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Abstract

There are several two dimensional quantum �eld theory models

which are equipped with di�erent vacuum states. For example the

Sine-Gordon- and the �

4

2

-model. It is known that in these models

there are also states, called soliton- or kink-states, which interpolate

di�erent vacua. We consider the following question: Which are the

properties a pair of vacuum sates must have, such that an interpolating

kink-state can be constructed? Since we are interested in structural

aspects and not in speci�c details of a given model, we are going

to discuss this question in the framework of algebraic quantum �eld

theory which includes, for example, the P (�)

2

-models. We have shown

that for a large class of vacuum states, including the vacua of the

P (�)

2

-models, there is a natural way to construct an interpolating

kink-state.

Introduction

In quantum �eld theory there are several models in 1+ 1 dimensional

space-time which are equipped with di�erent vacuum states. For ex-

ample the Sine-Gordon-model, the �

4

2

-theory and the Skyrme-model
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in 1 + 1 dimensions. Further candidates are special types of P (�)

2

-

models. It is known that in the Sine-Gordon- and �

4

2

-model there are

also states which interpolates di�erent vacuum states. These states

are called soliton- or kink-states. An construction in the framework

of algebraic quantum �eld theory was done by J. Fr�ohlich [14] in the

70s where he also discussed the existence of kink-states in general

P (�)

2

-models. However, these construction leads only to kink-states

which interpolates vacua which are connected by an (special) internal

symmetry transformation. Since there are also candidates for mod-

els with di�erent vacua which can not be connected by a symmetry

transformation, we can ask the following question:

If we consider any quantum �eld theory in 1+1 dimensions which

is equipped with di�erent vacuum states. Which are the properties a

pair of vacuum sates must have, such that an interpolating kink-state

can be constructed?

Since we are interested in structural aspects and not in speci�c

details of a given model, we are going to discuss this question in the

framework of algebraic quantum �eld theory which includes, for ex-

ample, the P (�)

2

-models. For this purpose, let us describe the main

aspects of algebraic quantum �eld theory in 1 + 1 space-time dimen-

sions.

A 1+1 dimensional quantum �eld theory is given by a prescription

which assigns to each region O � R

2

a C*-algebra A(O) and the

elements in A(O) represent physical operations which are localized

in O. These prescription has to satisfy a list of axioms which are

motivated by physical principles.

(1) A physical operation which is localized in a region O should also

localized in each region which contains O. Therefore, we require

that if a region O

1

is contained in a lager region O, then the

algebra A(O

1

) is a sub-algebra of A(O).

(2) Two local operations which take place in space-like separated re-

gions should not in
uence each other. Hence the principle of

locality is formulated as follows: If a region O

1

is space-like sep-

arated from a region O, then the elements of A(O

1

) commute

with those of A(O).

(3) Each operation which is localized in O should have an equivalent

counterpart which is localized in a translated region O+ x. The

principle of translation covariance is described by the existence

of a two-parameter automorphism group f�

x

; x 2 R

2

g which acts
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on the C*-algebra A, generated by all local algebras A(O), such

that �

x

maps A(O) onto A(O + x).

A prescription O ! A(O) of this type is called a translationally co-

variant Haag-Kastler-net. To introduce the notion of kink-states, we

�rst should discuss the notion of a (physical) state in our framework.

A state is a positive linear functional ! on A with !(1) = 1. Using

the GNS-construction, we obtain a Hilbert-space H, a representation

� of A on H and a vector 
, such that !(a) = h
; �(a)
i for each

a 2 A. There may be many states on A and we need a criterion to

select the states of physical interest. For our purpose, we use the

Borchers-criterion which requires:

(1) There exists a unitary strongly continuous representation of the

translation group U : x 7! U(x) on the GNS-Hilbert-space H

which implements �

x

in the GNS-representation �, i.e. �(�

x

a) =

U(x)�(a)U(�x), for each a 2 A.

(2) The spectrum (of the generator) of U(x) is contained in the closed

forward light cone.

A special class of states which satisfy the Borchers-criterion are

the vacuum-states which ful�ll the additional property of translation

invariance, i.e. ! � �

x

= !.

We are now prepared to describe the properties of a kink-state:

Particle-like properties: We require that a kink-state ful�lls the Borchers-

criterion. These property guarantees that one has the possibil-

ity to "move" a kink like a particle. If the lower bound of the

spectrum of U(x) is an isolated mass-shell, then a kink-state

"behaves" completely like a particle.

The interpolation property: A pair of vacuum states !

1

; !

2

is interpo-

lated by a kink-state ! if there is a bounded region O � R

2

,

such that !(a) = !

1

(a), if a is localized in the left space-like

complement of O, and !(a) = !

2

(a), if a is localized in the right

space-like complement of O. In other words, in one space-like

direction ! "looks like" the vacuum !

1

, in the other space-like

direction ! "looks like" the vacuum !

2

.

We come now to the question which conditions a pair of vacuum-

states has to satisfy, such that a interpolating kink-state can be con-

structed.

In the �rst two sections we introduce the notion of admissible,

locally equivalent vacuum-states. As we will see later, these condition
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is su�cient for the existence of an interpolating kink-state. As an

example of an admissible vacuum-state, one may think of the vacuum

of a massive free scalar �eld [7, 1, 23]. But for a direct application

of our construction to the P (�)

2

-models, one has to check that these

property remains also true for the interacting case.

Therefore, we consider also a lager class of vacuum-states which

we call weakly admissible. The disadvantage of these condition is that

it is much more technical. On the other hand, it can be proven for

the vacuum-states of P (�)

2

-models [22].

The main result of this paper is presented in section 3. It states

that for each pair of weakly admissible vacuum states there exists a

kink-state which interpolates them. The following diagram shows the

logical structure:

admissible and locally equivalent

+

weakly admissible and locally equivalent

+

existence of interpolating kink-state

+

locally equivalent

To motivate the following analysis, we give here the main steps of

the construction of a kink-state. A detailed discussion of our program

is carried out in section 4 and 5. Let as brie
y summarize the strategy

of it.

Firstly, we build the tensor-product of two copies of our QFT, i.e.

the net O 7! A

2

(O) := A(O)
 A(O) which we call in the sequel the

squared theory. We consider the map �

F

, called the 
ip automorphism,

which is given by interchanging the tensor-factors, i.e.:

�

F

: a

1


 a

2

7! a

2


 a

1

The requirement that the pair of vacuum-states !

1

; !

2

satis�es our

technical assumptions guarantees the existence of an automorphism

�

�

which has the following properties:

(1) The automorphism �

�

is an involution, i.e. �

2

�

= id.

(2) There exists a bounded region O, such that for each observable

a which is localized in the left space-like complement of O we
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have �

�

(a) = a, and for each observable a which is localized in

the right space-like complement of O we have �

�

(a) = �

F

(a).

In the �nal step we introduce the algebra homomorphism

�

�

: a 2 A 7! �

�

(a
 1) 2 A
 A

and show that the state

! := !

1


 !

2

��

�

is a kink-state which interpolates !

1

and !

2

. The interpolating prop-

erty of ! follows directly from its de�nition. The hard part is to

prove that ! satis�es the Borchers-criterion. We can also consider the

kink-state

�! := !

2


 !

1

��

�

which is the anti-kink-state with respect to !.

Let x 7! U(x) = e

iPx

be the representation of the translation

group which corresponds to the kink-state ! and x 7! U

j

(x) = e

iP

j

x

the representation of the translation group which corresponds to the

vacuum-state !

j

, j = 1; 2. If the vacuum states !

1

and !

2

are di�erent,

then ! is not translationally invariant which implies that 0 is not

contained in the spectrum of the generator P . We show that the

square of the mass-operator M

2

= P

�

P

�

in the kink-representation

is bounded from below by 1=2 �min(inf(U

1

); inf(U

2

)), with inf(U

j

) :=

inf(sp(P

j;�

P

�

j

)nf0g). If there is a mass-gap in the theory, then we have

inf(U

j

) = �

j

> 0 and obtain a lower bound estimate for the kink-mass

m:

m � 1=2min(�

1

; �

2

)

These estimate is discussed in section 6.

We conclude this paper with section 7 "Conclusion and Outlook".

1 Preliminaries

Let us consider a quantum �eld theory in two dimensions which is

described by a translationally covariant Haag-Kastler-net. We repeat

the axioms of such a net brie
y.

A Haag-Kastler-net with translation covariance is a prescription

that assigns to each open double cone O a C*-algebra A(O) such

that this prescription is isotonous and respects locality, i.e. O

1

�
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O

2

implies A(O

1

) � A(O

2

) and O

1

� O

0

2

implies [A(O

1

);A(O

2

)] =

f0g. Here O

0

denotes the space like complement of a double cone O.

Furthermore, let A be the C*-inductive limit of the net O 7! A(O) we

assume the existence of a group-homomorphism � : R

2

! AutA from

the translation group into the automorphism group of A, such that �

x

maps A(O) onto A(O + x).

We consider now a class of states of A which are of interest for our

sequel analysis. Let us select the set S

A

(S

w

A

) of all admissible (weakly

admissible) vacuum states which consists of pure vacuum states ! such

that

(a) wedge duality holds as well as Haag duality in the GNS-representation,

i.e.

A

!

(W

�

+ x) = A

!

(W

�

+ x)

0

and for O = W

+

+ x \W

�

+ y we have

A

!

(O) = A

!

(W

+

+ x) \ A

!

(W

�

+ y) :

(b) The GNS-representation � of ! is faithful.

1

(c) Admissible: for W

�

+ x �W

�

+ y the inclusion

A

!

(W

�

+ x) � A

!

(W

�

+ y)

is a split inclusion or

(d) Weakly admissible: there exists an automorphism � of the C*-

algebra

[

O

A

!

(O)
 A

!

(O)

jj�jj

such that there is a space-like vector r 2 W

�

and for each a

1

; a

2

2

A

!

(O) holds the relation

�(a

1


 a

2

) =

�

a

2


 a

1

if O � W

�

+ r

a

1


 a

2

if O � W

�

� r

and the automorphism

�

x

� � � �

�x

� �

is inner.

1

Condition (c) is only a proper assumption if A is not simple.
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We now give a few comments on the notation used above. For

a region G � R

2

, A(G) denotes the C*-algebra which is generated

by all A(O)'s with O � G. For a state ! we write A

!

(G) for the

v.Neumann-algebra �(A(G))

00

, where (H; �;
) is the GNS-triple of !

and the double-prime denotes the weak closure in B(H). Moreover,

W

�

denotes the wedge-region fxj jx

0

j < �x

1

g. It is clear that in

two dimensions each double-cone O is an intersection of two unique

wedge-regions, i.e. O = W

+

+ x \W

�

+ y.

Remark: The condition weakly admissible looks rather technical

and one might worry that it can never be ful�lled. However, these

condition can be proven for a large class of vacuum-states, namely the

vacuum-states of the P (�)

2

-models, whereas admissibility can only be

proven for the massive free scalar �eld [23, 22]. Furthermore, we are

going to see that each vacuum state which is admissible is also weakly

admissible.

2 De�nition of Kink-States

In this section, we give a mathematical de�nition of kink-states and

consider some immediate implications.

De�niton 2.1 : A state ! of A is called a kink-state interpolating

vacuum states !

1

; !

2

if

(a) ! satis�es the Borchers criterion.

(b) Let (H; �;
); (H

j

; �

j

;


j

) be the GNS-triples of !; !

j

; j = 1; 2.

�j

A(W

�

)

�

=

�

1

j

A(W

�

)

�j

A(W

+

)

�

=

�

2

j

A(W

+

)

Here

�

=

means unitarily-equivalent.

The set of all kink-states which interpolate !

1

and !

2

is denoted by

S

kink

(!

1

; !

2

).

Remark: In the sequel we write (H; �;
); (H

j

; �

j

;


j

) for the GNS-

triples of !; !

j

; j = 1; 2, unless we state something di�erent.

Of course, since ! is translationally covariant, we conclude for each

x 2 R

2

:

�j

A(W

�

+x)

�

=

�

1

j

A(W

�

+x)

(1)
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�j

A(W

+

+x)

�

=

�

2

j

A(W

+

+x)

(2)

We show now that if there exists a kink-state ! 2 S

kink

(!

1

; !

2

), then

the GNS-representations �

1

and �

2

are unitarily equivalent on each

algebra A(O). We call two states which satis�es these relation local

unitarily equivalent and write: !

1

�

=

loc

!

2

.

Lemma 2.1 : If there exists a kink-state ! 2 S

kink

(!

1

; !

2

) for !

1

; !

2

2

S

A

, then !; !

1

; !

2

are local unitarily equivalent, i.e.:

S

kink

(!

1

; !

2

) 3 ! ) !

�

=

loc

!

1

�

=

loc

!

2

Proof. As mentioned above, each double-cone can be written as O =

W

+

+ x \W

�

+ y. Now, let ! 2 S

kink

(!

1

; !

2

) be a kink state. We

obtain from equ. (1) and (2):

�j

A(W

�

+y)

�

=

�

1

j

A(W

�

+y)

(3)

�j

A(W

+

+x)

�

=

�

2

j

A(W

+

+x)

(4)

Using Haag duality we obtain:

�j

A(O)

�

=

�

1

j

A(O)

�

=

�

2

j

A(O)

Since the double-cone O can be chosen arbitrarily, the result follows.

�

Remark: Lemma 2.1 states that local unitary equivalence of two

vacuum states !

1

; !

2

is an essential condition for the existence of an

interpolating kink-state.

3 The Existence of Kink-States

In this section we formulate the main result of our paper which states

that for two weakly admissible vacuum states !

1

; !

2

local unitary

equivalence is not only essential but also su�cient for the existence of

kink-states.

Theorem 3.1 : For each pair of admissible or weakly admissible

vacuum states !

1

; !

2

2 S

A

which are local unitarily equivalent, i.e.

!

1

�

=

loc

!

2

, there exists a kink-state ! 2 S

kink

(!

1

; !

2

) which interpo-

lates !

1

and !

2

.
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We do not give a proof of the theorem in this section because we

need some further results for preparation. The complete proof is given

in section 5. To motivate the sequel steps, we describe the construction

of kink-states brie
y.

(1) The �rst step is to tensor two copies of our QFT, i.e. we consider

the net O 7! A

2

(O) := A(O)
A(O). We introduce the map �

F

which is given by prescription

�

F

: a

1


 a

2

7! a

2


 a

1

and extends to an automorphism of A

2

which is called the 
ip

automorphism.

(2) Using the split property (in case of admissible vacuum-states), we

can choose an unitary operator � 2 A

11

(W

+

+ r) which imple-

ments the 
ip-automorphism �

F

on A

2

(W

+

) (W

+

� W

+

+ r).

Here and in the sequel we write A

ij

(G) := [ �

i


 �

j

(A

2

(G)) ]

00

for a region G 2 R

2

and i; j = 1; 2.

(3) We de�ne the representation �

�

:= �

�1

11

� Ad(�) � �

11

and show

that �

�

is an automorphism of an extension F

2

� A

2

of A

2

and

satis�es condition (d) of section 1. In case of weakly admis-

sible vacuum-states the existence of such an automorphism is

required.

(4) In the �nal step we de�ne the representation � : A! B(H

1


H

2

)

by

�(a) := �

1


 �

2

(�

�

(a))

with �

�

:= �

�

j

A
1

. We prove that � is well de�ned and show

that the state

! := !

1


 !

2

��

�

is a kink-state which interpolates !

1

and !

2

.

4 Kink-States in the Squared Theory

We consider now the tensor-product O 7! A

2

(O) := A(O)
 A(O) of

the theory with itself which is also called the squared theory. We show

that for two local unitarily equivalent admissible vacuum states !

1

; !

2

of A there is a canonical construction for a kink-state on the squared

theory which interpolates the vacuum states !

1


 !

2

and !

2


 !

1

.

So let us formulate the result of this section:
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Proposition 4.1 : For each pair of admissible vacuum states !

1

; !

2

2

S

A

which are local unitarily equivalent, i.e. !

1

�

=

loc

!

2

, there exists a

kink-state ! 2 S

kink

(!

12

; !

21

) which interpolates !

12

:= !

1


 !

2

and

!

21

:= !

2


 !

1

.

We start now with the preparation of the proof. Since the inclusion

A

11

(W

�

+ x) � N

11

� A

11

(W

�

+ y)

is split with an intermediate type I factor N

11

, the 
ip-automorphism

�

F

is implemented on A

2

(W

+

) in the representation �

11

:= �

1


 �

1

by a unitary involution � (�

2

= 1) which is contained in A

11

(W

+

+ r),

i.e.

�

11

� �

F

j

A

2

(W

+

)

= Ad(�) � �

11

j

A

2

(W

+

)

: (5)

For technical reasons, we introduce an extension of the net of local

C*-algebras. For a vacuum state ! 2 S, we de�ne a family of semi

norms on A(O)

jjajj

!

T

:= jtr(T�(a))j (6)

and denote by M

!

(O) the closure of A(O) in the topology which is

induced by these family. It is clear that the algebra M

!

(O) is a W*-

algebra, canonical isomorphic to the v.Neumann algebra �(A(O))

00

.

The C*-inductive limit, generated by all M

!

(O) is denoted by A

!

.

Consider now local unitarily equivalent vacuum states !

1

; !

2

then

we obtain

M(O) :=M

!

1

(O) =M

!

2

(O)

and hence A = A

!

1

= A

!

2

. There are unique extensions of the GNS-

representations of !

1

and !

2

which are denoted by �

1

and �

2

.

Let us consider now the net O 7! F

2

(O) := M(O) 
M(O). We

denote the C*-inductive limit which is generated by all algebras F

2

(O)

by A

2

and de�ne the following representation of A

2

:

�

1

�

(a) := ��

11

(a)� (7)

Lemma 4.1 : For each double cone O which contains O

r

:= W

+

+

r \W

�

one has

�

1

�

(F

2

(O)) � A

11

(O)

i.e. �

1

�

maps local algebras into local algebras.
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Proof. We choose an operator b 2 A

2

(W

+

+ y) such that for W

+

�

W

+

+ y. Then we have:

��

11

(a)��

11

(b) = ��

11

(a)�

11

(�

F

b)�

= ��

11

(a�

F

b)� = ��

11

(�

F

b a)�

= �

11

(b)��

11

(a)�

This implies that ��

11

(a)� is contained in A

11

(W

+

+y)

0

= A

11

(W

�

+y).

On the other hand it is clear that for W

+

+ x � W

+

the operator

��

11

(a)� is also contained in A

11

(W

+

+ x). Since each double cone

O which contains O

r

can be written as O = W

+

+ y \W

�

+ x, we

conclude for each a 2 A

2

(O):

��

11

(a)� 2 A

11

(W

�

+ y) \ A

11

(W

+

+ x) = A

11

(O) (8)

which completes the proof. �

Since �

11

is a faithful representation of A, it follows from Lemma

3.1. that the prescription �

�

: a 7! �

�1

11

(�

1

�

(a)) is a well de�ned

endomorphism of A.

An immediate consequence of Lemma 3.1 is the following corollary:

Corollary 4.1 : The automorphism �

�

2 Aut(A) has the following

properties:

(1): �

2

�

= id

(2): �

�

j

F

2

(W

+

)

= �

F

j

F

2

(W

+

)

and �

�

j

F

2

(W

�

+r)

= id

F

2

(W

�

+r)

We de�ne now the following representation of A

2

:

� := (�

1


 �

2

) � �

�

(9)

Since �

�

is an automorphism, we obtain a further corollary:

Corollary 4.2 : The representation � is irreducible.

We prove now that � is a translationally covariant representation.

Lemma 4.2 : For each x 2 R

2

is the automorphism

�

�x

� �

�

� �

x

� �

�

inner.
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Proof. Since � implements the 
ip-automorphism on A

2

(W

+

) the op-

erator �(x) := U

11

(x)�U

11

(�x) implements �

F

on A

2

(W

+

+ x). From

this we obtain for W

+

� W

+

+ x and a 2 A

2

(W

+

+ x):

�

11

(�

F

a) = ��

11

(a)� = �(x)�

11

(a)�(x) (10)

Hence �(x)� is contained in A

11

(W

�

+ x). On the other hand �(x)�

is contained in A

11

(W

+

+ r) with W

+

+ r � W

+

� W

+

+ x and we

obtain:

�(x)� 2 A

11

(W

�

+ x) \ A

11

(W

+

+ r)

For the case W

+

� W

+

+ x we obtain analogously:

�(x)� 2 A

11

(W

�

) \ A

11

(W

+

+ r + x)

By using Haag duality, we conclude that for each x the operator �(x)�

is contained in A

11

(O

x

), where O

x

is a su�ciently large double cone.

For each x we de�ne the unitary operator


(x) := �

�1

11

(�(x)�) 2 F

2

(O

x

) (11)

This implies the following relation

�

x

� �

�

� �

�x

� �

�

= �

�1

11

� Ad(�(x)�) � �

11

= Ad(
(x))

(12)

which completes the proof. �

Corollary 4.3 : Each admissible vacuum-state is weakly admissible,

i.e.

S

A

� S

w

A

:

Proof. By Corollary 4.1 and Lemma 4.2, the automorphism � = �

�

satis�es condition (d) of section 1. �

In the sequel analysis, it is su�cient to consider vacuum-states

which are weakly admissible.

Corollary 4.4 : The representation � is translationally covariant,

i.e. there exists a strongly continuous representation x 7! U

�

(x) of the

translation group which implements �

x

:

� � �

x

= Ad(U

�

(x)) � �

12



Proof. In the sequel, we use the following abbreviations:

U

ij

(x) := U

i

(x)
 U

j

(x)

where U

i

implements the translation group in the vacuum represen-

tation �

i

; i; j = 1; 2. By construction, 
(x) satis�es the following

co-cycle condition:


(x+ y) = �

x

(
(y))
(x) (13)

Moreover, the following relation holds

�

�

� �

x

= �

x

� �

�(�x)

(14)

and we obtain by using Lemma 4.2

� � �

x

= �

12

� �

�

� �

x

= �

12

� �

x

� �

�(�x)

= Ad(U

12

(x)) � �

12

� �

�(�x)

= Ad(U

12

(x)) � �

12

� Ad(
(�x)) � �

�

= Ad(U

12

(x)�

�

(�x)) � �

(15)

where we have set �

�

(x) := �

12

(
(x)). Hence for each x 2 R

2

we

obtain the charge transporter

�

�

(x) := �

12

(
(x)) : (16)

We de�ne

U

�

: x 7! U

�

(x) := U

12

(x)�

�

(�x)

which is a strongly continuous representation of the translation group

implementing the translations in the representation �. �

To study the properties of the representation � in more detail we

consider a further representation �� : A

2

! B(H

2


H

1

) which is given

by

�� := �

21

� �

�

: (17)

We will see that �� plays the role of an anti-kink. The representation

�� : A

2

! B(H

2


H

1

) is translationally covariant which can be proven

by using the arguments in the proofs of Lemma 4.1 and Lemma 4.2

for ��.

13



To establish the statement of Proposition 4.1, it remains to be

proven, that the spectrum of U

�

is contained in the closed forward

light cone. For this purpose, we prove now the additivity of energy

momentum spectrum.

Let us consider two representations �

1

= �

12

� �

�

1

and �

2

= �

21

�

�

�

2

, where �

1

resp. �

2

are unitary operators which implement �

F

on F

2

(W

+

+ x

1

) resp. F

2

(W

+

+ x

2

), or in case of weakly admissible

vacuum-states �

�

1

and �

�

2

are automorphisms which satisfy condition

(d) of section 1. Then we de�ne the composition of �

1

and �

2

as

follows:

�

1

�

2

:= �

1

� �

�1

21

� �

2

= �

12

� �

�

1

�

�

2

(18)

The representations can also be composed in the other direction:

�

2

�

1

:= �

21

� �

�

2

�

�

1

(19)

Moreover, we write in the sequel S(�) for the spectrum of U

�

.

Remark: The composition described above can be interpreted as

the composition of soliton homomorphisms in the sense of [21]. Re-

member that � � �

�1

21

maps A

21

into A

12

.

Lemma 4.3 : Let �

1

; �

2

and �

1

�

2

be de�ned as described above, then

the additivity of the energy-momentum spectrum holds, i.e.

S(�

1

) + S(�

2

) � S(�

1

�

2

)

Proof. The proof is standard and uses the same method as in the

DHR-framework [9, 10]. The only di�erence which appears is due to

the fact that the representations �

j

are localized in wedge regions and

not in double cones. But for the proof it is su�cient that �

j

maps

local algebras into local algebras.

We choose test functions f

j

with supp

~

f

j

� S(�

j

) and a local oper-

ator a 2 F

2

(O). The operators

a

j

:=

Z

dx f

j

(x)
(x)�

x

a

have energy-momentum transfer in supp

~

f

j

. Here 
(x) is de�ned as

in equ.(11) above. Now 	

1

= �

12

(a

1

)


12

2 H

1


 H

2

has energy-

momentum support in supp

~

f

1

and 	

2

= �

21

(a

2

)


21

2 H

2


 H

1

has

energy-momentum support in supp

~

f

2

. Moreover, the vector

	 := �

1

(a

2

)�

12

(a

1

)


12

14



has energy-momentum support in supp

~

f

1

+supp

~

f

2

which remains also

true for

	

y

:= �

1

(a

2

)U

�

1

(y)�

12

(a

1

)


12

:

We compute now:

jj	

y

jj

2

= h


12

; �

12

(a

�

1

)�

1

(�

�y

(a

�

2

a

2

))�

12

(a

1

)


12

i

Since �

1

acts as �

12

� �

F

on F

2

(W

+

+ y) with W

+

+ y � W

+

+ x

1

, we

conclude by using the cluster theorem:

lim

y

jj	

y

jj

2

= jj	

1

jj

2

h


12

; �

12

(�

F

(a

�

2

a

2

))


12

i

= jj	

1

jj

2

h


21

; �

21

(a

�

2

a

2

)


21

i

= jj	

1

jj

2

jj	

2

jj

2

as y tends to minus space like in�nity. Hence for jj	

j

jj 6= 0 we obtain

	

y

6= 0 for one y 2 R

2

and the result follows. �

Let us have a closer look at the anti-kink representation ��. We de-

note by J

kl

the modular conjugation with respect to the pair (A

kl

(W

+

);


kl

).

For technical reasons, we make the following assumption:

Assumption: Let us assume that there exists a PCT-symmetry,

i.e. an involutive anti-automorphism j : A

2

7! A

2

with j(A

2

(O)) =

A

2

(�O) and j � �

x

= �

�x

� j which is implemented in each vacuum

representation �

kl

by the modular conjugation J

kl

, i.e.:

�

kl

(ja) = J

kl

�

kl

(a)J

kl

Now we de�ne the following representation:

�

J

:= j

21

� �

F

� j (20)

Here we have set j

kl

:= Ad(J

kl

) and the representation �

F

is given by

�

F

:= �

21

� �

F

� �

�

: (21)

Remark: If an automorphism � of A

2

satis�es the condition (d) of

section 1, then the automorphism �

F

� � satis�es it also.

Lemma 4.4 : The representations �� and �

J

are unitarily equivalent

and in addition we obtain that S(�) = S(��).

15



Proof. Using the composition role described above, we obtain that

��� = �

12

and ��� = �

21

. By Corollary 4.2 and Lemma 4.2 we can

use the results of [16, 19, 21] we conclude that the anti-kink sector is

unique. Thus we have ��

�

=

�

J

. In addition to that, the representa-

tions � and �

F

are unitarily equivalent (�

F

is a PT-conjugate for �

in the sense of [21]). Since U

�

J

(x) := J

21

U

�

F

(�x)J

21

implements the

translation group in the representation �

J

(see also [4, 16, 21]), we

conclude

S(��) = S(�

J

) = S(�

F

) = S(�)

which completes the proof. �

Proposition 4.2 : � is a positive energy representation.

Proof. Corollary 4.2 and Lemma 4.2 state that � is translationally

covariant and irreducible, in particular factorial. Now by Lemma 4.3

we conclude that S(�)+S(��) � S(�

12

) = S(�

21

) = S(�

1

)+S(�

2

) and

with Lemma 4.4 we obtain �nally

S(�) �

�

V

+

(22)

which completes the proof. �

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1: We show that !

�

:= !

1


 !

2

� �

�

is a kink-

state which interpolates the vacuum states !

1


!

2

and !

2


!

1

. Since �

is irreducible, the GNS-representation �

�

of !

�

is unitarily equivalent

to �. Hence !

�

satis�es the Borchers criterion by Proposition 4.2.

Furthermore, by Corollary 4.1 we conclude that !

�

interpolates the

vacuum states !

1


 !

2

, namely we have

�j

A

2

(W

+

)

= �

12

� �

F

�

=

�

21

�j

A

2

(W

�

+r)

= �

12

and the result follows. �

5 Kink-States in the Original Theory

We have seen in the last section that each QFT which is equipped

with two di�erent (admissible) vacuum states there is a method to
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construct kink-states in the squared theory. We are now interested in

the existence of kink-states for the original theory.

Since we are able to construct kink-states for the squared theory it

is easy to obtain kink-states for the original one. Let us consider the

automorphism �

�

2 Aut(A

2

) with was constructed in the last section

and de�ne the following algebra-homomorphisms:

�

�

: A ! A 
A ; a 7! �

�

(a) := �

�

(a
 1)

�

0

�

: A ! A 
A ; a 7! �

0

�

(a) := �

�

(1
 a)

We obtain now states

!

�

:= !

1


 !

2

��

�

!

0

�

:= !

1


 !

2

��

0

�

which has the following localization properties:

!

�

j

A(W

+

)

= !

2

j

A(W

+

)

!

�

j

A(W

�

+r)

= !

1

j

A(W

�

+r)

!

0

�

j

A(W

+

)

= !

1

j

A(W

+

)

!

0

�

j

A(W

�

+r)

= !

2

j

A(W

�

+r)

(23)

We use now the results of the last section to prove that both !

�

and

!

0

�

are kink states which also proves Theorem 3.1.

Proposition 5.1 : The states !

�

and !

0

�

are kink-states where !

�

is

contained in S

kink

(!

1

; !

2

) and !

0

�

is contained in S

kink

(!

2

; !

1

). More-

over, each state !̂ which GNS-representation is a sub-representation

of the GNS-representation of !

�

is also contained in S

kink

(!

2

; !

1

).

Proof. By construction, !

�

is the restriction of the state !

1


 !

2

� �

�

to the �rst tensor factor, i.e. the algebra A 
 C1. We show now that

the GNS-representation � of !

�

is unitarily equivalent to �j

A
C1

.

The C*-algebra A(W

�

+ r;W

+

) which is generated by A(W

�

+ r)

and A(W

+

) is contained in A. By using the Theorem of Reeh and

Schlieder, we obtain that

�(A(W

�

+ r;W

+

))
 1)


1


 


2

= �

1

(A(W

�

+ r))


1


 �

2

(A(W

+

))


2

is dense in H

1


 H

2

. Hence the representation �j

A
C1

is cyclic and

therefore unitarily equivalent to �.

Since � is a positive energy representation (Proposition 4.2) of

A
 A its restriction �j

A
1

�

=

� is a positive energy representation of

A. By a result of Borchers [5], we can construct a unitary strongly

continuous representation x 7! U

�

(x) of the translation group with

the following properties:
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1: For each x is the operator U

�

(x) contained in �(A)

00

.

2: U

�

implements the translations in the representation �, i.e. �(�

x

a) =

U

�

(x)�(a)U

�

(�x).

3: The spectrum of U

�

is contained in the closed forward light cone.

Now let (�;H) be a sub-representation of �, i.e. there exists an isom-

etry v : H! H

1


H

2

such that � = v

�

�(�)v. Since vv

�

is a projection

which is contained in �(A)

0

we conclude that U

�

(x) := v

�

U

�

(x)v is a

unitary strongly continuous representation of the translations which

implements the translations in the representation �. In particular the

spectrum of U

�

is also contained in the closed forward light cone. Thus

� satis�es the Borchers criterion.

From equ. (22) we obtain the following relations:

�j

A(W

�

+r)

�

=

�

1

j

A(W

�

+r)


 1

�

=

quasi

�

1

j

A(W

�

+r)

�j

A(W

+

)

�

=

1
 �

2

j

A(W

+

)

�

=

quasi

�

2

j

A(W

+

)

Here the symbol

�

=

quasi

means quasi-equivalent. Since � is a sub-

representation of �, we conclude:

�j

A(W

�

+r)

�

=

quasi

�

1

j

A(W

�

+r)

�j

A(W

+

)

�

=

quasi

�

2

j

A(W

+

)

Using the fact that the v.Neumann-algebras �

1

(A(W

�

+ r))

00

and

�

2

(A(W

+

))

00

are type III factors, we conclude by using standard-

arguments:

�j

A(W

�

+r)

�

=

�

1

j

A(W

�

+r)

�j

A(W

+

)

�

=

�

2

j

A(W

+

)

Thus the state !

�

is a kink-state and each state !̂ which GNS-

representation is a sub-representation of the GNS-representation of !

�

is also contained in S

kink

(!

2

; !

1

). The proof for !

0

�

works analogously.

�
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6 Estimates for the Kink- (Soliton-)

Mass

To discuss the mass of kink- (soliton-) state, we consider purely mas-

sive theories where the admissible vacuum states are massive vacuum

states.

Let ! be a pure translationally covariant state and U : x ! U(x)

the strongly continuous representation of the translations which imple-

ments �

x

in the GNS-representation of !. Then ! is called a massive

vacuum state if the spectrum of U(x) contains f0g and a subset of

C

�

:= fp 2 R

2

: p

2

> �g where � > 0 is a positive real number, called

the mass gap of !. We denote the set of all massive weakly admissi-

ble vacuum states with mass gap � by S(�). If the spectrum of U(x)

contains the mass shell H

m

:= fp 2 R

2

: p

2

= m

2

g and a subset of

C

�+m

, then we call ! a massive one-particle state with mass m > 0.

For a two dimensional QFT it is shown [8, 12, 20], that for each

massive one-particle state ! there are massive vacuum states !

1

; !

2

,

such that ! interpolates !

1

and !

2

. The mass m of ! then satis�es

the estimate

m �

1

2

min(�

1

; �

2

) (24)

where �

1

(resp. �

2

) is the mass gap of !

1

(resp. !

2

).

Now we consider the situation where two di�erent massive admissi-

ble vacuum states !

1

2 S(�

1

) and !

2

2 S(�

2

) are given. Then we know

by Theorem 3.1 that there exist a kink-state ! which interpolates !

1

and !

2

.

We denote by S(�) the spectrum of U

�

(x), where U

�

is a strongly

continuous representation of the translation group which implements

�

x

in the GNS-representation � of !.

If the vacuum states are !

1

and !

2

are inequivalent, then it fol-

lows that 0 =2 S(�). This can be seen as follows: Since !

1

and

!

2

are inequivalent, there exists an operator a 2 A with !

1

(a) 6=

!

2

(a). On the other hand, if x tends to space-like in�nity we have

lim

jxj!1

!(�

x

a) = !

2

(a) and if x tends to minus space-like in�nity

we have lim

jxj!�1

!(�

x

a) = !

1

(a) and ! is not translationally invari-

ant.

From the proofs of Proposition 4.2 and Proposition 5.1 we obtain

that S(�) is a subset of the closed forward light cone which does not
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contain the point k = 0. Hence we conclude

S(�) �

1

2

(S(�

1

) + S(�

2

)) (25)

and obtain for the in�mum inf(S(�)) of the spectrum S(�) the esti-

mate:

inf(S(�))�

1

2

min(�

1

; �

2

) (26)

Here the in�mum inf(S(�)) is de�ned as the the in�mum of the spec-

trum of the mass operator M = (P

�

P

�

)

1=2

, where P is the generator

of the translation group U

�

.

Let us suppose that ! dominates a massive one particle state with

mass m > 0, then we obtain from equ. (25) that m satis�es the

estimate of equ. (23), namely m � 1=2min(�

1

; �

2

).

We conclude this section by summarizing the discussion above. If

we consider a massive one-particle state !

m

with mass m > 0, then

there are massive vacuum states !

1

and !

2

with corresponding mass

gaps �

1

; �

2

, such that !

m

interpolates !

1

and !

2

and m satis�es the

estimate m � 1=2min(�

1

; �

2

). Using the result of section 3 (Theorem

3), we can construct from the vacuum states !

1

; !

2

a kink-state !

which also interpolates !

1

and !

2

. If there exists a puri�cation !

m

0

of

! which is a massive on particle state with mass m

0

, then m

0

satis�es

the same estimate as the mass m, namely m

0

� 1=2min(�

1

; �

2

). Here

we have assumed that !

1

and !

2

are admissible vacuum states.

7 Conclusion and Outlook

We have seen that for each pair of admissible vacuum states which

are also locally equivalent there is a natural way to construct an in-

terpolating kink-state. One advantage of this construction is, that we

do not need the assumption that the vacua are related by an internal

symmetry transformation as in [14]. Furthermore, the construction is

purely algebraic and independent of the speci�c properties of a model.

On the other hand, if we want to apply our result to a concrete

model, we have to check that the vacuum states of the model of consid-

eration are admissible or weakly admissible. At the moment, admissi-

bility is only checked for the massive free scalar �eld [1, 7, 23]. For the

vacuum states of the P (�)

2

-models one can prove weak admissibility

[22].
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If we consider a massive one-particle state !

m

with mass m > 0,

then there are massive vacuum states !

1

and !

2

with corresponding

mass gaps �

1

; �

2

, such that !

m

interpolates !

1

and !

2

. If !

1

and !

2

weakly admissible vacuum-states, then we can apply Theorem 3.1 and

construct a kink-state ! which also interpolates !

1

and !

2

. It is not

well understood at the moment, what are the relations between !

m

and the reconstructed kink-state !.
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