40, 41].
We now review relevant details of those discussions.

An important feature of the scalar potential in eq. (2.23) is that it is a modular function
— that is, the scalar potential is invariant under the PSL(2,Z) transformation defined
in eq. (2.1). In addition to restricting the form of the non-perturbative superpotential,
the power of modular symmetry also guides the search for vacua. Since dT transforms
as dT → (cT + d)−2dT under modular transformations, ∂V/∂T is a weight (2, 0) non-
holomorphic modular form. As shown in appendix A, weight (2, 0) modular forms vanish
at the PSL(2,Z) fixed points T = i and T = e2πi/3 ≡ ρ. Thus

∂TV (S, T )|T =i,ρ = 0 , (2.27)

– 9 –
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and the fixed points are always extrema in the T -sector. Modular symmetry also simplifies
the analysis of the critical points at the fixed points — the mixed derivatives of S and T

are also weight (2, 0) modular forms, and so

∂S∂TV (S, T )|T =i,ρ = ∂S̄∂TV (S, T )|T =i,ρ = 0 . (2.28)

The Kähler modulus sector can also have critical points away from the fixed points, but
such points are more difficult to analyze since modular symmetry does not assist and their
treatment must be purely numerical. Thus we can partially categorize extrema by the
value of their Kähler modulus vev as follows:

Class 1: 〈T 〉 = i , (2.29)

Class 2: 〈T 〉 = ρ , (2.30)

Class 3: 〈T 〉 6= i, ρ . (2.31)

It was conjectured [41] that all critical points lie on either the boundary of the fundamental
domain of T or the line Re(T ) = 0. However, [55] disputes this conjecture by finding minima
inside the fundamental domain and close to the fixed point ρ. We reinforce these results by
finding multiple saddle points inside the fundamental domain, as discussed in section 3.3.

To completely understand the vacua, we must also consider the dilaton sector. Our
goal will be to examine dS vacua, which can only be achieved if one or both of the F-terms

FS =
H(T )

η6(T )
(ΩS + kSΩ) ≡ H(T )

η6(T )
F̃S , (2.32)

FT =
Ω(S)

η6(T )

(
HT − 3i

2π
Ĝ2H

)
≡ Ω(S)

η6(T )
F̃T , (2.33)

are non-zero. We have also introduced the re-scaled F-terms F̃S and F̃T for later conve-
nience. We can then further categorize vacua according to whether or not they force the
dilaton F-term to vanish:

Class A: F̃S = ΩS + kSΩ = 0 , (2.34)

Class B: F̃S 6= 0, (2.35)

ΩSS = Ω̄e2iσkSS̄

(
2 − 1

|H|2 V̂ (T, T̄ )

)
+

(
kSSS̄

kSS̄

− kS

)
F̃S − kSSΩ − kSΩS .

Here we have defined σ = arg(ΩS + kSΩ). Note that both of the above conditions solve
∂SV (S, T ) = 0, and it is assumed that H(T ) is non-vanishing for Class B extrema.

The Class A extrema simply correspond to the vanishing of the dilaton F-term. Thus
to have any hope of achieving a vacuum with positive energy, along this branch we demand
FT 6= 0. If we again consider the simple case of a single gaugino condensate, such an
extremum would require a non-physical negative string coupling constant. This is the
motivation behind racetrack models, where the Class A solution corresponds to stabilization
of the dilaton by balancing two gaugino condensates against one another. With H(T ) = 1,
a vacuum exists for Class A solutions at the point T ≃ 1.23i, which is the typical stabilized

– 10 –
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value found in heterotic models. Note that for Class A solutions, the Hessian is block
diagonal, independent of the value of T . This point is discussed in more detail in the next
subsection and is a crucial aspect of the no-go theorem we prove there.

For Class B solutions, we can allow FT to vanish since positive energy could be achieved
by the dilaton sector. These solutions are somewhat more unfamiliar as they do not follow
this simple picture arising from racetracks and one must introduce a means to stabilize the
dilaton and generate a non-zero F-term. This can be achieved by the Shenker-like terms in
k(S, S̄). The study of these extrema is the subject of section 3 and mechanisms to generate
these vacua are discussed in section 4.

Using the above categories, we organize potential dS extrema of the two-modulus
theory into 6 classes: Class A-1, A-2, and A-3 extrema, which are SUSY-preserving in the
dilaton direction, and Class B-1, B-2, and B-3 extrema, which instead break SUSY in the
dilaton sector. Further refinements of each class are possible since the type of critical point
in general depends on the integers m and n and the polynomial P(j(T )) in eq. (2.19).

The Class A-1, A-2, and A-3 extrema were examined in [34, 41]. If one assumes that
the dilaton is stabilized, then the analysis of these extrema reduces to examination of the
Kähler modulus sector. The authors of [34, 41] prove that the fixed points are never dS
minima — that is, there are no dS minima in Class A-1 and A-2 extrema. As for Class
A-3, [34] argues that numerically they do not find dS minima and conjecture that they do
not exist. We now verify this conjecture by proving a no-go theorem.

2.3 Class A de Sitter no-go theorem

We now prove a no-go theorem that illustrates the impossibility of obtaining dS vacua
via Class A solutions of the two-modulus model above. As a corollary, we will verify and
extend the results of [34].

Theorem 1. At a point (T0, S0), the scalar potential V (T, S) in eq. (2.23) can not simul-
taneously satisfy:

(i). V (T0, S0) > 0

(ii). ∂SV (T0, S0) = 0 & ∂TV (T0, S0) = 0

(iii). (ΩS + kSΩ)|S=S0
= 0

(iv). Eigenvalues of the Hessian of V (T, S) at (T0, S0) are all ≥ 0.

Proof. The proof proceeds by contradiction — let us assume that (i)-(iv) are true at
(T0, S0). The first derivative of V (T, S) with respect to S is

∂SV (T, S) =
FS

W
V (T, S) +

{
ek(S,S̄)|Ω(S)|2|H(T )|2Z(T, T̄ )

}
∂SA(S, S̄) . (2.36)

Since FS ∝ ΩS + kSΩ, (iii) manifestly implies the vanishing of the first term. The deriva-
tive ∂SA(S, S̄) contains several terms, but each term is proportional to either FS or its
conjugate, and so the second term above also vanishes. Thus (iii) implies the vanishing
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of the above derivative at (T0, S0). This is simply a verification that (iii) defines Class A
extremum. To be consistent with (i), we require that F̃T (T0) 6= 0 and Ω(S0) 6= 0. Then
without loss of generality we can introduce a parameter Λ > 0 and recast (i) as

V (T0, S0) = ek0 |Ω0|2Z0Λ4 , (2.37)

where the subscript denotes evaluation at (T, S) = (T0, S0). This can be interpreted as an
equation for HT (T0) and is solved by

HT (T0) =
3i

2π
H0Ĝ2(T0, T̄0) ±

√
3i

T0 − T̄0

(
Λ2± i

√
|H0|2

(
3 −A(S0, S̄0)

))
. (2.38)

In this expression, any of the four sign combinations is valid, and we have taken A(S0, S̄0) <

3. This is not an assumption since technically (iii) implies that A(S0, S̄0) = 0, but we
will carry it in our expressions for the moment and take the appropriate limit at the
end. Similarly, the ∂TV (T0, S0) requirement of condition (ii) yields an algebraic equation
for HT T (T0) that can be solved. We give this condition in appendix B.1. Moving onto
condition (iv), we first note that eq. (2.36) and (iii) imply that

∂k
T∂

l
T̄
∂SV (T0, S0) = 0 ∀ k, l ∈ N+ . (2.39)

Thus the Hessian of V (T, S) is block diagonal, with the blocks corresponding to the T and
S sectors. Then the eigenvalues of the Hessian are simply the eigenvalues of the two blocks.
We focus on the Kähler modulus block — in terms of the real and imaginary components
of T = a+ it, its components are

∂2
t V = 2∂T∂T̄V − 2Re(∂2

TV ) , (2.40)

∂2
aV = 2∂T∂T̄V + 2Re(∂2

TV ) , (2.41)

∂t∂aV = −2Im(∂2
TV ) . (2.42)

Computing the T derivatives and plugging in the expressions derived above for HT (T0)

and HT T (T0), we find

∂T∂T̄V (T0, S0) =
2ek0 |Ω0|2Z0

(T0 − T̄0)2

(
Λ4(2 − 3A(S0, S̄0)) − |H0|2A(S0, S̄0)

)
(2.43)

−→ −2ek0 |Ω0|2Z0

−(T0 − T̄0)2
Λ4 . (2.44)

In going to the second line, we have enforced the vanishing of A0 as demanded by (iii),
the Class A extremum condition. We see that ∂T∂T̄V (T0, S0) < 0 for all values of T0 and
functions H(T ). Thus, it must be that ∂2

t V (T0, S0) < 0 or ∂2
aV (T0, S0) < 0. In either case,

the determinant of the Kähler modulus block of the Hessian is negative. This immediately
implies that one of the eigenvalues of the Hessian is negative, in contradiction with (iv).
We can also consider the case of a vanishing T -block determinant, which could occur if

Re(∂2
TV (T0, S0)) = ±2ek0 |Ω0|2Z0

(T0 − T̄0)2
Λ4 & Im(∂2

TV (T0, S0)) = 0 . (2.45)
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However, the vanishing of the Kähler sector determinant for this case occurs only because
one of its two eigenvalues vanishes. Even in this degenerate case, the other eigenvalue is
necessarily nonzero and negative, again in contradiction with (iv). Thus (iv) is incom-
patible with (i)-(iii) and the theorem is demonstrated. Since conditions (i)-(iv) are the
requirements for a Class A dS vacuum, the theorem demonstrates that such vacua are
impossible.

The above result deserves several comments. First, the above is a proof that dS vacua
cannot occur anywhere in the fundamental domain of T if F̃S = 0. This is equivalent to
the statement that no non-perturbative superpotential in the class defined by eq. (2.18)
and eq. (2.19) can lift a racetrack vacuum to positive energy. This is true even if Shenker-
like effects are present in the Kähler potential, assuming they enter only through k(S, S̄).
This is a limited extension of previous no-go results mentioned in the introduction to
non-perturbative corrections of strength O(e−1/gs). Second, we immediately have two
straightforward corollaries:

Corollary 1.1. Class A extrema in the two-modulus model with k(S, S̄) = − ln(S + S̄)

can never be dS vacua.

Corollary 1.2. The one-modulus model with W (T ) = H(T )/η6(T ) and K = −3 ln(−i(T−
T̄ )) can not have dS vacua.

The latter follows by taking the appropriate limits to remove the dilaton in the proof
of Theorem 1. These corollaries verify the conjectures in [34] that state that neither Class
A extrema nor the single-modulus model can have dS vacua. We also observe that the
above proof does not make use of the modular properties of H(T ) in any meaningful way.
We posit that the lack of Class A dS vacua is more tied to the structure of Class A extrema
and the factorized form of the superpotential and Kähler potential.

Next, we note that if we were to assume that (T0, S0) was an AdS minimum by replacing
Λ4 → −Λ4, then the no-go theorem does not apply because manifestly ∂T∂T̄V (T0, S0) > 0

— the very argument that forbids dS minima cleanly allows for AdS minima.
Finally, the above no-go provides a hint as to how one might obtain dS vacua in these

heterotic compactifications — one must consider Class B solutions where the dilaton F-
term is non-vanishing. In the next section, we explore constraints on Class B extrema such
that dS vacua exist in the two-modulus model.

3 Circumventing the no-go

In this section, we study the branch of extrema that evade the no-go result of the previous
section — namely, Class B extrema. We will assume that the dilaton is stabilized and
determine under what conditions the Kähler modulus sector is stabilized with positive
energy. This will translate into bounds on the function A(S, S̄), which depends on the
Shenker-like effects via k(S, S̄). For Class B-1 and B-2 extrema, which occur at the fixed
points, this analysis is valid due to the block diagonal structure of the Hessian required by
modular invariance, as discussed in section 2. At general points in the fundamental domain,
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V (i) > 0

V
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)
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V
(ρ

)
>

0
dS at both

T = i, ρ

dS window

dS interval

unstable dS

Minkowski

Figure 2. Summary of dS vacua possibilities at the fixed points with respect to the integers (m,n)

in H(T ) assuming the dilaton is stabilized. At (0, 0), both fixed points can have a dS vacuum. For
(m, 0), T = ρ is a dS minimum if A(S, S̄) > 3. For (0, n), T = i can be a dS vacuum for a window
of A(S, S̄) values that increases with n and is dependent on P(j(T )). The cases (1, n) or (m, 1)

result in unstable dS extrema. Finally, we always have Minkowski extrema at the self dual points
when (m,n) > (1, 1).

corresponding to Class B-3 extrema, the Hessian is in general not block diagonal and one
must treat the T and S moduli together. For these extrema, we will examine minima of
the single-modulus model containing only T and discuss the plausibility of uplifting them
via the dilaton subsector. In doing so, we will present evidence disproving a previous
conjecture on the nature of extrema in the fundamental domain of T . We will turn to the
issue of stabilizing the dilaton sector in the following section.

3.1 Class B-1 vacua: T = i

We start by examining extrema at the fixed point T = i. If the integer m in eq. (2.10) is
greater than one, then both H(T ) and V̂ (T, T̄ ) vanish at T = i and so the extremum is
Minkowski.5 Therefore, in the remainder of this section we will study the potential for the
cases m = 0 and m = 1.

m = 0. The potential evaluated at T = i has the compact form

V (S, S̄, i,−i) =
24n+9π8n+9

32n52nΓ12(1/4)
|Ω(S)|2|P(1728)|2ek(S,S̄)

(
A(S, S̄) − 3

)
, (3.1)

5This follows from the properties of the Eisenstein functions G4 and G6 entering the definition of H(T ):

G4(ρ) = G6(i) = 0 while G4(i) and G6(ρ) are non-zero.
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and we see then that a dS extremum requires A(S, S̄) > 3. To examine the stability of the
extremum, we calculate the second order derivatives in the fields t, a from T = a+ it as

∂2
t/aV |T =i =

42n+4π8n+9ek(S,S̄)

32n−152nΓ12(1/4)
|Ω(S)|2|P(1728)|2

[
(A(S, S̄) − 2)

±(A(S, S̄) − 1)
Γ8(1/4)

192π4

(
1 + 8n+ 41472 Re

(P ′(1728)

P(1728)

))
+ |Bn|2

]
,

(3.2)

where the plus sign refers to the derivatives in t and the minus to the ones in a and we
have defined

Bn ≡ Γ8(1/4)

192π4

(
1 + 8n+ 41472

P ′(1728)

P(1728)

)
, (3.3)

and the mixed derivative reads

∂2
t,aV |T =i =

49+2nπ5+8n2 ek(S,S̄)

32n52nΓ4(−3/4)
|Ω(S)|2|P(1728)|2

(
A(S, S̄) − 1

)
Im
(P ′(1728)

P(1728)

)
. (3.4)

The general conditions on A(S, S̄) are complicated and involve a number of subcases. We
describe them in detail in appendix B.2. As a concrete example, we set P(j(T )) = 1. The
condition for a minimum corresponds to the case Bn > 1 found in appendix B.2 and takes
the form

2 − (1 + 8n)Γ8(1/4)

192π4
< A(S, S̄) < 2 +

(1 + 8n)Γ8(1/4)

192π4
. (3.5)

If we set n = 0 — the trivial case of H(T ) = 1 — we find a range for A(S, S̄):

0.4035 < A(S, S̄) < 3.5964 . (3.6)

Thus there is a narrow window in which it is possible to have at the point T = i a dS
minimum. However, we note several interesting features. If n > 0, then the left boundary of
stability goes to negative A(S, S̄) and so the extremum is a minimum for all positive values
of A(S, S̄). Furthermore, as n increases, the window for dS minima grows. We display
examples of this window of stability for P(j(T )) = 1 and P(j(T )) = 1 + j(T ) in figure 3.

m = 1. This value for m is particularly intriguing because the potential at T = i is
positive for Ω(S) 6= 0 and does not depend on A(S, S̄):

V (S, S̄, i,−i) =
24n+13π8n+17ek(S,S̄)

49 × 32n+352n+2Γ4(1/4)
|Ω(S)|2|P(1728)|2 . (3.7)

The second derivatives read

∂2
t/aV |T =i =

24n+12π8n+17ek(S,S̄)

52n+232n+249Γ4(1/4)
|Ω(S)|2|P(1728)|2 (3.8)

×
[
3A(S, S̄) − 2 ± Γ8(1/4)

192π4

(
55 + 72n+ 373248 Re

(P ′(1728)

P(1728)

))]
,

∂2
t,aV |T =i =

24n+15π8n+13ek(S,S̄)Γ4(1/4)

52n+232n−249
|Ω(S)|2|P(1728)|2Im

(P ′(1728)

P(1728)

)
, (3.9)
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Figure 3. Determinants of the Kähler modulus block of the Hessian at T = i with (m,n) = (0, n)

and polynomials given by P(j(T )) = 1 (left) and P(j(T )) = 1 + j(T ) (right). The orange segments
correspond to dS vacua assuming a stabilized dilaton. The vertical asymptote indicates the point
where the determinant crosses to negative values.

and requiring the eigenvalues of the Hessian to be positive leads to the condition

A(S, S̄) >
2

3
+

Γ8(1/4)

576π4

[
55 + 72n+ 373248

∣∣∣∣
P ′(1728)

P(1728)

∣∣∣∣
]
. (3.10)

However, the dilaton derivative is

∂SV |T =i =
24n+13π8n+17|P(1728)|2
49 × 32n+352n+2Γ4(1/4)

ek(S,S̄)Ω̄(S̄)(ΩS + kSΩ) . (3.11)

Discarding the Ω(S) = 0 Minkowski solution, the above indicates that stabilizing the
dilaton actually forces us into a Class A extremum. Hence the case m = 1 is never a dS
vacuum at T = i, in agreement with the tree-level Kähler potential analysis in [34].

3.2 Class B-2 vacua: T = ρ

For T = ρ, we must set n < 2 or else all extrema will be Minkowski due to the vanishing
of G4(ρ). We again separate the discussion for the case of n = 0 and n = 1.

n = 0. The value of the potential is then

V (S, S̄, ρ, ρ∗) =
44m+6π12m+12ek(S,S̄)

33m+31225mΓ18(1/3)
|Ω(S)|2|P(0)|2

(
A(S, S̄) − 3

)
, (3.12)

and the non-zero second order derivatives are

∂2
t V |T =ρ = ∂2

aV |T =ρ =
28m+13π12m+12ek(S,S̄)

33m+31225mΓ18(1/3)
|Ω(S)|2|P(0)|2

(
A(S, S̄) − 2

)
, (3.13)

so that the Hessian in the T sector is

det(Hess)|T =ρ = (∂2
t V )2|T =ρ . (3.14)
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Figure 4. Rescaled Hessian determinant of the Kähler modulus block at T = ρ. Again the orange
segments correspond to dS vacua assuming a stabilized dilaton.

Thus, we see that the determinant of the Hessian is always positive (assuming the dilaton is
stabilized), and the eigenvalues are positive for A(S, S̄) > 2. Hence, there is a dS minimum
for A(S, S̄) > 3. This is depicted in figure 4.

n = 1. As in the previous section, for this value of n the potential is always positive and
does not depend on A(S, S̄):

V (S, S̄, ρ, ρ∗) =
44m+6π12m+14ek(S,S̄)

33m+552m+249mΓ6(1/3)
|Ω(S)|2|P(0)|2 . (3.15)

Also as above, ∂SV |T =ρ ∝ ΩS + kSΩ and so it is not possible to stabilize the dilaton with
A(S, S̄) > 0. On the other hand, the determinant of the Kähler modulus block of the
Hessian is

∂2
t V |T =ρ = ∂2

aV |T =ρ =
28m+7π12m+14ek(S,S̄)

52m+21323mΓ6(−2/3)
|Ω(S)|2|P(0)|2

(
3A(S, S̄) − 2

)
. (3.16)

So long as A(S, S̄) > 2/3, the Kähler modulus sector is stabilized. This scenario cannot
give dS vacua, but it does yield an intriguing model for dilaton quintessence: if the dilaton
has an initial field value such that A(S, S̄) > 2/3, then as the dilaton runs towards weak
coupling, the cosmological constant in eq. (3.15) decreases but the compact dimensions are
stabilized. Indeed if we assume that Ω(S) ∼ ∑

a e
−S/ba and the dilaton Kähler potential

is k(S, S̄) = − ln(S + S̄) + O(e−
√

S), then A(S, S̄) grows with S and the stability of T
is maintained. We leave a detailed study of the phenomenology and cosmology of this
scenario to future studies.
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Figure 7. Potential for the parameters {β = 10−3, m = 2, n = 2}. The AdS global minimum is
located at T = −0.5+1.107i while the fixed point T = ρ is a Minkowski local minimum as expected
from section 3.2. When we turn the dilaton dependence on and A(S, S̄) satisfies eq. (3.18), the
minimum in the outer rim becomes a dS local minimum, while T = ρ stays a Minkowski minimum.

4 Non-perturbative stringy effects & de Sitter vacua

In the previous section, we described conditions on the function A(S, S̄) such that the two-
modulus potential could permit dS vacua. Traditional heterotic model building techniques
do not furnish appropriate mechanisms — the use of H3-flux or racetracks typically fix
the dilaton vev in Class A vacua such that 〈FS〉 = 0 and so A(S, S̄) identically vanishes.
Therefore, to either extend our no-go theorem or find dS vacua, we are naturally led to
effects beyond gaugino condensation.

4.1 Class B de Sitter no-go theorem

In the above, we have seen that Class B extrema, with the assumption of a stabilized
dilaton, can in principle have positive energy while stabilizing the Kähler modulus. How-
ever, this class of solutions is not a panacea — a broad subclass of Class B extrema are
unstable in the dilaton subsector. A version of this statement can be found in [49], which
we encapsulate and extend in the following no-go theorem:

Theorem 2. At a point (T0, S0), the scalar potential in eq. (2.23) with k(S, S̄) = − ln(S+

S̄) can not simultaneously satisfy:

(i). V (T0, S0) > 0

(ii). ∂SV (T0, S0) = 0 & ∂TV (T0, S0) = 0
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(iii). F̃T (T0) = 0

(iv). Eigenvalues of the Hessian of V (T, S) at (T0, S0) are all ≥ 0.

Proof. The proof proceeds in a similar fashion as the proof of Theorem 1. We assume (i)-
(iv) are true and find a contradiction. To reconcile (i) and (iii), we must be in a Class B ex-
trema such that eq. (2.35) and its complex conjugate are satisfied. For (i) to be true, we also
require thatH(T0) ≡ H0 6= 0 and we can once again introduce a parameter Λ4 > 0 such that

V (T0, S0) = ek0Z0|H0|2Λ4 . (4.1)

Once again the subscript 0 denotes evaluation at (T, S) = (T0, S0). This can be solved with

(ΩS)0 = −(kS)0Ω0 ±
√

(kSS̄)0

{
Λ2 ± i

(
3|Ω0|2|H0|2 − |Ω0|2V̂0

|H0|2
) 1

2
}
, (4.2)

where any of the four sign combinations are valid. Note that k(S, S̄) is given its tree-level
expression in the assumptions of the theorem but we keep it general for now. Similarly, V̂0

vanishes by (iv) and we will set it to zero below. For the second condition in (ii), note that

∂TV (T, S) = ekZ|Ω|2
{
H̄(A− 3)F̃T + ∂T V̂ − 3i

2π
Ĝ2V̂

}
. (4.3)

Every term in the above derivative is proportional to F̃T or its complex conjugate and
so (iii) ensures the entire expression vanishes. By a similar logic, all mixed S and T

derivatives vanish:
∂k

S∂
l
S̄
∂TV (T0, S0) = 0 ∀ k, l ∈ N+ . (4.4)

Hence the Hessian is block diagonal. We now examine the eigenvalues of the dilaton
subsector. The components of the Hessian in terms of the fields S = s+ ib are

∂2
sV = 2∂S∂S̄V + 2Re(∂2

SV ) , (4.5)

∂2
bV = 2∂S∂S̄V − 2Re(∂2

SV ) , (4.6)

∂s∂bV = −2Im(∂2
SV ) . (4.7)

First, we see that the expressions for ΩS(S0) and ΩSS(S0) imply that

∂S∂S̄V (T0, S0) =
ek0Z0|Ω0|2

(kSS̄)2
0

[ (
2|H0|2|Ω0|2 + Λ4V̂0

)
(kSS̄)3

0 (4.8)

+
(
(3 − V̂0)|Ω0|2 + Λ4|H0|2

)
(kSS̄S̄kSSS̄ − kSS̄kSSS̄S̄)0

]

→ −2Z0|H0|2(2|Ω0|2 + Λ4)

(S0 + S̄0)3
. (4.9)

In going to the second line we set k(S, S̄) = − ln(S + S̄) and V̂ (T0, T̄0) = 0. Then
by identical logic to Theorem 1, we see that at least one eigenvalue of the Hessian is
negative. Logically speaking, we must supplement the assumptions of the theorem with
Re(S0) > 0, but this is a physical requirement for a sensible coupling constant. Thus (iv)
is incompatible with (i)-(iii) and the theorem is demonstrated.
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In appendix C we prove a similar statement to the above for orbifolds with non-
trivial mixing in the Kähler potential displayed in eq. (2.21). For the moment, we find an
immediate corollary:

Corollary 2.1. Extrema of the two-modulus model with k(S, S̄) = − ln(S + S̄) and
eq. (2.18) can never be dS vacua at the fixed points of PSL(2,Z).

This follows from Theorems 1 and 2 and the fact that F̃T vanishes at the PSL(2,Z)

fixed points for all cases except for (m,n) = (1, n) at T = i and (m,n) = (m, 1) at T = ρ —
see appendix A. However, as discussed in section 3, these cases can only ever yield unstable
dS and the corollary is verified.

Thus we have an analytic argument for further results of [34]. They found by numerical
analysis that Class B vacua at the fixed points were never dS vacua in cases where Ω(S) was
a sum of exponentials, which is reminiscent of a racetrack superpotential. We see that this
result and more is captured by Corollary 2.1 — for a tree-level dilaton Kähler potential, no
racetrack or other non-perturbative effect captured by Ω(S) in the superpotential can result
in dS vacua at T = i, ρ. The same applies for H3-flux appearing as an additive constant in
Ω(S). This result is a natural extension of [26] to orbifold models with threshold corrections
and worldsheet instantons.

Theorem 2 illustrates that not any Class B extremum can be a dS vacua — in particu-
lar, constructing arbitrarily complicated superpotentials via Ω(S) is insufficient. However,
eq. (4.8) indicates how to go beyond Theorem 2 at the fixed points — one must go beyond
the tree-level Kähler potential for the dilaton.6 This can be achieved by the Shenker-like
terms briefly described in the introduction. We now turn to reviewing and modeling these
effects.

4.2 Stringy effects in heterotic theories

As emphasized above, gaugino condensation is not an inherently stringy phenomenon —
rather, it is a purely quantum field-theoretical effect. This is evident from the form of the
non-perturbative superpotential in eq. (2.16), which contributes terms to the Lagrangian
of the form δL ∼ e−1/g2

s . Truly stringy non-perturbative effects would scale as δL ∼ e−1/gs ,
which can be found via D-branes in theories with open strings. Contributions from such
stringy effects would be stronger than gaugino condensation at weak coupling.

Considering such effects in the context of heterotic models at first seems surprising,
given that these string theories lack D-branes. Nonetheless, heterotic models can and do
have these stringy non-perturbative effects. The original argument for the existence of such
effects by Shenker [37] is based on the scaling properties of matrix theory amplitudes and
applies to all closed string theories.

Shenker made a generic existence argument, but one can go a bit further by leveraging
string dualities [38, 58]. Indeed, Silverstein [38] extended these general arguments by
outlining how such non-perturbative stringy effects could be seen from the dualities of

6One could also analyze eq. (2.20), which is not directly covered by Theorems 1 & 2.
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heterotic theories with type I and type IIA string theories. Let us first consider the duality
with type I. The 10d type I/heterotic map is

GH
MN = gH

s G
I
MN

gH
s = (gI

s)−1 ,
(4.10)

where Gi
MN is the 10d metric of heterotic or type I theory. Thus, type I worldsheet

instantons wrapping a 2-cycle with area AI that give contributions δL ∼ e−AI get mapped
to δL ∼ e−AH/gH

s . This is precisely the type of Shenker-like effect described above.
On the type IIA side, one can consider a scenario where the heterotic dilaton is mapped

to a Kähler modulus on the type IIA side: SH ↔ T IIA. Such a duality is known to
hold also in 4d in the large volume/weak coupling limit [59, 60]. In this case, Silverstein
considers “worldline” instanton contributions δL ∼ ∑

m e−mr arising from strings wrapping
a non-contractible loop of radius r in the compactification manifold. This implies that
the compactification manifold must have a non-trivial fundamental group. Applying the
duality, we get in the heterotic side an effect which again falls like δL ∼ ∑

m e−m/gH
s .

The above was made much more tangible via the explicit calculations in 10d and 9d

heterotic string theories by Green and Rudra in [61]. The authors calculated one-loop
diagrams in the Hořava-Witten background of 11d supergravity and find non-trivial R4

terms which can be cast as contributions in the heterotic action proportional to e−1/gs . For
example, a one-loop 4 graviton bulk amplitude contributes a term to the 10d Spin(32)/Z2

heterotic effective action of the form

SHO ⊃ g
−1/2
HO

28(2π)74! l2H

∫

M10

√
−Gt8t8R4G3/2(ig−1

HO) , (4.11)

where t8 is a rank-eight tensor and lH is the heterotic string length. The dependence on the
string coupling gHO is encoded in the real-analytic Eisenstein series Gs(τ). These are non-
holomorphic modular forms with weight (0, 0) (i.e. non-holomorphic modular functions) —
see appendix A. For s = 3/2, the series has a small-gs expansion

G3/2(ig−1
s )= ζ(3)g−3/2

s + 2ζ(2)g1/2
s +

∑

n∈Z+

4πσ−1(|n|)e− 2π|n|
gs (1 + O(gs)) (4.12)

= ζ(3)g−3/2
s + 2ζ(2)g1/2

s + e
− 2π

gs

(
4π +

3

4
gs + O(g2

s)

)
+ O(e

− 4π
gs ) , (4.13)

σs(n) being the divisor sum, as defined in appendix A. Thus we see that there is an infinite
set of non-perturbative instanton contributions of the form predicted by Shenker [37]. This
contribution to the action is not unlike the R4 term in type IIB string theory, where the
g−1

s dependence is augmented to a dependence on the axio-dilaton. Indeed one can think of
the result in eq. (4.11) as being related to the 9d R4 term in IIB via orientifold projection
to type I, S-dualizing to HO, and then taking the 10d limit. The authors find a similar
structure in the gauge sector via a non-perturbative contribution to the F 4 correction to
the effective action. Interestingly, [61] find these instanton effects for both heterotic string
theories in 9d, but the calculated Shenker-like effects vanish in the 10d limit of the E8 ×E8
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heterotic string. This makes a tantalizing connection with the discussion of stable open
heterotic strings by Polchinski [62].

We close this discussion with a note on the importance of duality in the above results
for the heterotic Shenker-like terms in 9d and 10d. As argued in [61], S-duality between
type I and HO cannot operate term-by-term in eq. (4.11) — if we write the R4 term of the

9d HO and type I theories as riℓ
−1
i g

− 1

2

i U(ig−1
i )t8t8R

4 with ri the radius of the additional
S1, ℓi the string length, gi the string coupling, and i = I,HO, then S-duality demands

U(ig−1
HO) = U(ig−1

I ) (4.14)

since rHOℓ
−1
HOg

− 1

2

HO = rIℓ
−1
I g

− 1

2

I . This property is not satisfied by the perturbative part of
the R4 coefficient, indicating that one must include additional terms. On the other hand,
it is satisfied by the real-analytic Eisenstein series — it follows from their invariance under
S-transformations of PSL(2,Z). Thus one could argue that heterotic Shenker-like effects
play an important role in the duality web connecting string theories.

This exhausts the discussion of heterotic stringy non-perturbative effects in the litera-
ture, as far as the current authors are aware. Clearly, these effects are poorly understood
and deserve thorough investigation in their own right. However, in the following section we
will attempt to understand the impact of these effects on heterotic vacua in the effective
4d theories considered above and leave an explicit full-fledged derivation for future work.
Along a similar vein, these Shenker-like effects have been previously applied to the program
of heterotic particle phenomenology in the form of “Kähler Stabilized Models” [63–67] —
see [68] for a review.

4.3 Stringy de Sitter vacua & the linear multiplet formalism

As argued above, heterotic string theories contain non-perturbative corrections to their
effective actions with strength O(e−1/gs). In the 4d models we have introduced, these
corrections will appear in the Kähler potential of the low energy effective theory. To study
the impact of these non-perturbative effects on the two-modulus model, we must settle for
a parametrization in the absence of explicit calculations. For concrete calculations, we will
assume that the Shenker-like terms are functions of solely the dilaton and therefore they
have the characteristic strength of O(e−1/g4). We will return to the question of Kähler
modulus dependence at the end of this section. Furthermore, we follow the conventions
of [68] and use the linear multiplet formalism for the dilaton [69, 70]. This has been
advocated as the superior convention for the dilaton [71–73] since it naturally describes
corrections to the gauge coupling, Green-Schwarz anomaly cancellation conditions [74–
76], effective descriptions of gaugino condensation, and higher-genus corrections.7 The
component fields of the linear multiplet superfield L are a real scalar ℓ (the dilaton), a
Majorana fermion ψ (the dilatino), and an antisymmetric tensor (the 2-form B2). This
decomposition also motivates the linear multiplet formalism as the natural choice since its
degrees of freedom are precisely those of the string compactification.

7However, care should be taken with the linear multiplet after the dilaton gains a mass [77]. We thank

Fernando Quevedo for raising this point.
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In the U(1)K superspace formalism [78], the kinetic contribution to the effective su-
pergravity action is determined by the superspace integral

LKE =

∫
d4θE(−2 + f(L)) , (4.15)

where E is the supervielbein determinant. The function f(L) parametrizes the Shenker-like
terms described above. It is related to the dilaton “Kähler potential”8

k(L) = ln(L) + g(L) , (4.16)

via the differential equation

L
df

dL
= −L dg

dL
+ f . (4.17)

In the presence of the non-perturbative terms, the relation between g4 and the dilaton
vacuum expectation value is altered:

g2
4

2
=

〈
ℓ

1 + f(ℓ)

〉
. (4.18)

In the linear multiplet formalism, gaugino condensation does not induce a superpo-
tential for the dilaton. Instead, the scalar potential of the Kähler modulus and dilaton
model can be calculated from the corrections to the gauge kinetic function, as written in
eq. (2.12). See [68] for details. If we consider a single condensing gauge group with beta
function coefficient ba (corresponding to Ω(S) = e−S/ba in the chiral formalism of section 2)
the scalar potential of eq. (2.23) in the linear multiplet formalism becomes

V (ℓ, T, T̄ ) = Z(T, T̄ )

[(
(1 + baℓ)

2(1 + ℓg′(ℓ))
b2

aℓ
2

− 3

)
|H(T )|2 + V̂ (T, T̄ )

]
ℓeg(ℓ)−(f(ℓ)+1)/baℓ .

(4.19)
For a single gaugino condensate, one can bypass superspace calculations and derive this
potential simply by taking eq. (2.23) and implementing the tree-level relation between
chiral and linear multiplet formalisms:

ℓ

1 + f(ℓ)
=

1

S + S̄
. (4.20)

To proceed, we must specify the functions f(ℓ) and g(ℓ) that parameterize the non-
perturbative stringy terms. Due to the differential equation in (4.17), we need only specify
one of the functions and a boundary condition. As in [68], we will specify f(ℓ) and fix g(ℓ)

by the requirement that g(0) = 0. This last condition is simply demanding that the non-
perturbative effects vanish as the string coupling vanishes and only gets rid of a constant
in the solution for g(ℓ). Note that one could also specify g(ℓ) and then derive f(ℓ). We
take f(ℓ) to have the form [68]

f(ℓ) =
∑

n=0

Anℓ
qne−B/

√
ℓ , (4.21)

8This is not a true Kähler potential since the dilaton is no longer described by a chiral superfield and is

more accurately described as a “kinetic potential”.
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with constants An, qn, and B. We will always consider B > 0 with the expectation
that non-perturbative effects should vanish at exponentially at large field values [79]. The
polynomial in ℓ is mirroring the structure of the real-analytic Eisenstein series expansion in
eq. (4.13). The above is essentially a parametrization for the first term in the infinite series
of eq. (4.13). In principle, we should include these higher order instantons. In practice, if
our vacuum yields a small value for the first instanton, we will neglect higher order terms.
We will return to this point below.

With this parametrization of f(ℓ), g(l) is

g(ℓ) =
∑

n=0

AnB
2qn

{
2(1 − qn)Γ(−2qn, B/

√
ℓ) − Γ(1 − 2qn, B/

√
ℓ)

}
, (4.22)

where Γ(a, x) is the upper incomplete gamma-function

Γ(s, x) =

∫ ∞

x
ys−1e−ydy . (4.23)

We now consider specific examples of eq. (4.19) using eq. (4.21) and eq. (4.22). To simplify
the discussion, we will consider vacua at the fixed point T = ρ. So long as n = 0 in the
parametrization of H(T ), eq. (2.19), any dS minimum in the dilaton sector is immediately
a minimum of the T sector. Furthermore, V̂ (T, T̄ ) in eq. (4.19) vanishes. We can also
set m = 0 without loss of generality since non-zero m simply modulates the value of the
vacuum energy via an overall factor in eq. (4.19).

Example 1: trivial polynomial. First, we consider the case of a trivial polynomial
setting qn = 0 ∀ n:

f1(ℓ) = A0e
−B/

√
ℓ , (4.24)

g1(ℓ) = A0

{
2Γ(0, B/

√
ℓ) − e−B/

√
ℓ
}
. (4.25)

If we take B = π and A0 = 26, we find the potential on the left-hand side of figure 8. At
the dS vacuum, we find

g4 ≃ 0.99 ,

〈f(ℓ)〉 ≃ 1.92 , (4.26)

〈e−B/
√

ℓ〉 ≃ 7.4 × 10−2 .

Examples 2 & 3: non-trivial polynomials. Let us also consider two examples with
non-trivial polynomials. We will keep the first two terms in eq. (4.21):

f2,3(ℓ) = (A0 +A1ℓ
q)e−B/

√
ℓ . (4.27)
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Figure 8. Plots of the scalar potential evaluated at T = ρ for Example 1 (left) and Example 2
(right).

If we take q = −0.5, B = 2π, A0 = −7372, and A1 = 7254, we find the potential on the
right in figure 8 At this minimum, the parameters take the values

g4 ≃ 0.84 ,

〈f(ℓ)〉 ≃ 0.39 , (4.28)

〈e−B/
√

ℓ〉 ≃ 1.3 × 10−4 .

Instead, if we take q = 1/2, B = 0.6π, A0 = 10, A1 = 9

g4 ≃ 0.70 ,

〈f(ℓ)〉 ≃ 2.1 , (4.29)

〈e−B/
√

ℓ〉 ≃ 0.11 .

This final example is motivated by the Eisenstein expression from [61], where the polyno-
mial coefficients are O(1 − 10). In both examples 2 and 3, the string coupling is stabilized
close to the oft quoted phenomenological target of g4 = 2−1/2 ≃ 0.707.

Let us make several comments on these vacua. First, note that the relationship between
the linear and chiral multiplet formalisms in eq. (4.20) implies that the typical dilaton
runaway Re(S) → 0 to weak coupling maps to ℓ → 0. Examination of the potentials in
figure 8 shows that vacuum tunneling is possible via bubble nucleation to Minkowski space
with gs → 0. This generic behavior of the vacua is rooted in the vanishing of the Shenker-
like effects at weak coupling. Thus the dS vacua generated by Shenker terms are metastable.
This is in accord with the general notion that if dS vacua exist in theories of quantum
gravity, they must be at best metastable [80] and perhaps correspond to resonances [81–
83] or mixed states in the AdS/CFT correspondence [84–87].

Second, an important concern regarding the above vacua is control. Perturbative
heterotic 4d string vacua which generate weakly-coupled non-abelian gauge groups with
values of the gauge couplings roughly of that of simple GUTs αGUT ≃ 1/25 cannot exist at
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large volume V of the compactification manifold. This statement follows from the tree-level
relation between the value of the tree-level heterotic 4d gauge coupling α4d, the 4d heterotic
dilaton Re(S), the string coupling gs, and the volume V of the extra dimensions

α−1
4d = 4πRe(S) =

V
g2

s

. (4.30)

If we now require α−1
4d ≃ α−1

GUT ≃ 25 and gs < 1 to keep the heterotic string perturbative,
this implies small compactification volume V < 25. Hence, the control mechanism of a
large-volume expansion traditionally employed in the context of type IIB string vacua is
not operational here.

Instead, four-dimensional heterotic strings, on orbifolds in particular, allow for the
computation of perturbative and non-perturbative quantum corrections to the space-time
effective action directly using worldsheet conformal field theory techniques. These correc-
tions in turn are highly constrained by holomorphy and modular invariance, leading to a
level of control (in some cases to infinite order of a particular series of quantum corrections)
that can match and sometimes even surpass the level of large-volume expansion control in
type IIB string vacua.

While the dilaton has been stabilized such that gs is in a perturbative regime, our
parametrization of the Shenker-like effects in eq. (4.21) ostensibly includes only the lowest
order term in an infinite sum of non-perturbative terms. One would imagine that the full
set of Shenker-like corrections has the form

f(ℓ) =
∞∑

α=0

Pα(ℓ)e−Bα/
√

ℓ , (4.31)

for some polynomials Pα(ℓ) and constants Bα. Indeed this is what the M-theory calcu-
lations of [61] and duality arguments in [38] point towards. Viewed from this perspec-
tive, consistency of the vacua requires that the high-order terms must be subdominant
to the lowest-order one we have included. There are two ways this could be achieved,
depending on the nature of the sum in eq. (4.31). If the sum behaves similar to an
instanton sum from Gopakumar-Vafa invariants, then the coefficients of the terms in
eq. (4.31) could grow rapidly as α increases. Control then demands that the exponen-
tials decay rapidly with α. Such a scenario would correspond to Example 2, where the
ratio of the lowest-order exponential to the nominal value of the next exponential is
〈e−2B/

√
ℓ/e−B/

√
ℓ〉 = 〈e−B/

√
ℓ〉 = O(10−4). On the other hand, it may be that the co-

efficients in eq. (4.31) do not grow rapidly, or at all, with α. This would occur if the sum in
eq. (4.31) descends from a function such as the real-analytic Eisenstein series of [61]. For
such a scenario, control could be achieved with even modestly small exponentials, such as
Example 3 above where the instanton ratio is only O(10−1). In either case, control hinges
on the precise nature of the sum of Shenker-like terms. We are not in a position to argue
generalities about this sum and leave a detailed discussion to future work.

Finally, we have downplayed the role of the Kähler modulus in this section and simply
fixed T = ρ at the very start. This approach is valid solely because of the remarkable
number-theoretic properties of the scalar potential. Modular symmetry provides a simple
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means to identify critical points and vacuum criteria via the block-diagonal structure of
the Hessian at PSL(2,Z) fixed points. As shown in section 3.2, T is stabilized at T = ρ if
A(S, S̄) > 2 — a condition that can, in principle, be satisfied by the Shenker-like terms.

On the other hand, we have parametrized the Shenker-like terms solely as a function
of the dilaton. However, it is conceivable that these stringy effects depend on the Kähler
modulus. While this would complicate the above calculations, there is a conceptual issue
as well — an arbitrary dependence on the Kähler modulus would break the modular sym-
metry of T and hence T-duality, which would raise concerns over the consistency of the
string models. Therefore, we posit that the Shenker-like terms must uphold T-duality and
consider three scenarios for the sum of non-perturbative effects:

Case 1: the stringy effects do not depend on the Kähler modulus at all

Case 2: the stringy effects depend on T only through a modular invariant function

Case 3: a single instanton term breaks T-duality, but the sum of instantons is a
function with well-defined modular properties.

We argue that all the scenarios above may be realized in varied heterotic compactifications.
For Case 1, the schematic calculations of [38] indicate that the type IIA-heterotic map
results in Shenker-like terms that do not depend on the Kähler modulus, although they
may depend on other moduli that we have omitted in the considerations of this paper.

The second case above occurs in 4d, N = 2 type IIB-heterotic dualities [59, 88, 89].
One example is type IIB on the mirror dual of P

4
11226[12], which is dual to heterotic on

K3 × T 2. One combination of the type IIB complex structure moduli, x, gets mapped to
the heterotic T 2 Kähler modulus via the j-invariant:

x =
1728

j(T )
+ · · · . (4.32)

The dots are corrections that arise away from the strict heterotic weak coupling limit.
Proposals for dualities involving similar type IIB-heterotic maps to the above but with
hauptmoduls of congruence subgroups of PSL(2,Z) were studied in [90, 91].

The third possibility would be realized if the instanton sum was itself the expansion of
some modular-invariant function, such as the real-analytic Eisenstein series in eq. (A.14)
and similar to the results of [61]. A single term in the sum breaks modular invariance, but
the entire sum is invariant.

Let us reconsider our vacua in light of these scenarios for the sum of Shenker-like
terms. First, since T-duality is preserved, the scalar potential remains a modular function,
and so the fixed points of PSL(2,Z) remain extrema of the scalar potential. Furthermore,
KT retains its tree-level value at the fixed points since the T derivative of the Shenker-like
term sum must vanish at the fixed points. This implies that in almost all cases9 FT still
vanishes at the fixed points. Thus, the condition A(S, S̄) > 3 for a dS vacuum remains
unchanged, except that A(S, S̄) is now T dependent and should be evaluated at the fixed

9Exceptions occur when (m, n) = (1, n) or (m, 1).
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point. Statements on the Hessian are much more difficult without a specific form of the
Shenker-like terms. Modular symmetry implies that mixed entries in the Hessian vanish
and we retain a block-diagonal structure. Beyond this, conditions for a minimum are
dependent on the precise form of the Shenker-like terms.

We also note that for some of the vacua inside the fundamental domain, the hierarchy
between the dilaton an Kähler modulus mass scales can become so large that the T -
dependence of the Shenker-like terms becomes irrelevant. This is because at the level of
dilaton stabilization, T becomes frozen and rigidly stabilized at a much higher mass scale.
In such vacua the Shenker-like terms become effectively purely dilaton-dependent. We
have exhibited in figure 6 one class of vacua with this behavior. The (m,n) = (m, 0) with
P (j(T )) = 1 vacua depicted there show stabilization of the Kähler modulus and its axion
in ‘needle-thin’ vacua indicating the very high mass scale of T far above the mass scale
where S (or ℓ, respectively) gets stabilized.

We close this section with a comment on a puzzle posed in [38]. As discussed above,
obtaining the heterotic Shenker-like terms from duality with type IIA requires a non-trivial
fundamental group on the IIA compactification manifold giving rise to worldline instantons.
Similarly, one could examine type I-heterotic duality with a non-trivial fundamental group.
Using the map defined above, one finds that worldline instantons on the type I side get
mapped to heterotic terms of strength δL ∼ exp(−R/√gs), with R the radius of the
non-contractible loop. Assuming such contributions are not identically zero, they may be
stronger at weak coupling than those predicted by Shenker. We have not included these
Silverstein-like effects in our considerations and leave their explicit study and impact on
heterotic vacua to future work.

5 Discussion

In this work, we have explored the possibility of extending dS no-go results to include
non-perturbative stringy effects in the context of heterotic compactifications, particularly
toroidal orbifolds. Focusing on the class of models where the light moduli consist of the
dilaton and the overall Kähler modulus, we partially achieved this goal for extrema where
the dilaton F-term vanishes via Theorem 1. The assumptions of this theorem are that
the stringy effects are solely functions of the dilaton and that the superpotential has a
factorized form and respects T-duality. The no-go theorem then rules out dS vacua arising
from non-perturbative effects in both T and S in the superpotential and in S in the Kähler
potential when 〈FS〉 = 0. As corollaries we were able to confirm previous conjectures
and numerical studies arguing against dS vacua in the pure Kähler modulus theory and
in the two-modulus theory when the dilaton Kähler potential has its tree-level expression.
Other partial no-go theorems in the literature extend this to include perturbative quantum
corrections in the heterotic moduli Kähler potential.

Theorem 2 utilizes a similar argument to Theorem 1 and forbid dS vacua at the fixed
points of PSL(2,Z) when the dilaton has only a tree-level Kähler potential, even if 〈FS〉 6= 0.
This rules out dS vacua arising purely from non-perturbative effects in the superpotential in
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S and T at the fixed points, again affirming a previous conjecture. Theorem 3 in appendix C
proves a kindred statement for the case of non-vanishing Green-Schwarz coefficient δGS .

The above results point to non-perturbative corrections to the Kähler potential that
yield 〈FS〉 6= 0 as almost the only loophole to realize heterotic de Sitter vacua. After
reviewing arguments in the literature in favor of universally present non-perturbative cor-
rections to K at O(e−1/gs), we demonstrated that the inclusion of these effects for heterotic
orbifold vacua could lead to dilaton stabilization with F-term SUSY breaking in the dilaton
sector using just a single gaugino condensate contribution in both AdS and metastable dS
vacua where the Kähler modulus is stabilized as well, as emphasized in the models of [63–
68]. Furthermore, we showed that this stabilization could also lead to heterotic dS vacua.
These solutions, if they truly exist vis a vis the O(e−1/gs) Kähler corrections in a bona fide
heterotic string construction, thread the needle through several partial no-go results — the
no-go theorems we present here as well as those of [19, 23–26, 34].

These considerations leave a pressing open problem — determination of the precise
form of the dilaton-dependent O(e−1/gs) corrections to the Kähler potential, whose exis-
tence in the heterotic string so far is based on duality arguments and 11d computations.
Aside from providing a potential mechanism to stabilize the dilaton and realize heterotic
de Sitter vacua, these corrections are interesting in their own right as a window into truly
stringy features of heterotic theories. A primary goal of future investigations will be to
illuminate the nature of heterotic Shenker-like effects and to perform calculations to com-
plement those of [61].

Along this analysis we reviewed how modular invariance of 4d heterotic orbifolds is
maintained by an interplay of anomaly cancellation and 1-loop threshold corrections to the
gauge kinetic function of the 4d, N = 1. These corrections produce the leading 1/η6(T )

dependence of the gaugino condensate superpotential required by modular invariance. Fur-
ther corrections in T arise beyond leading order as effectively an infinite series of worldsheet
instanton corrections constrained by modular invariance to resum into a product of integer
powers of the holomorphic Eisenstein functions G4 and G6, and an arbitrary polynomial of
the modular invariant j-function. We demonstrate in detail that for even simple non-trivial
choices of these corrections there exist non-trivial SUSY breaking AdS vacua and critical
points in the fundamental domain of the Kähler modulus T away from its boundaries. This
invalidates a long-standing conjecture that such critical points were to exist only on the
boundary of the fundamental domain.

It is clear that based on these results there are several immediate directions for future
work. Beyond the obvious task of establishing precise calculations for the form of the
O(e−1/gs) Kähler corrections, the structure of the modular invariant T -dependent non-
perturbative corrections in the superpotential seems to foretell the existence of a whole
landscape of SUSY breaking AdS vacua inside the T -fundamental domain. Determining
the structure of this landscape as well as their potential upliftability to dS is a further task
for future work. See also [92–94] for non-SUSY heterotic AdS vacua.

Another straightaway question would be to include the presence of Wilson lines on
heterotic orbifolds, as these are often used in breaking the heterotic gauge symmetry down
to acceptable MSSM-like particle physics sectors. Including discrete Wilson lines typically
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breaks PSL(2,Z) modular invariance down to congruence subgroups, which would affect
the gaugino condensate-induced superpotential and thereby the vacuum structure of the
theory. We leave a thorough study of these cases as yet another task for future work. On
a wider scope, generalizing our results to several Kähler moduli and the inclusion of the
complex structure moduli of orbifolds immediately calls for extending modular invariance
beyond PSL(2,Z) to e.g. SP(4,Z) and more general automorphic groups which promise a
landscape of heterotic vacua with an even richer number-theoretical structure.

Finally, on the more phenomenological side, the structure of the scalar potential con-
necting the Minkowski and dS vacua achievable by stabilizing the dilaton with O(e−1/gs)

Kähler corrections in FS-SUSY-breaking vacua at the T -self dual points, indicates the
presence of potentially slow-roll flat saddle points. As these might innately be suitable
for constructing slow-roll inflation in these stabilized heterotic vacua, and string inflation
setups within heterotic string vacua are mostly unknown, we leave this, too, as a well-
motivated task for the future.

Acknowledgments

We thank Rafael Álvarez-García, Cesar Fierro Cota, Ori Ganor, Arthur Hebecker, Abhiram
Kidambi, Daniel Kläwer, Alessandro Mininno, Hans Peter Nilles, Enrico Parisini, Fernando
Quevedo and Timo Weigand for useful discussions. J.M.L. and N.R. (partially) are sup-
ported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy —
EXC 2121 “Quantum Universe” — 390833306. N.R. is partially supported by a Leverhulme
Trust Research Project Grant RPG-2021-423. A.W. is supported by the ERC Consolidator
Grant STRINGFLATION under the HORIZON 2020 grant agreement no. 647995.

A Modular symmetry & forms

Here we collect some basic facts and identities on modular forms relevant for the results
and arguments of the main text. For further details, see [95].

A.1 Basics & definitions

As stated in the main text, the correct duality group of the Kähler modulus is PSL(2,Z) =

SL(2,Z)/{±1} since the elements γ ∈ SL(2,Z) and −γ ∈ SL(2,Z) define the same trans-
formation for T in eq. (2.1). The generators of PSL(2,Z) are

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
. (A.1)

Using these generators, one can show that T = i is stabilized by the order 2 cyclic subgroup
{1,S} and T = e2πi/3 ≡ ρ is invariant under the action of the order 3 cyclic subgroup
{1,ST , (ST )2}.

A modular form of weight (p, q) is a function that transforms as

f(T, T̄ ) → f(γ · T, γ · T̄ ) = (cT + d)p(cT̄ + d)qf(T, T̄ ) . (A.2)
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A particular subclass are holomorphic modular forms with weights (p, 0). We give our
conventions for these in terms of the nome q = e2πiT .

• j-invariant

j(T ) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3

+ 20245856256q4 + 333202640600q5 + · · ·
(A.3)

• Modular Discriminant: is the weight (12, 0) cusp form

∆(T ) = η24(T ) , (A.4)

where the Dedekind eta is

η(T ) = q1/24
∞∏

n=1

(1 − qn) . (A.5)

Note that the transformation property of the Dedekind eta is

η(γ · T ) = ε(γ)(cT + d)
1

2 η(T ) . (A.6)

The multiplier system is a 24-th root of unity and is given in terms of the Rademacher
phi function Φ(γ):

ε(γ) = exp

[
2πi

24
Φ(γ) − iπ

4

]
. (A.7)

For more explicit formulae, see [96].

• Holomorphic Eisenstein Series: for k > 1, the weight (2k, 0) holomorphic Eisenstein
series are

G2k(T ) =
∑′

c,d∈Z

1

(cT + d)2k
= ζ(2k)

∑

(c,d)=1

1

(cT + d)2k
= ζ(2k)E2k(T ) , (A.8)

where the prime indicates that we omit c, d = 0. Our conventions here differ from
the mathematics literature by a factor of 2. These have the Fourier development

G2k(T ) = 2ζ(2k)

(
1 − 4k

B2k

∞∑

n=1

σ2k−1(n)qn
)
, (A.9)

with the divisor sigma
σa(n) =

∑

d|n
da , (A.10)

where d|n = “d divides n”. The exceptional case is G2(T ), which is a quasi-modular
form that transforms as

G2(γ · T ) = (cT + d)2G2(T ) − 2πic(cT + d) . (A.11)
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Then one can define a non-holomorphic Eisenstein series with weight (2, 0) as

Ĝ2(T ) = G2(T ) +
2π

i(T − T̄ )
. (A.12)

The quasi-modular form G2(T ) and the Dedekind eta are related by

d

dT
ln(η(T )) =

i

4π
G2(T ) . (A.13)

• Real Analytic Eisenstein Series: these are non-holomorphic modular forms of weight
(0, 0). Similar to the series expression of the holomorphic Eisenstein series, we have

Es(T ) =
∑

γ∈Γ∞\PSL(2,Z)

Im(γ · T )s (A.14)

= ts +
∑

(c,d)=1,c≥1

ts

|cT + d|2s
(A.15)

=
1

ζ(2s)
Gs(T ) . (A.16)

The sum converges for Re(s) > 1 and has a Fourier decomposition

Es(T ) = ts +
Λ(1 − s)

Λ(s)
t1−s +

∞∑

j=1

4 cos(2πja)
σ2s−1(j)

js− 1

2 Λ(s)

√
tKs− 1

2

(2πjt) , (A.17)

with K is the modified Bessel function of the second kind and Λ(s) = π−sΓ(s)ζ(2s)

is a symmetrized version of the Riemann zeta function. The Fourier decomposition
allows for a meromorphic continuation in the whole s plane.

In general, the derivative of a modular form is not a modular form. However, one can define
a covariant modular derivative utilizing G2(T ). If M2k(T ) is a weight (2k, 0) modular form,
then

M2k+2(T ) = ∂TM2k(T ) +
k

iπ
G2(T )M2k(T ) (A.18)

is a weight (2k + 2, 0) modular form. G2(T ) is again exceptional, with

M̃4(T ) = ∂TG2(T ) − i

2π
G2

2(T ) (A.19)

defining a weight (4, 0) modular form. It is also possible to build non-holomorphic modular
forms in a similar fashion. If M̃κ(T ) is a weight (κ, 0) modular form, then

M̃κ+2(T, T̄ ) = ∂T M̃κ(T ) +
κ

T − T̄
M̃κ(T ) (A.20)

is a weight (κ + 2, 0) non-holomorphic modular form. This is the method by which the
scalar potential achieves modular invariance. There are several features of modular forms
that are useful in searching for vacua:
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• weight (2k, 0) modular forms vanish at T = i for k ∈ 2Z + 1,

• weight (2k, 0) modular forms vanish at T = ρ for k 6= 0 mod 3.

These statements follow directly from the transformation properties of the modular forms
as the behavior S · i = i and ST · ρ = (ST )2 · ρ. The case k = 1 applies to the derivative
of any modular function and implies that this derivative must vanish at the fixed points,
as claimed in the main text for the derivative of eq. (2.23).

A.2 Numerical values

At the self-dual points, we have the values

η(i) =
Γ
(

1
4

)

2π3/4
(A.21)

η(ρ) = e− iπ
24

31/8Γ3/2(1/3)

2π
(A.22)

and

j(i) = 1728 = 123 (A.23)

j(ρ) = 0 (A.24)

∂T j(i) = 0 (A.25)

∂T j(ρ) = 0 . (A.26)

The vanishing of ∂T j(T ) is an avatar of the statements of weight (2, 0) forms above. Simi-
larly, we immediately obtain

Ĝ2(i,−i) = Ĝ2(ρ, ρ̄) = 0 . (A.27)

For the other Eisenstein series relevant for this paper, we have

G4(i) =
Γ8(1/4)

960π2
(A.28)

∂TG4(i) = i
Γ8(1/4)

480π2
(A.29)

G4(ρ) = 0 (A.30)

∂TG4(ρ) = −iΓ
18(1/3)

1280π7
(A.31)

and

G6(i) = 0 (A.32)

∂TG6(i) = −i Γ16(1/4)

215040π5
(A.33)

G6(ρ) =
Γ18(1/3)

8960π6
(A.34)

∂TG6(ρ) = i
√

3
Γ18(1/3)

4480π6
. (A.35)
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Thus for the function H(T ) in eq. (2.19), we find

H(i) =





0 m > 0
4nπ4n

15n P(1728) m = 0
(A.36)

HT (i) =





0 m > 1 & m = 0

− i
722n+115−n−1π4n+4Γ4(1/4)P(1728) m = 1

(A.37)

and

H(ρ) =





0 n > 0(
16i
35

)m
3− 3m

2 π6mP(0) n = 0
(A.38)

HT (ρ) =





0 n > 1 & n = 0

−i
(

16i
7

)m
3−1− 3m

2 5−m−1eiπ/3π6m+1Γ6(1/3)P(0) n = 1
(A.39)

The non-zero values of HT (T ) at the fixed points may seem surprising at first glance given
the argument above that the derivative of a modular function must vanish at the fixed
points. However, recall that H(T ) is not strictly a modular function — it can transform
with a non-trivial multiplier system. Instead, the expression ∂T |H|2 = H̄HT transforms as
a proper weight (2, 0) non-holomorphic modular form and must vanish at the fixed points.
Thus it must be that either H(T ) = 0 or HT (T ) = 0 at T = i, ρ.

B Kähler modulus sector expressions

B.1 General condition for Theorem 1

In Theorem 1, we referenced an expression for HT T such that ∂TV (T, S) = 0 for F̃T 6= 0.
The expression is

HT T =
3i

2π

{
Ĝ2F̃T +H∂T Ĝ2 + Ĝ2HT

}
+

KT T T̄

KT T̄

F̃T (B.1)

−
(

3i

2π
H̄∂T

¯̂
G2 + KT T̄ H̄

(
A(S, S̄) − 3

))
e2iφ , (B.2)

where we have suppressed arguments and defined re-scaled F-terms F̃T = η6Ω−1FT . The
phase is given by φ = arg(F̃T ).
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B.2 General dS vacuum conditions for T = i

Let us assume that the dilaton subsector is stabilized. By considering the most general
case for the polynomial P(j(T )), we have a dS minimum at T = i when

|Bn| < 1 :





A(S, S̄) > 2 + |Bn| if Rn > − 192π4

Γ8(1/4)
|Bn|

or

Cn < A(S, S̄) < 2 − |Bn| if Rn >
192π4

Γ8(1/4)
|Bn|

or

A(S, S̄) > Cn if − 192π4

Γ8(1/4)
< Rn ≤ − 192π4

Γ8(1/4)
|Bn|

or

A(S, S̄) < Cn if Rn < − 192π4

Γ8(1/4)

(B.3)

|Bn| > 1 :





2 − |Bn| < A(S, S̄) < 2 + |Bn| if |Rn| < 192π4

Γ8(1/4)
|Bn|

or

Cn < A(S, S̄) < 2 + |Bn| if Rn ≥ 192π4

Γ8(1/4)
|Bn|

or

2 − |Bn| < A(S, S̄) < Cn if Rn < − 192π4

Γ8(1/4)
|Bn|

(B.4)

where we used the notation for Bn of eq. (3.3) and we have also introduced

Rn = 1 + 8n+ 41472 Re
(P ′(1728)

P(1728)

)
, (B.5)

Cn ≡ 2 + Γ8(1/4)
192π4 Rn − |Bn|2

1 + Γ8(1/4)
192π4 Rn

. (B.6)

If we assume P(1728) ∈ R, these conditions greatly simplify to

2 − Bn < A(S, S̄) < 2 + Bn for Bn > 1 ,

A(S, S̄) > 2 + |Bn| for −1 < Bn < 1 ,

2 + Bn < A(S, S̄) < 2 − Bn for Bn < −1 .

(B.7)

C Orbifolds with δGS 6= 0 & a third no-go theorem

A natural question arises from the discussion in the main text — can the mixing of the
moduli in the Kähler potential evade the theorems and result in dS vacua, even in the
absence of Shenker-like terms? There is a natural basis for this mixing arising from anomaly
cancellation, as described in section 2. We now return to these orbifold models and prove
a limited no-go result similar to Theorem 2.

We will utilize the chiral multiplet formalism where the dilaton is invariant under
modular transformations. Our starting points are the superpotential eq. (2.18) and the
Kähler potential eq. (2.6) using eq. (2.21) so that

k(S, S̄, T, T̄ ) = − ln
(
S + S̄ + δGS ln(−i(T − T̄ )|η(T )|4)

)
+ δk(S, S̄, T, T̄ ) . (C.1)
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Note that we have defined the dilaton-sector Kähler potential with the loop-corrected
contribution and a function δk(S, S̄, T, T̄ ), which we take to be a modular-invariant, non-
holomorphic function that encodes non-perturbative effects such as the Shenker-like terms.
The Green-Schwarz anomaly coefficient δGS should not be confused with δk. Similar to
the main text, the F-terms read

FS =
H(T )

η6(T )

(
ΩS + (−Y −1 + δkS)Ω

)
≡ H(T )

η6(T )
F̃S , (C.2)

FT =
Ω(S)

η6(T )

(
HT − 3i

2π

(
1 +

δGS

3Y

)
HĜ2 + δkTH

)
≡ Ω(S)

η6(T )
F̃T , (C.3)

where we have defined Y = S + S̄ + δGS ln(−i(T − T̄ )|η(T )|4). The Kähler metric is much
more complicated than the cases found in the main text and we will not reproduce here.
We write the scalar potential for these models as

V = ekZ(T, T̄ )

{
|H|2|Ω|2(Ã(S, T ) − 3) + |Ω|2V̂2(S, T )

+HΩ̄KST̄ F̃S
¯̃
F T̄ + H̄ΩKS̄T ¯̃

F S̄F̃T

}
,

(C.4)

with Ã(S, T ) = |Ω|−2KSS̄F̃S
¯̃
F S̄ , V̂2(S, T ) = KT T̄ F̃T

¯̃
F T̄ , and Z(T, T̄ ) as defined in eq. (2.26).

We now prove a no-go result similar to Theorem 2 of the main text. In particular,
we demonstrate the impossibility of dS vacua at the fixed points of PSL(2,Z) if the δk
contribution to the Kähler potential is discarded.

Theorem 3. At the points (T0 = i, S0) or (T0 = ρ, S0), the scalar potential in eq. (C.4)
defined via eq. (2.18) and eq. (C.1) with δk = 0 can not simultaneously satisfy:

(i). V (T0, S0) > 0

(ii). ∂SV (T0, S0) = 0 & ∂TV (T0, S0) = 0

(iii). Eigenvalues of the Hessian of V (T, S) at (T0, S0) are all ≥ 0.

Proof. First, we are considering the fixed points of PSL(2,Z), so the requirement
∂TV (T0, S0) = 0 in (ii) is automatically satisfied. Furthermore, the Hessian is also block
diagonal, so we can again consider the Kähler modulus and dilaton blocks individually.
Second, recall from appendix A that at the fixed points of PSL(2,Z), the product (H̄HT )0

must vanish as a consequence of modular symmetry — ∂T |H|2 transforms as a weight (2, 0)

modular form with trivial multiplier system. One can also observe this numerically from
eqs. (A.36), (A.37), (A.38) and (A.39). In almost all cases, the vanishing of this product
occurs because HT = 0. This immediately implies that F̃T = 0 since Ĝ2(T, T̄ ) must also
vanish at the fixed points. However, cases where the integer pair (m,n) in eq. (2.19) cor-
respond to (1, n) or (m, 1) do not follow this pattern since they give HT 6= 0 at T = i, ρ.
Thus, we must divide our analysis into two cases. We will not consider the cases where
H = HT = 0 at T = i, ρ since these trivially give Minkowski extrema.
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Case 1: H(T0) 6= 0. This is the case where (F̃T )0 = 0, so all positive contributions to
the vacuum energy must come from the dilaton sector in the form of the function Ã(S, T ) in
eq. (C.4). Thus to satisfy (i), we require (F̃S)0 6= 0 & (KSS̄)0 6= 0. We can again introduce
a parameter Λ such that

ek0Z0|H0|2|Ω0|2(Ã0 − 3) = ek
0Z0|H0|2Λ4 . (C.5)

This can be solved to give

ΩS(S0) = Y −1
0 Ω0 ± (KSS̄

0 )−1/2
(

Λ2 ± i
√

3|H0|2
)
. (C.6)

Once again any of the four sign choices are valid. The first condition in (ii) is satisfied if

ΩSS(S0) =
2Ω̄0

Y 2
0

(
¯̃
F S̄)0

(F̃S)0

, (C.7)

where we have utilized the vanishing of (F̃T )0. Inserting the above expressions into
∂S∂S̄V (S0, T0), we find

∂S∂S̄V (S0, T0) = −2Z0|H0|2(Λ4 + 2|Ω0|2)

Y 3
0

. (C.8)

Note that Y0 > 0 is required for a sensible value of the string coupling. Hence, by identical
logic to Theorem 2, at least one eigenvalue in the dilaton block of the Hessian is negative
and a (meta)stable dS vacuum is not possible for any function Ω(S).

Case 2: HT (T0) 6= 0. Since it must be that H0 = 0 for this case, the potential in
eq. (C.4) simplifies greatly to

V0 = ek0Z0|Ω0|2(V̂2)0 . (C.9)

Thus we must demand that Ω0 6= 0 to avoid a Minkowski extremum. Next, we note that

∂SV (S0, T0) =
−(T0 − T̄0)2

3Y0 + δGS
Z0Ω̄0|HT |20 ((3Y0 + δGS)(ΩS)0 − 3Ω0) , (C.10)

after using the vanishing of H0. Then to satisfy the first condition of (ii), the factor in
parentheses must vanish and we obtain (ΩS)0 = 3(3Y0 + δGS)−1Ω0. We now investigate
the Kähler modulus block of the Hessian. Using the above,10 we see that

∂T∂T̄V (S0, T0) = −2(3Y 2
0 + δGSY0 + δ2

GS)

Y0(3Y0 + δGS)2
Z0|Ω0|2|HT |20 . (C.11)

Since both Y > 0 and δGS > 0 [44], we see that ∂T∂T̄V (S0, T0) < 0 and by the same
logic used in Theorem 1 at least one of the eigenvalues of the Kähler modulus block of the
Hessian is negative.

10We also use (HT T )0 = −2(T0 − T̄0)−1(HT )0. This follows from eq. (A.20) with M̃2 = HT and so

H̄T̄ (HT T + 2(T − T̄ )−1HT ) transforms as a weight (4, 2) modular form with trivial multiplier system. Thus

this combination must vanish at the fixed points, and since we are considering cases here where (HT )0 6= 0,

the identity follows.
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From Theorem 3, we conclude that there is no non-perturbative contribution in the
form of Ω(S) or H(T ) that can lift a fixed point extremum to a dS vacuum if δk = 0,
even for models with δGS 6= 0. As discussed in the main text, if this additional term is
included, dS vacua may be possible. If we again consider a fixed point T0 of PSL(2,Z) with
H(T0) 6= 0, then eq. (C.4) is simply

V (S, T0) = ekZ(T0, T̄0)|Ω|2|H(T0)|2(Ã(S, T0) − 3) (C.12)

This is similar to the scenarios considered in the main text. We will not perform a thorough
analysis here, but one could determine stability criteria for dS vacua at the fixed points
and convert them into requirements on the Shenker-like terms encoded in δk(S, S̄, T, T̄ ).

D Linear multiplet formalism & the inverse map

In this appendix, we develop a perturbative framework to invert the map between the
linear multiplet formalism and the chiral multiplet formalism for the dilaton. With the
Shenker-like terms corrections, we have the relation

ℓ

1 + f(ℓ)
=

1

S + S̄
. (D.1)

Our goal is to invert this relationship and write ℓ = ℓ(s). Recalling the form of f(ℓ) used
in eq. (4.21)

f(ℓ) =
∑

n

Anℓ
qne−B/

√
ℓ , (D.2)

we see why the task is non-trivial — inversion requires us to solve a transcendental equation.
We can make some progress in developing a perturbative approach. Let us work in the limit
ℓ ≪ 1. Then the exponential dies out and to the lowest order we simply have 2s = ℓ−1.
To proceed, we want to develop a series

ℓ =
1

2s
+ εy(s) + · · · (D.3)

where ε is a small parameter controlling the expansion and y(s) is some function of the
dilaton to be determined. Unfortunately a brute force perturbative approach does not
work — we cannot expand the exponential e−B/

√
ℓ about ℓ = 0 since it has an essential

singularity there. In the limit we are considering, e−B/
√

ℓ is small, so our perturbative
expansion should be based on the notion that

e−B/
√

ℓ ∼ O(ε) . (D.4)

This would then imply that

ℓ ∼ B2

ln2(ε)
(D.5)

to leading order. This is quite a peculiar setup, but intuitively it seems reasonable — if ε is
a small parameter, then ln−2(ε) is also a small positive number. We are still performing a
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perturbative expansion, just one that involves a non-linear map of the expansion parameter.
We formalize this observation by postulating a very general perturbative expansion

ℓ = αℓ1 + εa2αb2ℓ2 + εa3αb2ℓ3 + · · ·
= αℓ1 + δ ,

(D.6)

where α = ln−2(εa) and a is unspecified for the moment. We also leave the powers in
the higher order terms as variables to be solved. We now plug this into eq. (D.1), expand
around δ = 0, and match powers of ε and α. For a sensible expansion, we must relate ε to
s. The natural guess from the discussion above is that

s = ln2(εa) . (D.7)

This also implies that the small parameters ε and α are defined in terms of s as

ε = e−
√

s

a , where α =
1

s
. (D.8)

To determine the value of a, we demand that

e−B/
√

ℓ1 = ε , (D.9)

ε
√

ℓ1Ba = ε , (D.10)

so a =
√

ℓ1

B .

D.1 Example 1: only A0 6= 0

We explicitly solve the simple example where the series in eq. (4.21) collapses to f(ℓ) =

A0e
−B/

√
ℓ. Then we have

2s = ℓ−1(1 +A0e
−B/

√
ℓ) (D.11)

2 ln2(εa) = (αℓ1 + δ)−1(1 +A1e
−B/

√
αℓ1+δ) . (D.12)

To leading order,

2 ln2(εa) =
ln2(εa)

ℓ1

ℓ1 =
1

2
.

(D.13)

Matching the next order yields

(a2, b2) = (1, 1)

ℓ2 = A0ℓ1 =
A0

2

(D.14)

and following order is

(a3, b3) = (2, 1/2)

ℓ3 =
A0Bℓ2

2
√
ℓ1

=
A2

0B

2
√

2
.

(D.15)
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We then arrive at the series expansion

ℓ = αℓ1 + εαℓ2 + ε2α1/2ℓ3 + · · ·

=
ℓ1
s

+
e−B

√
s/ℓ1

s
ℓ2 +

e−2B
√

s/ℓ1

s1/2
ℓ3 + · · ·

=
1

2s
+
A0

2s
e−B

√
2s +

A2
0B

2
√

2s
e−2B

√
2s + · · · .

(D.16)

D.2 Example 2: A0, A1 6= 0

We now try the slightly harder example where A0, A1 6= 0 and q1 = −1
2 in eq. (4.21). We

must then solve
2s = ℓ−1(1 + (A0 +A1ℓ

−1/2)e−B/
√

ℓ) . (D.17)

Much of our discussion from the previous example carries over — the only adjustment we
have to make is to re-do the matching to determine values of the (an, bn). We find

(a2, b2) = (1, 1)

ℓ2 = A0ℓ1 (D.18)

(a3, b3) = (1, 1/2)

ℓ3 = A1ℓ
1/2
1 (D.19)

Thus including more terms in the polynomial defining f(ℓ) results in slightly different
perturbative expansions — this seems a direct result of the new powers introduced by
more terms in the polynomial. Our perturbtaive expansion is now

ℓ = αℓ1 + εαℓ2 + εα1/2ℓ3 + · · ·

=
1

2s
+
A0

2s
e−B

√
2s +

A1√
2s
e−B

√
2s + · · ·

(D.20)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high

redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].

[2] Supernova Search Team collaboration, Observational evidence from supernovae for an

accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009
[astro-ph/9805201] [INSPIRE].

[3] E. Silverstein, TASI lectures on cosmological observables and string theory, in Theoretical

Advanced Study Institute in Elementary Particle Physics: new frontiers in fields and strings,
World Scientific (2017), p. 545 [arXiv:1606.03640] [INSPIRE].

– 42 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
9

[4] M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, De Sitter vs quintessence in

string theory, Fortsch. Phys. 67 (2019) 1800079 [arXiv:1808.08967] [INSPIRE].

[5] R. Flauger, V. Gorbenko, A. Joyce, L. McAllister, G. Shiu and E. Silverstein, Snowmass

white paper: cosmology at the theory frontier, in 2022 Snowmass summer study, (2022)
[arXiv:2203.07629] [INSPIRE].

[6] U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod.

Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].

[7] S.K. Garg and C. Krishnan, Bounds on slow roll and the de Sitter swampland, JHEP 11

(2019) 075 [arXiv:1807.05193] [INSPIRE].

[8] H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter conjectures on the

swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

[9] A. Hebecker and T. Wrase, The asymptotic dS swampland conjecture — a simplified

derivation and a potential loophole, Fortsch. Phys. 67 (2019) 1800097 [arXiv:1810.08182]
[INSPIRE].

[10] C. Vafa, The string landscape and the swampland, Tech. Rep. HUTP-05-A043 (2005)
[hep-th/0509212] [INSPIRE].

[11] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, Tech.
Rep. CALT-TH-2018-020 (2018) [arXiv:1806.08362] [INSPIRE].

[12] F. Denef, A. Hebecker and T. Wrase, De Sitter swampland conjecture and the Higgs

potential, Phys. Rev. D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].

[13] J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J.

Mod. Phys. A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].

[14] H. Murayama, M. Yamazaki and T.T. Yanagida, Do we live in the swampland?, JHEP 12

(2018) 032 [arXiv:1809.00478] [INSPIRE].

[15] K. Choi, D. Chway and C.S. Shin, The dS swampland conjecture with the electroweak

symmetry and QCD chiral symmetry breaking, JHEP 11 (2018) 142 [arXiv:1809.01475]
[INSPIRE].

[16] K. Hamaguchi, M. Ibe and T. Moroi, The swampland conjecture and the Higgs expectation

value, JHEP 12 (2018) 023 [arXiv:1810.02095] [INSPIRE].

[17] M. Dine and N. Seiberg, Is the superstring weakly coupled?, Phys. Lett. B 162 (1985) 299
[INSPIRE].

[18] A. Bedroya and C. Vafa, Trans-Planckian censorship and the swampland, JHEP 09 (2020)
123 [arXiv:1909.11063] [INSPIRE].

[19] J.M. Maldacena and C. Nunez, Supergravity description of field theories on curved manifolds

and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[20] L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, De Sitter vacua

in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057
[arXiv:0804.1073] [INSPIRE].

[21] M. Gomez-Reino and C.A. Scrucca, Locally stable non-supersymmetric Minkowski vacua in

supergravity, JHEP 05 (2006) 015 [hep-th/0602246] [INSPIRE].

[22] R. Brustein and S.P. de Alwis, Moduli potentials in string compactifications with fluxes:

mapping the discretuum, Phys. Rev. D 69 (2004) 126006 [hep-th/0402088] [INSPIRE].

– 43 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
9

[23] S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on string cosmology, Class.

Quant. Grav. 29 (2012) 075006 [arXiv:1110.0545] [INSPIRE].

[24] F.F. Gautason, D. Junghans and M. Zagermann, On cosmological constants from

α′-corrections, JHEP 06 (2012) 029 [arXiv:1204.0807] [INSPIRE].

[25] D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter space in string

theory, Phys. Rev. Lett. 115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].

[26] C. Quigley, Gaugino condensation and the cosmological constant, JHEP 06 (2015) 104
[arXiv:1504.00652] [INSPIRE].

[27] V.S. Kaplunovsky, One loop threshold effects in string unification, Nucl. Phys. B 307 (1988)
145 [Erratum ibid. 382 (1992) 436] [hep-th/9205068] [INSPIRE].

[28] L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to

gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].

[29] I. Antoniadis, K.S. Narain and T.R. Taylor, Higher genus string corrections to gauge

couplings, Phys. Lett. B 267 (1991) 37 [INSPIRE].

[30] I. Antoniadis, E. Gava and K.S. Narain, Moduli corrections to gauge and gravitational

couplings in four-dimensional superstrings, Nucl. Phys. B 383 (1992) 93 [hep-th/9204030]
[INSPIRE].

[31] I. Antoniadis, E. Gava and K.S. Narain, Moduli corrections to gravitational couplings from

string loops, Phys. Lett. B 283 (1992) 209 [hep-th/9203071] [INSPIRE].

[32] V. Kaplunovsky and J. Louis, On gauge couplings in string theory, Nucl. Phys. B 444 (1995)
191 [hep-th/9502077] [INSPIRE].

[33] M. Cicoli, S. de Alwis and A. Westphal, Heterotic moduli stabilisation, JHEP 10 (2013) 199
[arXiv:1304.1809] [INSPIRE].

[34] E. Gonzalo, L.E. Ibáñez and A.M. Uranga, Modular symmetries and the swampland

conjectures, JHEP 05 (2019) 105 [arXiv:1812.06520] [INSPIRE].

[35] S.L. Parameswaran, S. Ramos-Sanchez and I. Zavala, On moduli stabilisation and de Sitter

vacua in MSSM heterotic orbifolds, JHEP 01 (2011) 071 [arXiv:1009.3931] [INSPIRE].

[36] Y. Olguin-Trejo, S.L. Parameswaran, G. Tasinato and I. Zavala, Runaway quintessence, out

of the swampland, JCAP 01 (2019) 031 [arXiv:1810.08634] [INSPIRE].

[37] S.H. Shenker, The strength of nonperturbative effects in string theory, in Cargese study

institute: random surfaces, quantum gravity and strings, (1990), p. 809 [INSPIRE].

[38] E. Silverstein, Duality, compactification, and e−1λ effects in the heterotic string theory, Phys.

Lett. B 396 (1997) 91 [hep-th/9611195] [INSPIRE].

[39] S. Ferrara, D. Lust, A.D. Shapere and S. Theisen, Modular invariance in supersymmetric

field theories, Phys. Lett. B 225 (1989) 363 [INSPIRE].

[40] A. Font, L.E. Ibanez, D. Lust and F. Quevedo, Supersymmetry breaking from duality

invariant gaugino condensation, Phys. Lett. B 245 (1990) 401 [INSPIRE].

[41] M. Cvetic, A. Font, L.E. Ibanez, D. Lust and F. Quevedo, Target space duality,

supersymmetry breaking and the stability of classical string vacua, Nucl. Phys. B 361 (1991)
194 [INSPIRE].

– 44 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
9

[42] A. Love and S. Todd, Modular symmetries of threshold corrections for Abelian orbifolds with

discrete Wilson lines, Nucl. Phys. B 481 (1996) 253 [hep-th/9606161] [INSPIRE].

[43] P. Mayr and S. Stieberger, Threshold corrections to gauge couplings in orbifold

compactifications, Nucl. Phys. B 407 (1993) 725 [hep-th/9303017] [INSPIRE].

[44] J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, On loop corrections to string

effective field theories: field dependent gauge couplings and sigma model anomalies, Nucl.

Phys. B 372 (1992) 145 [INSPIRE].

[45] D. Lust and C. Munoz, Duality invariant gaugino condensation and one loop corrected

Kähler potentials in string theory, Phys. Lett. B 279 (1992) 272 [hep-th/9201047] [INSPIRE].

[46] G. Lopes Cardoso and B.A. Ovrut, Sigma model anomalies, nonharmonic gauge and

gravitational couplings and string theory, in Strings and symmetries, (1991), p. 311 [INSPIRE].

[47] G. Lopes Cardoso and B.A. Ovrut, A Green-Schwarz mechanism for D = 4, N = 1

supergravity anomalies, Nucl. Phys. B 369 (1992) 351 [INSPIRE].

[48] G. Lopes Cardoso and B.A. Ovrut, Coordinate and Kähler sigma model anomalies and their

cancellation in string effective field theories, Nucl. Phys. B 392 (1993) 315
[hep-th/9205009] [INSPIRE].

[49] B. de Carlos, J.A. Casas and C. Munoz, Supersymmetry breaking and determination of the

unification gauge coupling constant in string theories, Nucl. Phys. B 399 (1993) 623
[hep-th/9204012] [INSPIRE].

[50] V. Kaplunovsky, J. Louis and S. Theisen, Aspects of duality in N = 2 string vacua, Phys.

Lett. B 357 (1995) 71 [hep-th/9506110] [INSPIRE].

[51] E. Kiritsis, C. Kounnas, P.M. Petropoulos and J. Rizos, Universality properties of N = 2 and

N = 1 heterotic threshold corrections, Nucl. Phys. B 483 (1997) 141 [hep-th/9608034]
[INSPIRE].

[52] T. Wrase, Mathieu moonshine in four dimensional N = 1 theories, JHEP 04 (2014) 069
[arXiv:1402.2973] [INSPIRE].

[53] H. Rademacher and H.S. Zuckerman, On the Fourier coefficients of certain modular forms of

positive dimension, Ann. Math. 39 (1938) 433.

[54] J. Lehner, Discontinuous groups and automorphic functions, American Mathematical
Society, U.S.A. (1964).

[55] P.P. Novichkov, J.T. Penedo and S.T. Petcov, Modular flavour symmetries and modulus

stabilisation, JHEP 03 (2022) 149 [arXiv:2201.02020] [INSPIRE].

[56] H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl.

Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

[57] N. Cribiori, De Sitter, gravitino mass and the swampland, PoS CORFU2021 (2022) 200
[arXiv:2203.15449] [INSPIRE].

[58] I. Antoniadis, H. Partouche and T.R. Taylor, Lectures on heterotic type I duality, Nucl. Phys.

B Proc. Suppl. 61 (1998) 58 [hep-th/9706211] [INSPIRE].

[59] S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings, Nucl.

Phys. B 450 (1995) 69 [hep-th/9505105] [INSPIRE].

[60] C. Vafa and E. Witten, Dual string pairs with N = 1 and N = 2 supersymmetry in

four-dimensions, Nucl. Phys. B Proc. Suppl. 46 (1996) 225 [hep-th/9507050] [INSPIRE].

– 45 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
9

[61] M.B. Green and A. Rudra, Type I/heterotic duality and M-theory amplitudes, JHEP 12

(2016) 060 [arXiv:1604.00324] [INSPIRE].

[62] J. Polchinski, Open heterotic strings, JHEP 09 (2006) 082 [hep-th/0510033] [INSPIRE].

[63] J.A. Casas, The generalized dilaton supersymmetry breaking scenario, Phys. Lett. B 384

(1996) 103 [hep-th/9605180] [INSPIRE].

[64] P. Binetruy, M.K. Gaillard and Y.-Y. Wu, Modular invariant formulation of multi-gaugino

and matter condensation, Nucl. Phys. B 493 (1997) 27 [hep-th/9611149] [INSPIRE].

[65] P. Binetruy, M.K. Gaillard and Y.-Y. Wu, Supersymmetry breaking and weakly versus

strongly coupled string theory, Phys. Lett. B 412 (1997) 288 [hep-th/9702105] [INSPIRE].

[66] T. Barreiro, B. de Carlos and E.J. Copeland, On nonperturbative corrections to the Kähler

potential, Phys. Rev. D 57 (1998) 7354 [hep-ph/9712443] [INSPIRE].

[67] B.L. Kaufman, B.D. Nelson and M.K. Gaillard, Mirage models confront the LHC:

Kähler-stabilized heterotic string theory, Phys. Rev. D 88 (2013) 025003 [arXiv:1303.6575]
[INSPIRE].

[68] M.K. Gaillard and B.D. Nelson, Kähler stabilized, modular invariant heterotic string models,
Int. J. Mod. Phys. A 22 (2007) 1451 [hep-th/0703227] [INSPIRE].

[69] S. Ferrara, J. Wess and B. Zumino, Supergauge multiplets and superfields, Phys. Lett. B 51

(1974) 239 [INSPIRE].

[70] W. Siegel, Gauge spinor superfield as a scalar multiplet, Phys. Lett. B 85 (1979) 333
[INSPIRE].

[71] J.-P. Derendinger, F. Quevedo and M. Quiros, The linear multiplet and quantum

four-dimensional string effective actions, Nucl. Phys. B 428 (1994) 282 [hep-th/9402007]
[INSPIRE].

[72] S.J. Gates, Jr., P. Majumdar, R.N. Oerter and A.E. van de Ven, Superspace geometry from

D = 4, N = 1 heterotic superstrings, Phys. Lett. B 214 (1988) 26 [INSPIRE].

[73] W. Siegel, Superstrings give old minimal supergravity, Phys. Lett. B 211 (1988) 55 [INSPIRE].

[74] D. Butter and M.K. Gaillard, The anomaly structure of regularized supergravity, Phys. Rev.

D 91 (2015) 025015 [arXiv:1410.6192] [INSPIRE].

[75] M.K. Gaillard and J. Leedom, Anomaly cancellation in effective supergravity theories from

the heterotic string: two simple examples, Nucl. Phys. B 927 (2018) 196 [arXiv:1711.01023]
[INSPIRE].

[76] M.K. Gaillard and J.M. Leedom, Anomaly cancellation in effective supergravity from the

heterotic string with an anomalous U(1), Nucl. Phys. B 949 (2019) 114785
[arXiv:1908.10470] [INSPIRE].

[77] C.P. Burgess, J.P. Derendinger, F. Quevedo and M. Quiros, On gaugino condensation with

field dependent gauge couplings, Annals Phys. 250 (1996) 193 [hep-th/9505171] [INSPIRE].

[78] P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: a geometric formulation,
Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].

[79] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343
[hep-th/9604030] [INSPIRE].

– 46 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
9

[80] N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003)
056 [hep-th/0212209] [INSPIRE].

[81] J. Maltz and L. Susskind, De Sitter space as a resonance, Phys. Rev. Lett. 118 (2017)
101602 [arXiv:1611.00360] [INSPIRE].

[82] S. Brahma, K. Dasgupta and R. Tatar, De Sitter space as a Glauber-Sudarshan state, JHEP

02 (2021) 104 [arXiv:2007.11611] [INSPIRE].

[83] H. Bernardo, S. Brahma, K. Dasgupta, M.-M. Faruk and R. Tatar, De Sitter space as a

Glauber-Sudarshan state: II, Fortsch. Phys. 69 (2021) 2100131 [arXiv:2108.08365]
[INSPIRE].

[84] N. Kaloper, Bent domain walls as brane worlds, Phys. Rev. D 60 (1999) 123506
[hep-th/9905210] [INSPIRE].

[85] S. Hawking, J.M. Maldacena and A. Strominger, De Sitter entropy, quantum entanglement

and AdS/CFT, JHEP 05 (2001) 001 [hep-th/0002145] [INSPIRE].

[86] B. Freivogel, V.E. Hubeny, A. Maloney, R.C. Myers, M. Rangamani and S. Shenker,
Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].

[87] J. Maldacena, Vacuum decay into anti de Sitter space, arXiv:1012.0274 [INSPIRE].

[88] P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for

two parameter models. 1, Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].

[89] S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative results on the point

particle limit of N = 2 heterotic string compactifications, Nucl. Phys. B 459 (1996) 537
[hep-th/9508155] [INSPIRE].

[90] D. Kläwer, Modular curves and the refined distance conjecture, JHEP 12 (2021) 088
[arXiv:2108.00021] [INSPIRE].

[91] R. Álvarez-García and L. Schlechter, Analytic periods via twisted symmetric squares, JHEP

07 (2022) 024 [arXiv:2110.02962] [INSPIRE].

[92] J. Mourad and A. Sagnotti, AdS vacua from dilaton tadpoles and form fluxes, Phys. Lett. B

768 (2017) 92 [arXiv:1612.08566] [INSPIRE].

[93] I. Basile, J. Mourad and A. Sagnotti, On classical stability with broken supersymmetry,
JHEP 01 (2019) 174 [arXiv:1811.11448] [INSPIRE].

[94] Z.K. Baykara, D. Robbins and S. Sethi, Non-supersymmetric AdS from string theory, Tech.
Rep. EFI-22-6 (2022) [arXiv:2212.02557] [INSPIRE].

[95] J.H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of modular forms,
Springer, Berlin, Heidelberg, Germany (2008).

[96] E. D’Hoker and J. Kaidi, Lectures on modular forms and strings, arXiv:2208.07242

[INSPIRE].

– 47 –


