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Abstract

There are several two dimensional quantum field theory models
which are equipped with different vacuum states. For example the
Sine-Gordon- and the ¢3-model. It is known that in these models
there are also states, called soliton- or kink-states, which interpolate
different vacua. We consider the following question: Which are the
properties a pair of vacuum sates must have, such that an interpolating
kink-state can be constructed? Since we are interested in structural
aspects and not in specific details of a given model, we are going
to discuss this question in the framework of algebraic quantum field
theory which includes, for example, the P(¢)z2-models. We have shown
that for a large class of vacuum states, including the vacua of the
P(¢)2-models, there is a natural way to construct an interpolating
kink-state.

Introduction

In quantum field theory there are several models in 1+ 1 dimensional
space-time which are equipped with different vacuum states. For ex-
ample the Sine-Gordon-model, the ¢i-theory and the Skyrme-model
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in 1 4+ 1 dimensions. Further candidates are special types of P(¢)2-
models. Tt is known that in the Sine-Gordon- and ¢3-model there are
also states which interpolates different vacuum states. These states
are called soliton- or kink-states. An construction in the framework
of algebraic quantum field theory was done by J. Fréhlich [14] in the
70s where he also discussed the existence of kink-states in general
P(¢)2-models. However, these construction leads only to kink-states
which interpolates vacua which are connected by an (special) internal
symmetry transformation. Since there are also candidates for mod-
els with different vacua which can not be connected by a symmetry
transformation, we can ask the following question:

If we consider any quantum field theory in 1+ 1 dimensions which
is equipped with different vacuum states. Which are the properties a
pair of vacuum sates must have, such that an interpolating kink-state
can be constructed?

Since we are interested in structural aspects and not in specific
details of a given model, we are going to discuss this question in the
framework of algebraic quantum field theory which includes, for ex-
ample, the P(¢);-models. For this purpose, let us describe the main
aspects of algebraic quantum field theory in 1+ 1 space-time dimen-
sions.

A 141 dimensional quantum field theory is given by a prescription
which assigns to each region @ C R? a C*-algebra () and the
elements in 2A(QO) represent physical operations which are localized
in (. These prescription has to satisfy a list of axioms which are
motivated by physical principles.

(1) A physical operation which is localized in a region O should also
localized in each region which contains O. Therefore, we require
that if a region (O is contained in a lager region O, then the

algebra () is a sub-algebra of A(0O).

(2) Two local operations which take place in space-like separated re-
gions should not influence each other. Hence the principle of
locality is formulated as follows: If a region Oy is space-like sep-
arated from a region O, then the elements of 2(0;) commute

with those of 2(0).

(3) Each operation which is localized in O should have an equivalent
counterpart which is localized in a translated region O+ z. The
principle of translation covariance is described by the existence
of a two-parameter automorphism group {a,; x € R?} which acts



on the C*-algebra %, generated by all local algebras 2(0), such
that a, maps 2A(0) onto A(O + z).

A prescription O — A(O) of this type is called a translationally co-
variant Haag-Kastler-net. To introduce the notion of kink-states, we
first should discuss the notion of a (physical) state in our framework.
A state is a positive linear functional w on 2 with w(1) = 1. Using
the GNS-construction, we obtain a Hilbert-space ), a representation
7 of A on § and a vector Q, such that w(a) = (Q,7(a)2) for each
a € . There may be many states on % and we need a criterion to
select the states of physical interest. For our purpose, we use the
Borchers-criterion which requires:

(1) There exists a unitary strongly continuous representation of the
translation group U : 2 +— U(z) on the GNS-Hilbert-space $
which implements «,, in the GNS-representation 7, i.e. 7(aga) =

U(z)m(a)U(—z), for each a € .

(2) The spectrum (of the generator) of U(z) is contained in the closed
forward light cone.

A special class of states which satisfy the Borchers-criterion are
the vacuum-states which fulfill the additional property of translation
invariance, i.e. w o o, = w.

We are now prepared to describe the properties of a kink-state:

Particle-like properties: We require that a kink-state fulfills the Borchers-
criterion. These property guarantees that one has the possibil-
ity to "move” a kink like a particle. If the lower bound of the
spectrum of U(z) is an isolated mass-shell, then a kink-state
”behaves” completely like a particle.

The interpolation property: A pair of vacuum states wq,ws is interpo-
lated by a kink-state w if there is a bounded region © C R?2,
such that w(a) = wy(a), if a is localized in the left space-like
complement of O, and w(a) = wy(a), if a is localized in the right
space-like complement of O. In other words, in one space-like
direction w "looks like” the vacuum wq, in the other space-like
direction w ”looks like” the vacuum ws.

We come now to the question which conditions a pair of vacuum-
states has to satisfy, such that a interpolating kink-state can be con-
structed.

In the first two sections we introduce the notion of admissible,
locally equivalent vacuum-states. As we will see later, these condition



is sufficient for the existence of an interpolating kink-state. As an
example of an admissible vacuum-state, one may think of the vacuum
of a massive free scalar field [7, 1, 23]. But for a direct application
of our construction to the P(¢)z-models, one has to check that these
property remains also true for the interacting case.

Therefore, we consider also a lager class of vacuum-states which
we call weakly admissible. The disadvantage of these condition is that
it is much more technical. On the other hand, it can be proven for
the vacuum-states of P(¢)z-models [22].

The main result of this paper is presented in section 3. It states
that for each pair of weakly admissible vacuum states there exists a
kink-state which interpolates them. The following diagram shows the
logical structure:

admissible and locally equivalent

4

weakly admissible and locally equivalent

4

existence of interpolating kink-state

4

locally equivalent

To motivate the following analysis, we give here the main steps of
the construction of a kink-state. A detailed discussion of our program
is carried out in section 4 and 5. Let as briefly summarize the strategy
of it.

Firstly, we build the tensor-product of two copies of our QFT, i.e.
the net O — A3(0) := A(O) @ A(O) which we call in the sequel the
squared theory. We consider the map o, called the flip automorphism,
which is given by interchanging the tensor-factors, i.e.:

ap :a] @ ay — as Q aq

The requirement that the pair of vacuum-states wy,wsy satisfies our
technical assumptions guarantees the existence of an automorphism
g which has the following properties:

(1) The automorphism ag is an involution, i.e. aj = id.

(2) There exists a bounded region O, such that for each observable
a which is localized in the left space-like complement of O we
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have agy(a) = a, and for each observable a which is localized in
the right space-like complement of O we have ay(a) = ap(a).

In the final step we introduce the algebra homomorphism
Ngra€eUA—agla®@l) e A A
and show that the state
wi=w; @wroAg

is a kink-state which interpolates wy and w,. The interpolating prop-
erty of w follows directly from its definition. The hard part is to
prove that w satisfies the Borchers-criterion. We can also consider the
kink-state

Wi=wy ®wy o Ag

which is the anti-kink-state with respect to w.

Let @ ~ U(z) = ¢'F be the representation of the translation
group which corresponds to the kink-state w and z — U;(z) = '15®
the representation of the translation group which corresponds to the
vacuum-state w;, 7 = 1, 2. If the vacuum states w; and wy are different,
then w is not translationally invariant which implies that 0 is not
contained in the spectrum of the generator P. We show that the
square of the mass-operator M? = P,P* in the kink-representation
is bounded from below by 1/2 - min(inf(Uy),inf(Us)), with inf(U;) :=
inf (sp(P;,,P)\{0}). If there is a mass-gap in the theory, then we have
inf(U;) = p1; > 0 and obtain a lower bound estimate for the kink-mass
m:

m > 1/2min(pq, p2)

These estimate is discussed in section 6.
We conclude this paper with section 7 ”Conclusion and Outlook”.

1 Preliminaries

Let us consider a quantum field theory in two dimensions which is
described by a translationally covariant Haag-Kastler-net. We repeat
the axioms of such a net briefly.

A Haag-Kastler-net with translation covariance is a prescription
that assigns to each open double cone O a C*-algebra 2A(0) such
that this prescription is isotonous and respects locality, i.e. O; C



O, implies A(O1) C A(O3) and Oy C Of implies [A(O1), A(O02)] =
{0}. Here (0’ denotes the space like complement of a double cone O.
Furthermore, let 2 be the C*-inductive limit of the net O — 2A(O) we
assume the existence of a group-homomorphism a : R? = Autl from
the translation group into the automorphism group of %, such that «,
maps A(O) onto A(O + z).

We consider now a class of states of 20 which are of interest for our
sequel analysis. Let us select the set S4 (S%) of all admissible (weakly
admissible) vacuum states which consists of pure vacuum states w such
that

(a) wedge duality holds as well as Haag duality in the GNS-representation,
i.e.

A, (Wi +2) =A,(W + yc)’
and for O =W, 4+ 2N W_ +y we have

A (0) = A, (W + ) N2A,(W- +y)
(b) The GNS-representation 7 of w is faithful. !
(c) Admissible: for Wy 4+« C W4 + y the inclusion
QLW(WZE + $) C QLW(WZE + y)

is a split inclusion or

(d) Weakly admissible: there exists an automorphism (3 of the C*-
algebra

J2.(0) S0
(@]

such that there is a space-like vector » € Wy and for each a1, a; €

2A.,(O) holds the relation

_Joaa®@a FOCWi+r
ﬁ(a1®a2)_{ ar@ay ifFOCWg—r

and the automorphism
ayofoa_i00

is inner.

LCondition (¢) is only a proper assumption if 2 is not simple.



We now give a few comments on the notation used above. For
a region ¢ C R% 2A(G) denotes the C*-algebra which is generated
by all 4(0)’s with O C G. For a state w we write A, (G) for the
v.Neumann-algebra 7(2(G))”, where (9, 7,€) is the GNS-triple of w
and the double-prime denotes the weak closure in B($). Moreover,
Wy denotes the wedge-region {z| |2°] < 4a'}. Tt is clear that in
two dimensions each double-cone O is an intersection of two unique
wedge-regions, i.e. O =Wy +2NW_ 4 y.

Remark: The condition weakly admissible looks rather technical
and one might worry that it can never be fulfilled. However, these
condition can be proven for a large class of vacuum-states, namely the
vacuum-states of the P(¢);-models, whereas admissibility can only be
proven for the massive free scalar field [23, 22]. Furthermore, we are
going to see that each vacuum state which is admissible is also weakly
admissible.

2 Definition of Kink-States

In this section, we give a mathematical definition of kink-states and
consider some immediate implications.

Definiton 2.1 : A state w of U is called a kink-state interpolating
vacuum states wy,wsq if

(a) w satisfies the Borchers criterion.

(b) Let ($,7,9Q),($;,7;,Q;) be the GNS-triples of w,w;;j =1,2.
mlaw_) = milagr)

Tlagwy) = malagry)
Here = means unitarily-equivalent.

The set of all kink-states which interpolate wq and w- is denoted by
Skink (w1, wW2).

Remark: In the sequel we write (9,7, Q), (9;,7;, ;) for the GNS-
triples of w,w;; 7 = 1,2, unless we state something different.
Of course, since w is translationally covariant, we conclude for each
r € R%
Tlaw_ta) = T law_+a) (1)
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Tloawy+o) = m2lowyte) (2)

We show now that if there exists a kink-state w € Sgni (w1, w2), then
the GNS-representations 71 and wy are unitarily equivalent on each
algebra (). We call two states which satisfies these relation local
unitarily equivalent and write: wq e wo.

Lemma 2.1 : [fthere exists a kink-state w € Sgink(wr, wz2) forwy,wy €
Sa, then w,wy,wy are local unitarily equivalent, i.e.:

Skink(wth) ow o= w gloc Wi gloc %)

Proof. As mentioned above, each double-cone can be written as O =
Wi +a2nW_ +y. Now, let w € Sgink(wr,ws) be a kink state. We
obtain from equ. (1) and (2):

Tlaw_+y) = milaw_+y) (3)

Tloawy+o) = m2lowyte) (4)

Using Haag duality we obtain:

mlao) = milao) = m2lao)

Since the double-cone O can be chosen arbitrarily, the result follows.

g

Remark: Lemma 2.1 states that local unitary equivalence of two
vacuum states wq,ws is an essential condition for the existence of an
interpolating kink-state.

3 The Existence of Kink-States

In this section we formulate the main result of our paper which states
that for two weakly admissible vacuum states wy,wsy local unitary
equivalence is not only essential but also sufficient for the existence of
kink-states.

Theorem 3.1 : For each pair of admissible or weakly admissible
vacuum states wy,wy € Sa which are local unitarily equivalent, i.e.
w1 e wa, there exists a kink-state w € Spini (w1, wq) which interpo-
lates wy and wq.



We do not give a proof of the theorem in this section because we
need some further results for preparation. The complete proofis given
in section 5. To motivate the sequel steps, we describe the construction
of kink-states briefly.

(1) The first step is to tensor two copies of our QFT, i.e. we consider
the net O — A3(0) := A(O) @ A(O). We introduce the map ap

which is given by prescription
apF a1 @ ag — ay @ ay

and extends to an automorphism of 2y which is called the flip
automorphism.

(2) Using the split property (in case of admissible vacuum-states), we
can choose an unitary operator 6 € y1(W4 + r) which imple-
ments the flip-automorphism ap on Ax(W4) (Wi C Wi + 7).
Here and in the sequel we write ;;(G) = [ m; @ 7;(™A(G)) V"
for a region G € R? and 4,5 = 1, 2.

(3) We define the representation ay = 7' o Ad(f) o 711 and show
that ay is an automorphism of an extension F D s of AUy and
satisfies condition (d) of section 1. In case of weakly admis-
sible vacuum-states the existence of such an automorphism is
required.

(4) In the final step we define the representation p : 2 — B($H; @ H2)
by
pla) i= m1 @ ma(Ao(a)
with Ay := ag|ag1. We prove that p is well defined and show
that the state
w:i=w; ®wy oAy

is a kink-state which interpolates wy and ws.

4 Kink-States in the Squared Theory

We consider now the tensor-product O — 23 (0) := 2A(0) @ A(O) of
the theory with itself which is also called the squared theory. We show
that for two local unitarily equivalent admissible vacuum states wq,ws
of A there is a canonical construction for a kink-state on the squared
theory which interpolates the vacuum states wq ® w9 and wy ® wy.

So let us formulate the result of this section:



Proposition 4.1 : For each pair of admissible vacuum states wy,wq €
S which are local unitarily equivalent, i.e. wi =, wo, there exists a
kink-state w € Skink (w12, w21) which interpolates wyy 1= wy ® we and
Wo1 1= wo Q) Wi

We start now with the preparation of the proof. Since the inclusion
A (Wi +2) CMyr C AW 4+ y)

is split with an intermediate type I factor 91y, the flip-automorphism
arp is implemented on A3 (W, ) in the representation 711 := 71 @ m
by a unitary involution 6 (% = 1) which is contained in 21 (Wy + 1),
i.e.

T11 0 ap|aywy) = Ad(0) o muila,owy) - (5)

For technical reasons, we introduce an extension of the net of local
C*-algebras. For a vacuum state w € S, we define a family of semi

norms on A(Q)
|lal[7 := |tr(T'7(a))] (6)

and denote by M, (O) the closure of 2A(O) in the topology which is
induced by these family. It is clear that the algebra 9, (0) is a W*-
algebra, canonical isomorphic to the v.Neumann algebra 7 (20(0))".
The C*-inductive limit, generated by all M, (O) is denoted by A,,.

Consider now local unitarily equivalent vacuum states wy,ws then
we obtain

M(0) := M, (0) = M., (0)

and hence A=A, = A,,. There are unique extensions of the GNS-
representations of wy and wy which are denoted by 7y and 5.

Let us consider now the net O — F2(0) := M(O) @ M(O). We
denote the C*-inductive limit which is generated by all algebras §2(O)
by Ay and define the following representation of As:

ap(a) = Omy1(a)b (7)

Lemma 4.1 : For each double cone O which contains O, := W, +
rNW_ one has

aj(F2(0)) C A11(0)

i.e. ap maps local algebras into local algebras.
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Proof. We choose an operator b € (W4 + y) such that for Wy D
W4 4+ y. Then we have:

07711(@)07711(()) = 07711(@)7711(0&}7‘())0
= 011 (aapb)d = 011 (apb a)d
= m11(b)0m11(a)d

This implies that #74 (a)8 is contained in 231 (Wi +y)' = Ay (W_+y).
On the other hand it is clear that for W 4+ 2 C W,y the operator
6711(a)0 is also contained in Ry (Wy + z). Since each double cone
O which contains O, can be written as O = W, +yNW_ 4+ z, we
conclude for each a € A3(0):

07‘1’11(0)0 € Q[ll(W_ + y) N Q[ll(W_|_ + $) = 9[11(0) (8)

which completes the proof.

Since w1y is a faithful representation of A, it follows from Lemma

3.1. that the prescription ag : a — ﬂl_ll(oeé(a)) is a well defined

endomorphism of A.
An immediate consequence of Lemma 3.1 is the following corollary:

Corollary 4.1 : The automorphism oy € Aut(A) has the following
properties:

(1): of =
(2): aglg,owy) = arlg,wy) and aglz, (w_4r) = idg, (w_4r)
We define now the following representation of %y:
p = (71 @ 7)oy (9)
Since g is an automorphism, we obtain a further corollary:

Corollary 4.2 : The representation p is irreducible.

We prove now that p is a translationally covariant representation.
Lemma 4.2 : For each v € R? is the automorphism
Q_; O Qg0 Q0 ag

mner.
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Proof. Since 6 implements the flip-automorphism on 203(W,) the op-
erator 0(z) := Uy1(2)8Uq1 (—2) implements ap on Ay (W4 + 2). From
this we obtain for W, D W4 + 2 and a € Ay(W4 + 2):

m1(apa) = 0r11(a)f = 0(x)711(a)f(x) (10)

Hence #(2)0 is contained in 31 (W_ + z). On the other hand 6(z)6
is contained in Ay (W4 + r) with Wy +r D Wi D Wy + 2 and we
obtain:

0($>0 € Q[H(W_ + $) N Q[ll(W_|_ + T‘)
For the case W, C Wy + = we obtain analogously:

0($>0 € Q[ll(W_) N Q[ll(W_|_ +r 4+ $)

By using Haag duality, we conclude that for each x the operator §(z)8
is contained in 241(0;), where O, is a sufficiently large double cone.
For each = we define the unitary operator

¥(2) = 7y (0(2)0) € F2(Ox) (11)
This implies the following relation
Qi O (UG O (_; O (Y
= 711 o Ad(6(2)8) o 714 (12)
= Ad(y(2))
which completes the proof. [
Corollary 4.3 : Fach admissible vacuum-state is weakly admissible,

i.e.
S4 CSY

Proof. By Corollary 4.1 and Lemma 4.2, the automorphism 8 = ay
satisfies condition (d) of section 1. O

In the sequel analysis, it is sufficient to consider vacuum-states
which are weakly admissible.

Corollary 4.4 : The representation p is translationally covariant,
i.e. there exists a strongly continuous representation x — U,(x) of the
translation group which implements «,;:

poag=AdUy(z))op
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Proof. In the sequel, we use the following abbreviations:
Uij(x) := Us(z) @ Uj(2)

where U; implements the translation group in the vacuum represen-
tation 7;; 4,5 = 1,2. By construction, v(z) satisfies the following
co-cycle condition:

Yz +y) = (v(y)y(x) (13)

Moreover, the following relation holds
Qg Oy = Qi O Cg(_y) (14)
and we obtain by using Lemma 4.2

PO, = T30 0G0y,

= 12 0 0y O Qlg(_yy

= Ad(Ur(2)) 0 712 © ag(—) (15)
= Ad(Uy2(2)) oz 0 Ad(y(—2)) o ag

= Ad(Urz(2)lp(—z)) o p

where we have set I',(z) := m2(y(z)). Hence for each € R? we
obtain the charge transporter

Lp(2) = ma(y(2)) (16)

We define
Uy:a—Upy(z):=Upa(x)l)(—2)

which is a strongly continuous representation of the translation group
implementing the translations in the representation p. UJ

To study the properties of the representation p in more detail we
consider a further representation p: 23 — B($H2 @ H1) which is given
by

pi=Ta10Q4 . (17)
We will see that p plays the role of an anti-kink. The representation
p Uy = B(H2 @ H1) is translationally covariant which can be proven

by using the arguments in the proofs of Lemma 4.1 and Lemma 4.2
for p.
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To establish the statement of Proposition 4.1, it remains to be
proven, that the spectrum of U, is contained in the closed forward
light cone. For this purpose, we prove now the additivity of energy
momentum spectrum.

Let us consider two representations p; = w13 0 a, and py = g1 ©
ag,, where @) resp. @, are unitary operators which implement ap
on F2(Wy + x1) resp. Fa2(W4 + z3), or in case of weakly admissible
vacuum-states g, and agp, are automorphisms which satisfy condition
(d) of section 1. Then we define the composition of p; and py as
follows:

p1p2 i= p1 o 772_11 O P2 = T12 O Gvg, Og, (18)

The representations can also be composed in the other direction:

p2p1 = W91 © g, (v, (19)

Moreover, we write in the sequel S(p) for the spectrum of U,.

Remark: The composition described above can be interpreted as
the composition of soliton homomorphisms in the sense of [21]. Re-
member that p o 772_11 maps 2y into Ao,

Lemma 4.3 : Let p1, po and p1ps be defined as described above, then
the additivity of the energy-momentum spectrum holds, i.e.

S(p1) +S(p2) C S(p1p2)

Proof. The proof is standard and uses the same method as in the
DHR-framework [9, 10]. The only difference which appears is due to
the fact that the representations p; are localized in wedge regions and
not in double cones. But for the proof it is sufficient that p; maps
local algebras into local algebras.

We choose test functions f; with suppfj C S(p;) and a local oper-
ator a € §2(0). The operators

0= [ do @)

have energy-momentum transfer in suppfj. Here ~(z) is defined as
in equ.(11) above. Now Wy = m3(a1)Qi2 € H1 @ H2 has energy-
momentum support in suppf; and Uy = mo1(az)Q21 € Hz @ $H has
energy-momentum support in suppfg. Moreover, the vector

V= py(ag)miz(ar)i2
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has energy-momentum support in supp f1 +supp f> which remains also
true for

Wy = py (aQ)Um (y)mi2(a1) 2

We compute now:

Wyl = (2, m12(a}) p1(a—y (a3az))m12(a1)212)

Since py acts as w2 0 ap on F2 (W4 +y) with Wi +y C Wi 4 24, we
conclude by using the cluster theorem:

limy ||y |2 = [[@4][* (2, m12(ar(a3az)) )

= [P [? {Qa1, 721 (a502)Q21)

= ([T * |[Wa]?
as y tends to minus space like infinity. Hence for ||¥;|| # 0 we obtain
U, # 0 for one y € R? and the result follows. O

Let us have a closer look at the anti-kink representation p. We de-
note by Ji; the modular conjugation with respect to the pair (g (W5 ), Q).
For technical reasons, we make the following assumption:

Assumption: Let us assume that there exists a PCT-symmetry,
i.e. an involutive anti-automorphism j : Ay — Ay with j(™A(O0)) =
A3(—0) and j o oy = a_y, 0 j which is implemented in each vacuum
representation 7y by the modular conjugation Jy;, i.e.:

mri(ja) = Jumr(a) S

Now we define the following representation:

p’ = jnoproj (20)

Here we have set ji; := Ad(Jx;) and the representation pp is given by
pF=Ti0oQqpoaqg . (21)

Remark: 1f an automorphism 3 of A, satisfies the condition (d) of
section 1, then the automorphism ap o g satisfies it also.

Lemma 4.4 : The representations p and p’ are unitarily equivalent
and in addition we obtain that S(p) = S(p).
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Proof. Using the composition role described above, we obtain that
pp = w2 and pp = wy1. By Corollary 4.2 and Lemma 4.2 we can
use the results of [16, 19, 21] we conclude that the anti-kink sector is
unique. Thus we have p = p/. In addition to that, the representa-
tions p and pp are unitarily equivalent (pg is a PT-conjugate for p
in the sense of [21]). Since U,;(z) := Jo1U,, (—2)Jo1 implements the
translation group in the representation p’ (see also [4, 16, 21]), we
conclude

S(p) = S(p”) = S(pr) = S(p)
which completes the proof. O

Proposition 4.2 : p is a positive energy representation.

Proof. Corollary 4.2 and Lemma 4.2 state that p is translationally
covariant and irreducible, in particular factorial. Now by Lemma 4.3
we conclude that S(p)+.5(p) C S(m2) = S(721) = S(71) +.5(7w2) and

with Lemma 4.4 we obtain finally
S(p) C (22)

which completes the proof. O
We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1: We show that wyg := wy ® wq 0 oy is a kink-
state which interpolates the vacuum states wy ®ws and wy®@wy. Since p
is irreducible, the GNS-representation mg of wy is unitarily equivalent
to p. Hence wy satisfies the Borchers criterion by Proposition 4.2.
Furthermore, by Corollary 4.1 we conclude that wy interpolates the
vacuum states wy ® wo, namely we have

p|,‘2[2(W+) = TM20 OF = 791

P|m2(w_+7«) = 712

and the result follows. O

5 Kink-States in the Original Theory

We have seen in the last section that each QFT which is equipped
with two different (admissible) vacuum states there is a method to
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construct kink-states in the squared theory. We are now interested in
the existence of kink-states for the original theory.

Since we are able to construct kink-states for the squared theory it
is easy to obtain kink-states for the original one. Let us consider the
automorphism ay € Aut(Ay) with was constructed in the last section
and define the following algebra-homomorphisms:

Ng: A= ARA 5 a— Agla) :==ap(a®1)
At A= ARA 5 a— Aj(a) == (1 ®@a)
We obtain now states
W 1= w1 Qw0 Ay
wy = wi @wy 0 A
which has the following localization properties:
w6’|,‘2l(W+) = W2|,‘2l(W+) we|m(w_+r) = w1|2l(w_+r) (23)
wylawy) = wilagvy)  Walaw_tr) = w2law_tr)

We use now the results of the last section to prove that both wy and
wy are kink states which also proves Theorem 3.1.

Proposition 5.1 : The states wg and wg, are kink-states where wy is
contained in Spink(wi,ws) and wj is contained in Sgink (we,w1). More-
over, each state & which GNS-representation is a sub-representation
of the GNS-representation of wg is also contained in Sy (ws,w1).

Proof. By construction, wy is the restriction of the state wq ® wy o ay
to the first tensor factor, i.e. the algebra A ® C1. We show now that
the GNS-representation o of wy is unitarily equivalent to p|4gcy -

The C*-algebra A(W_ + r, W) which is generated by A(W_ + r)
and 2A(W,) is contained in 2. By using the Theorem of Reeh and
Schlieder, we obtain that

pRAW_+ 7, W3)) @ 1)1 @ Qy = m (A(W- + 7)) Q1 @ ma (A(W4))$2

is dense in $; ® Hy. Hence the representation p|4mci is cyclic and
therefore unitarily equivalent to o.

Since p is a positive energy representation (Proposition 4.2) of
A @ A its restriction p|ag1 = o is a positive energy representation of
A. By a result of Borchers [5], we can construct a unitary strongly
continuous representation z — U, (z) of the translation group with
the following properties:
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1: For each z is the operator U, () contained in o(A)".

2: U, implements the translations in the representation o, i.e. o(a,a) =
Us(2)o(a)Uy(—2).
3: The spectrum of U, is contained in the closed forward light cone.
Now let (7, $) be a sub-representation of o, i.e. there exists an isom-
etry v : H — H1 @ 9y such that # = v*o(-)v. Since vv* is a projection
which is contained in o(A)" we conclude that U, (z) := v*U,(z)v is a
unitary strongly continuous representation of the translations which
implements the translations in the representation x. In particular the
spectrum of Uy is also contained in the closed forward light cone. Thus
7 satisfies the Borchers criterion.
From equ. (22) we obtain the following relations:

Tlaw_+r) = Tilaw_+r) @ 1 Zquasi T1law_+r)

olawy) =1 Tolamwy) Zquasi T2lawy)

Here the symbol =,,s means quasi-equivalent. Since 7 is a sub-
representation of o, we conclude:

Tlow_tr) Zquasi Ttlaw_+r)

Tloawy) Squasi T2lawy)

Using the fact that the v.Neumann-algebras =1 (JA(W_ + r))” and
mo(A(W4))"” are type III factors, we conclude by using standard-
arguments:

Tlaw_sr) = T1law_4r)

mlagwy) = malawy)

Thus the state wy is a kink-state and each state & which GNS-
representation is a sub-representation of the GNS-representation of wy
is also contained in Sg;,k(we,w1). The proof for wg, works analogously.

g
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6 Estimates for the Kink- (Soliton-)
Mass

To discuss the mass of kink- (soliton-) state, we consider purely mas-
sive theories where the admissible vacuum states are massive vacuum
states.

Let w be a pure translationally covariant state and U : 2 — U(z)
the strongly continuous representation of the translations which imple-
ments a, in the GNS-representation of w. Then w is called a massive
vacuum state if the spectrum of U(z) contains {0} and a subset of
C,:={p€eR?*: p* > u} where u > 0 is a positive real number, called
the mass gap of w. We denote the set of all massive weakly admissi-
ble vacuum states with mass gap g by S(u). If the spectrum of U(z)
contains the mass shell H,, := {p € R?: p? = m?} and a subset of
C4m, then we call w a massive one-particle state with mass m > 0.

For a two dimensional QFT it is shown [8, 12, 20], that for each
massive one-particle state w there are massive vacuum states wq, ws,
such that w interpolates wy and w,. The mass m of w then satisfies
the estimate

1 .
m 2 5 min(p, p2) (24)

where g1 (resp. pg) is the mass gap of wy (resp. ws).

Now we consider the situation where two different massive admissi-
ble vacuum states wy € S(p1) and wy € S(pg) are given. Then we know
by Theorem 3.1 that there exist a kink-state w which interpolates wy
and ws.

We denote by S(7) the spectrum of Uy (), where U, is a strongly
continuous representation of the translation group which implements
a, in the GNS-representation 7 of w.

If the vacuum states are wy and wy are inequivalent, then it fol-
lows that 0 ¢ S(7). This can be seen as follows: Since wq and
wq are inequivalent, there exists an operator a € A with wy(a) #
wa(a). On the other hand, if z tends to space-like infinity we have
lim ;o w(@za) = wy(a) and if = tends to minus space-like infinity
we have lim |, _ ., w(@za) = wi(a) and w is not translationally invari-
ant.

From the proofs of Proposition 4.2 and Proposition 5.1 we obtain
that S(7) is a subset of the closed forward light cone which does not
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contain the point £ = 0. Hence we conclude

1
S(m) C 5(S(m) + S(m2)) (25)
and obtain for the infimum inf(S(x)) of the spectrum S(7) the esti-
mate:

inf(S(m)) > 5 min(yn, o) (26)

Here the infimum inf(S(7)) is defined as the the infimum of the spec-
trum of the mass operator M = (P,P*)!'/2 where P is the generator
of the translation group U,.

Let us suppose that w dominates a massive one particle state with
mass m > 0, then we obtain from equ. (25) that m satisfies the
estimate of equ. (23), namely m > 1/2 min(uq, p2).

We conclude this section by summarizing the discussion above. If
we consider a massive one-particle state w,, with mass m > 0, then
there are massive vacuum states wy and wy with corresponding mass
gaps [i1, ft2, such that w,, interpolates wy and wy and m satisfies the
estimate m > 1/2min(pq, 2). Using the result of section 3 (Theorem
3), we can construct from the vacuum states wq,wz a kink-state w
which also interpolates wy and ws. If there exists a purification w,,s of
w which is a massive on particle state with mass m’, then m’ satisfies
the same estimate as the mass m, namely m’ > 1/2 min(uy, pu2). Here
we have assumed that w; and wq are admissible vacuum states.

7 Conclusion and Outlook

We have seen that for each pair of admissible vacuum states which
are also locally equivalent there is a natural way to construct an in-
terpolating kink-state. One advantage of this construction is, that we
do not need the assumption that the vacua are related by an internal
symmetry transformation as in [14]. Furthermore, the construction is
purely algebraic and independent of the specific properties of a model.

On the other hand, if we want to apply our result to a concrete
model, we have to check that the vacuum states of the model of consid-
eration are admissible or weakly admissible. At the moment, admissi-
bility is only checked for the massive free scalar field [1, 7, 23]. For the
vacuum states of the P(¢)z-models one can prove weak admissibility
[22].
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If we consider a massive one-particle state w,, with mass m > 0,
then there are massive vacuum states wy and w, with corresponding
mass gaps fi1, ft2, such that w,, interpolates wy and wy. If wy and wy
weakly admissible vacuum-states, then we can apply Theorem 3.1 and
construct a kink-state w which also interpolates wq and wsy. It is not
well understood at the moment, what are the relations between w,,
and the reconstructed kink-state w.
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