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Abstract

We present a complete calculation of the higher-order perturbative QCD corrections to in-

elastic photoproduction of J= particles. A comprehensive analysis of total cross sections and

di�erential distributions for the energy range of the �xed-target experiments and for inelastic

J= photoproduction at HERA is performed. The cross section and the J= energy spectrum

are compared with the available photoproduction data including �rst results from HERA. This

analysis will not only provide information on the gluon distribution of the proton but appears

to be a clean test for the underlying picture of quarkonium production as developed so far in

the perturbative QCD sector.

? E-mail: mkraemer@desy.de



1 Introduction

The measurement of the gluon distribution in the nucleon is one of the important goals of lepton-

nucleon scattering experiments. The classical methods exploit the evolution of the nucleon struc-

ture functions with the momentum transfer and the size of the longitudinal structure function.

With rising energies, however, jet physics and the production of heavy quark states become im-

portant complementary tools. Heavy 
avour production in lepton-nucleon scattering is dominated

by photon-gluon fusion and can thus yield direct information on the gluon distribution in the nu-

cleon G(x;Q

2

). Besides open charm and bottom production, the formation of J= bound states in

inelastic photoproduction experiments


 +N ! J= +X (1)

provides an experimentally attractive method since J= particles are easy to tag in the leptonic

decay modes.

The production of heavy quarks in high energy photon-proton collisions can be calculated in

perturbative QCD. The mass of the heavy quark, m

Q

� �

QCD

, acts as a cuto� and sets the scale

for the perturbative calculations [1]. However, the subsequent transition from the colour-octet QQ

pair to a physical quarkonium state introduces non-perturbative aspects. Two di�erent mechanisms

of bound state formation have been employed in previous analyses (for a recent review see Ref.[2]):

(i) The local duality approach [3] assumes that the colour-octet QQ pair rearranges itself into

a colour-singlet bound state by the emission of non-perturbative soft gluons. According to the

arguments of semi-local duality, one averages over all possible quarkonia states by integrating the

perturbative cross section for inclusive QQ production from the quark threshold (= 2m

Q

) to the

physical threshold for the production of a pair of heavy-light mesons (= 2m

D

for the c�c system). The

probability to generate a particular state, e.g. J= , depends on di�erent dynamical details of the

production mechanism and cannot be absolutely predicted in this model. Another serious drawback

of the duality approach is the fact that higher-order QCD corrections cannot be included since there

is no unique way to decide what part of the radiatively emitted gluons are to be considered as a part

of the bound state. Although dual models might describe some qualitative features of quarkonium

production, they do not allow for a quantitative prediction and will therefore not be discussed in

the present context.

(ii) In the colour-singlet(CS) mechanism [4{6] the quarkonium state is described by a colour-

singlet QQ pair with the appropriate spin, angular-momentum and charge conjugation quantum

numbers. In the static approximation, in which the motion of the charm quarks in the bound state

is neglected, the production cross section factorizes into a short distance matrix element which

describes the production of a QQ pair within a region of size 1=m

Q

, and a long distance factor that

contains all the nonperturbative dynamics of the bound state formation. The short distance cross

section can be calculated as a perturbative expansion in powers of the strong coupling constant

�

s

(m

Q

), evaluated at a scale set approximately by the heavy quark mass, while the long-distance

factor is related to the leptonic width.

A rigorous framework for treating quarkonium production and decays has recently been de-

veloped in Ref.[7] (see also Ref.[8]). The so-called factorization scheme is based on the use of

non-relativistic QCD (NRQCD) [9] to separate the short distance parts from the long-distance

matrix elements. The factorization approach explicitly takes into account the complete structure
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of the quarkonium Fock space. For the production of S-wave quarkonia, like J= , the colour-octet

matrix elements associated with higher Fock states like jQQg > are suppressed by a factor of v

4

compared to the leading colour-singlet contributions, v being the average velocity of the heavy

quark in the quarkonium rest frame.

1

The NRQCD description of S-wave quarkonia production

or annihilation thus reduces to the colour-singlet model in the non-relativistic limit v ! 0. It has

been shown in the rigorous analysis of Ref.[7] that the factorization assumption of the CS model is

correct for any speci�c S-wave process in the non-relativistic limit to all orders in �

s

.

Colour-octet matrix elements can become important if their associated short distance coe�cient

is enhanced compared to the colour-singlet contribution. It has recently been demonstrated that

large p

?

charmonium production in hadronic collisions can be accounted for in a satisfactory way

by including both fragmentation mechanisms as well as higher Fock state contributions [11,12]. For

the colour-octet matrix elements associated with the higher Fock states no simple relation exists

in general between decay and production matrix elements. The corresponding contributions thus

involve unknown non-perturbative parameters which, in the analyses Refs.[11,12], have been �tted

to the experimental data. Once they have been measured in some production process they can be

used to predict cross sections for di�erent energies and di�erent beam types. It should however be

kept in mind that the analyses carried out so far are leading-order analyses. They are therefore

plagued by large scale dependences and have to rely on the assumption that the perturbative

expansion of the short-distance coe�cients is well behaved and that the higher-order corrections do

not strongly depend on the speci�c production mechanism and the collision energy. Moreover, it

has been argued recently that important higher-twist e�ects have to be included in the theoretical

description of charmonium hadroproduction [13]. These e�ects can yet not be predicted from �rst

principles.

Many channels contribute to the generation of J= particles in photoproduction experiments

[14], similarly to the case of hadroproduction. Theoretical interest so far has focussed on two mech-

anisms for J= photo- and electroproduction, elastic/di�ractive [15,16] and inelastic production

through photon-gluon-fusion [4]. While one expects to shed light on the physical nature of the

pomeron by the �rst mechanism, inelastic J= production provides information on the distribution

of gluons in the nucleon [17]. The two mechanisms can be separated by measuring the J= energy

spectrum, described by the scaling variable

z = p � k

 

= p � k




(2)

with p; k

 ;


being the momenta of the nucleon and J= , 
 particles, respectively. In the nucleon

rest frame, z is the ratio of the J= to the 
 energy, z = E

 

=E




. For elastic/di�ractive events z is

close to one; a clean sample of inelastic events can be obtained in the range z

�

<

0:9 [18]. Reducible

background mechanisms, such as BB production with subsequent decay into J= particles or

resolved photon processes might become sizable at HERA energies but can be easily eliminated by

applying suitable cuts [14].

In contrast to the case of hadroproduction, higher Fock state contributions to inelastic J= pho-

toproduction are strongly suppressed compared to the leading colour-singlet mechanism. Colour-

octet contributions can become important only in the elastic domain, z � 1, where the short

distance coe�cient of the colour-singlet amplitude is suppressed by a factor �

s

. In the inelastic

1

In the case of P -wave quarkonia, colour-singlet and colour-octet mechanisms contribute at the same order in v

to annihilation rates and production cross sections and must therefore both be included for a consistent calculation

[10].
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region, z

�

<

0:9, a perturbative gluon has to be emitted in the �nal state for kinematical reasons.

This gluon carries o� colour charge so that a colour-singlet state can be produced without any

additional short-distance suppression. Since the non-perturbative matrix element associated with

the colour-singlet state is enhanced compared to the colour-octet matrix element by a factor 1=v

4

,

higher Fock state contributions to inelastic J= photoproduction can safely be neglected. Fragmen-

tation mechanisms dominate the production of J= particles at large p

?

[19] but their contribution

to the total cross section is very small. As a result, the dominant mechanism for inelastic J= 

photoproduction is by the colour-singlet state (as assumed in the CS model) and the cross section

can be predicted without including unknown non-perturbative parameters.

A comparison of the leading-order predictions with photoproduction data of �xed-target exper-

iments [20,21] reveals that the J= energy dependence d�=dz is adequately accounted for in the

inelastic region z

�

<

0:9. The theoretical calculation however underestimates the normalization of

the measured cross section in general by more than a factor two, depending in detail on the J= 

energy and the choice of the parameters [14]. The discrepancy with cross sections extrapolated

from electroproduction data [22,23] is even larger.

The lowest-order approach to inelastic J= photoproduction demands several theoretical re�ne-

ments: (i) Relativistic corrections due to the motion of the charm quarks in the J= bound state;

(ii) Higher-order perturbative QCD corrections; and last but not least, (iii) Higher-twist e�ects

which are not strongly suppressed due to the fairly low charm-quark mass. While the problem of

higher-twist contributions has not been quantitatively approached so far (see Ref.[24] for a recent

discussion), the relativistic corrections have been demonstrated to be under control in the inelastic

region [25,26]. Including higher-order QCD corrections is, however, expected to be essential. Their

contribution in general not only changes the overall normalization of the cross section but can also

a�ect the shape of inclusive di�erential distributions. Expected a priori and veri�ed subsequently,

the QCD corrections dominate the relativistic corrections in the inelastic region, being of the or-

der of several �

s

(M

2

J= 

) � 0:3. In the �rst step of a systematic expansion, they can therefore be

determined in the static approach [7].

In this work we present the complete calculation of the higher-order perturbative QCD correc-

tions to inelastic J= photoproduction; �rst results have already been published in Refs.[27{29].

We perform a comprehensive analysis of total cross sections and di�erential distributions for the

energy range of the �xed-target experiments and for inelastic J= photoproduction at HERA. A

comparison of the next-to-leading order prediction with the experimental data will not only provide

information on the gluon distribution of the proton but appears to be a clean test for the underlying

picture of quarkonium production as developed in the perturbative QCD sector.

2 The Born cross section

Inelastic J= photoproduction through photon-gluon fusion is described in leading order by the

subprocess


(k

1

) + g(k

2

)! J= (P ) + g(k

3

) (3)

as shown in Fig.1. Colour conservation and the Landau-Yang theorem [30] require the emission of

a gluon in the �nal state. The cross section is generally calculated in the static approximation in

which the motion of the charm quarks in the bound state is neglected. In this approximation the

production amplitude factorizes into the short distance amplitude M(
 + g ! cc+ g), with c�c in
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Figure 1: The leading-order Feynman diagrams contributing to inelastic J= photoproduction.

Additional graphs are obtained by reversing the arrows on the heavy quark lines.

the colour-singlet state and zero relative velocity of the quarks, and the wave function '(0) of the

J= bound state at the origin:

M(
 + g ! J= + g) =

s

2

M

J= 

'(0) Tr

n

�

S=1;s

z

(P

J= 

;M

J= 

)M(
 + g ! cc+ g)

o

: (4)

The spin projection operator � combines the quark and antiquark spins to the appropriate triplet

states. For negligible binding energy or, equivalently, for m

c

=M

J= 

=2 one obtains [31]

�

S=1;s

z

(P

J= 

;M

J= 

) =

1

p

2

"=(s

z

)

P

J= 

= +M

J= 

2

; (5)

where "

�

(s

z

) is the J= polarization vector. The coupling strength of the J= to the c�c-pair is

speci�ed in terms of the orbital wave function at the origin in momentum space. In leading order,

the wave function is related to the leptonic width according to

�

ee

=

16��

2

e

2

c

M

2

J= 

j'(0)j

2

: (6)

We will describe the cross section in terms of the kinematical (pseudo-) Mandelstam variables

s

1

� s�M

2

J= 

= (k

1

+ k

2

)

2

�M

2

J= 

t

1

� t�M

2

J= 

= (k

1

� P )

2

�M

2

J= 

u

1

� u�M

2

J= 

= (k

2

� P )

2

�M

2

J= 

(7)

where s + t + u = M

2

J= 

. All incoming and outgoing particles are taken to be on-mass-shell,

k

2

1

= k

2

2

= k

2

3

= 0 and P

2

= M

2

J= 

. In the static approximation each of the heavy quarks carries

one half the mass and one half the four-momentum of the J= :

p

c

= p

c

= P=2 � p ; m

c

=M

J= 

=2 ; and p

2

= m

2

c

� m

2

: (8)

From (4) we �nd for the amplitude of Fig.1(a)

M =

s

2

M

J= 

'(0)

1

2

p

3

�

ab

g

2

ee

c

"

�

(k

1

)"

�

(k

2

)"

�

(k

3

)

�

4

p

2

Tr

�

"=

J= 

(s

z

)(p=+m)


�

p=� k=

1

+m

t

1




�

�p=� k=

3

+m

s

1




�

�

: (9)
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Here g and e are the strong and electromagnetic couplings respectively, g =

p

4��

s

, e =

p

4��,

and e

c

is the magnitude of the charm quark charge in units of e. Charge conjugation invariance

implies that the Feynman graphs are symmetric under reversion of the fermion 
ow. All six

amplitudes contributing to the leading-order cross section are proportional to the same colour

factor 1=

p

3 �

ij

(T

a

T

b

)

ij

= 1=(2

p

3) �

ab

, where a and b are the colour indices of the gluonic quanta.

Gauge invariance ensures that we may sum over the spins of the initial photon and over the gluon

spins by employing the substitutions

P

"

�

"

�

= �g

��

. To sum over the J= spin states, we use

P

"

�

J= 

"

�

J= 

= �g

��

+ P

�

P

�

=M

2

J= 

. Averaging over the initial photon/gluon helicities and colour

the result for the cross section of the subprocess (3) may be written as [4]

d�

(0)

dt

1

=

128�

2

3

��

2

s

e

2

c

s

2

M

2

J= 

j'(0)j

2

M

J= 

s

2

s

2

1

+ t

2

t

2

1

+ u

2

u

2

1

s

2

1

t

2

1

u

2

1

: (10)

Although the cross section (10) is infrared �nite it is not clear a priori in which kinematical

region perturbative QCD can reliably be applied to J= photoproduction. Indeed, at large z the

J= scatters more and more elastically and multiple soft gluon emission has to be considered.

Similar e�ects might become important in the region where the transverse momentum p

?

of the

J= tends towards zero. As discussed before, it is mandatory to require z

�

<

0:9 in order to eliminate

contributions from elastic/di�ractive production mechanisms. In Ref.[17] it has been argued that

an additional cut on the transverse momentum of the J= , p

?

�

>

1 GeV, has to be applied to de�ne

the truly inelastic region. This conclusion was, however, based on a comparison of leading-order

cross sections with experimental data that have later been found to be contaminated from coherent

production in the small p

?

domain [22]. Accordingly, the region of applicability of perturbative

QCD had not been clari�ed completely so far. As will become clear in Sec.5, the analysis of the

next-to-leading order corrections restricts the kinematical domain where �xed-order calculations

give a reliable description of inelastic J= photoproduction. We will observe that the perturbative

QCD calculation is not under proper control in the singular boundary region z ! 1 and p

?

! 0,

thereby indicating where multiple soft gluon emission becomes important.

3 The NLO cross section

Including higher-order QCD corrections to the partonic reaction (3) is expected to be essential

for the theoretical description of inelastic J= photoproduction. Next-to-leading order corrections

to open heavy 
avour photoproduction have been calculated over the recent years [32,33]. They

have been found to increase the normalization of the cross section signi�cantly without strongly

a�ecting the shape of the inclusive di�erential distributions. These results can however not directly

be transferred to the case of bound state production as will become clear in Sec.5. It is thus

important to investigate how the features of the lowest-order J= photoproduction cross section

are modi�ed by radiative corrections and by including new production mechanisms which contribute

in next-to-leading order.

In this work we present a complete calculation of the higher-order perturbative QCD corrections

to inelastic J= photoproduction. Results for total cross sections and the J= energy and transverse

momentum spectrum will be discussed. The photon-parton reactions which contribute to the

6



inclusive cross sections up to order ��

3

s

are


 + g ! (QQ) + g O(��

2

s

); O(��

3

s

)


 + g ! (QQ) + g + g O(��

3

s

)


 + g ! (QQ) + q + �q O(��

3

s

)


 + q(�q) ! (QQ) + g + q(�q) O(��

3

s

)

including virtual corrections to the leading-order process. We choose a renormalization and factor-

ization scheme in which the massive particles are decoupled smoothly for momenta smaller than

the heavy quark mass [34]. This implies that the heavy quark does not contribute to the evolution

of the QCD coupling and of the structure functions. Furthermore, there are no contributing sub-

processes initiated by an intrinsic heavy 
avour coming directly from the structure function of the

proton. All e�ects of the heavy quark are contained in the parton cross section.

The calculation of the the next-to-leading order corrections will be outlined in this section.

More details can be found in the Appendices.

3.1 Virtual corrections

The evaluation of the O(�

s

) corrections to inelastic J= photoproduction involves the calculation

of the virtual cross section obtained from the interference term between the virtual and the Born

amplitude. For the unrenormalized virtual cross section one �nds in n � 4� 2� dimensions

"

s

2

d

2

�

(1)

dt

1

du

1

#

V

=

1

(N

2

� 1)

1

4(1� �)

2

�(4�)

�2+�

�(1� �)

 

t

1

u

1

� 4m

2

s

�

2

s

!

��

��(s

1

+ t

1

+ u

1

+ 8m

2

)

X

2Re(M

B

M

V �

) ; (11)

where 1=(N

2

� 1) is the colour average factor for the gluon in the initial state and N denotes

the number of colours. Photons and gluons have n � 2 spin degrees of freedom resulting in the

spin average factor 1=(n� 2)

2

= 1=4(1� �)

2

. The parameter � has the dimensions of a mass and

is introduced in order to compensate for the dimensionality of the gauge coupling constants in n

dimensions.

The Feynman gauge has been adopted to evaluate the 105 diagrams which contribute to the

virtual amplitude. Charge conjugation invariance implies that the graphs are symmetric under

reversion of the fermion 
ow. The ultraviolet (UV), infrared (IR), and the collinear or mass (M)

singularities have been treated by using n dimensional regularization and show up as single and

double pole terms of the type �

�i

(i = 1; 2). We have refrained from adopting the seemingly

simpler scheme of dimensional reduction which however gives rise to complications in the massive

quark case as pointed out in Ref.[35]. The Feynman integrals containing loop momenta in the

numerator have been reduced to a set of scalar integrals using an adapted version of the reduction

program outlined in Ref.[36]. This program has been extended to treat n dimensional tensor

integrals with linear dependent propagators in order to account for the IR- and M-singularities

and the special kinematical situation which is encountered in the nonrelativistic approximation to

J= photoproduction. The scalar integrals have been calculated by the Feynman parametrization

technique and analytical results are listed in Appendix A.

The UV-divergences which are contained in the fermion self energy graphs and the vertex

corrections shown in Fig.2, are removed by renormalization of the heavy quark mass and the
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Figure 2: Generic Feynman diagrams contributing to the virtual amplitude (part 1): self-energy

corrections (a,b) [36 diagrams], abelian vertex corrections (
cc- and gcc-vertices) (c) [18 diagrams],

and non-abelian vertex corrections (d) [12 diagrams].

QCD coupling. The masses of the light quarks appearing in the fermion loops in Fig.2a have

been neglected while the mass parameter of the heavy quark has been de�ned in the on-mass-

shell scheme. The renormalization of the QCD coupling has been carried out in the extended MS

scheme introduced in Ref.[34] and adopted in previous calculations of open heavy 
avour production

[37,32,33]. In this scheme the e�ects of heavy 
avours are smoothly decoupled for momenta much

smaller than the heavy quark mass. The bare coupling has to be replaced according to

g

bare

= Z

g

g(�

2

R

)

= g(�

2

R

)

"

1�

�

s

(�

2

R

)

8�

( 

1

�

� 


E

+ ln 4� � ln

 

�

2

R

�

2

!!

�

0

+

2

3

ln

 

m

2

�

2

R

!)#

; (12)

with �

0

= (11N � 2n

f

)=3. The total number of 
avours including the heavy quark is denoted by

n

f

and n

lf

= n

f

� 1 is the number of light quarks. The renormalization constant Z

g

is de�ned

such that the contribution of the heavy-fermion loop in the gluon self energy graphs is cancelled

in the renormalized cross section for small momenta 
owing into the heavy-fermion loop. The

UV-divergences arising from gluon or light fermion loops are removed according to the standard

MS subtraction scheme [38]. For the renormalization scale evolution of the strong coupling one

obtains from (12)

@g

2

@ ln�

2

R

= g �(g) = ��

2

s

(�

2

R

)

�

�

0

+

2

3

�

= ��

2

s

(�

2

R

)�

0

(n

lf

) : (13)

The extended MS scheme thus implies that the heavy quark does not contribute to the evolution

of the QCD coupling so that �

s

has to be evaluated using n

lf

active 
avours.

Besides the self-energy diagrams and vertex corrections, 39 box graphs contribute to the virtual

amplitude, which can be grouped in eight classes as shown in Fig.3. All diagrams falling into one

particular class are related by exchange of photon or gluon momenta, adjustment of the colour

factor and reversion of the fermion 
ow. These relations have been checked explicitly.
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Figure 3: Generic Feynman diagrams contributing to the virtual amplitude (part 2): abelian

four-point box graphs (a) [12 diagrams], abelian �ve-point box graphs (b) [6 diagrams], non-abelian

four-point box graphs (c) [8 diagrams] and (d) [4 diagrams], non-abelian �ve-point box graphs (e)

[4 diagrams] and (f) [2 diagrams], and diagrams involving four-gluon couplings (g) [2 diagrams] and

(h) [1 diagram].
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The exchange of longitudinal gluons between the massive quarks in diagram Fig.3b leads to the

Coulombic singularity � �

2

=v which can be isolated by introducing a small relative quark velocity

v (see Appendix A for details). For the Coulomb-singular part of the virtual cross section we �nd

� = j'(0)j

2

�̂

(0)

 

1 +

�

s

�

C

F

�

2

v

+

�

s

�

^

C + O(�

2

s

)

!

; (14)

where the colour factor is given by C

F

= (N

2

� 1)=(2N). The �nal state interaction in the colour-

singlet channel is attractive and has to be interpreted as the Sommerfeld rescattering correction [39]

which can be associated with the inter-quark potential of the bound state. The Coulomb-singular

part of the virtual cross section is universal appearing in the next-to-leading order corrections to

all production and decay processes involving S-wave quarkonia. Following the standard path [40],

the corresponding contribution has to be factored out and mapped into the cc wave function:

� = j'(0)j

2

 

1 +

�

s

�

C

F

�

2

v

!

�̂

(0)

�

1 +

�

s

�

^

C + O(�

2

s

)

�

) j'(0)j

2

�̂

(0)

�

1 +

�

s

�

^

C +O(�

2

s

)

�

: (15)

Only the exchange of transversal gluons contributes to the next-to-leading order expressions for the

hard parton cross section.

3.2 Real corrections

The evaluation of the O(��

3

s

) cross section requires the calculation of the gluon bremsstrahlung

reaction


(k

1

) + g(k

2

)! J= (2p) + g(k

3

) + g(k

4

) (16)

and processes where the �nal-state gluon splits into light quark-antiquark pairs


(k

1

) + g(k

2

)! J= (2p) + q(k

3

) + q(k

4

) : (17)

The 48 Feynman diagrams which contribute to the amplitude can be obtained from the generic ones

shown in Fig.4 by permutation of the photon and gluon lines. Spin and colour projection imply

that the diagrams are invariant under reversion of the fermion 
ow. For the cross section of the

two-gluon �nal states (16), averaged over initial spins and colours, one obtains (see Appendix B.1)

"

s

2

d

2

�

(1)

dt

1

du

1

#

R

=

1

2!

1

(N

2

� 1)

1

4(1� �)

2

�

2�

(4�)

�4+2�

2�(1� 2�)

 

t

1

u

1

� 4m

2

s

�

2

s

!

��

� s

��

3

Z

d


n

X

�

�

�
M

R

�

�

�

2

; (18)

where

s = (k

1

+ k

2

)

2

� s

1

+ 4m

2

(19)

t

1

= (2p� k

1

)

2

� 4m

2

u

1

= (2p� k

2

)

2

� 4m

2

;

s

3

= (k

3

+ k

4

)

2

= s

1

+ t

1

+ u

1

+ 8m

2

and d


n

= d�

1

sin

n�3

�

1

d�

2

sin

n�4

�

2

. The angles �

1

and �

2

which describe the orientation of the outgoing light partons are de�ned in Appendix B.1. A factor

1=2! has to be included since there are two identical particles in the �nal state. For the cross section

of the light-quark-antiquark-splitting reaction (17) this factor has to be dropped.
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Figure 4: Generic Feynman diagrams contributing to the gluon bremsstrahlung process (a-c) and

the quark-antiquark splitting reaction (d).

The real-gluon cross section contains IR and M singularities so that the square of the amplitude

had to be calculated in n dimensions up to order �

2

. For the sum of the gluon polarization we

have used

P

"

�

"

�

= �g

��

and the unphysical longitudinal gluon polarizations have been removed

by adding ghost contributions.

The computation of the real cross section has been performed by adopting the phase space

slicing method as outlined in Ref.[41] and used in previous calculations of open heavy 
avour

production [35,33,42]. We have split the cross section into an infrared-collinear part (s

3

� �),

which contains all singularities due to soft gluon emission and splitting of the �nal state gluon into

gluon and light quark-antiquark pairs, and a hard-gluon part (s

3

> �). The cut-o� parameter �

is chosen such that it can be neglected with respect to mass terms like m

2

and the kinematical

invariants s

1

, t

1

, and u

1

. In the �nal answer the limit � ! 0 is carried out. The hard-gluon part

(s

3

> �) contains single pole terms which are associated with initial state gluon radiation only.

These collinear divergences have to be absorbed into the renormalization of the parton densities

as outlined in Sec.3.4. To perform the integration over the orientation of the �nal state gluons or

light quarks the matrix element squared has been decomposed into sums of terms which have at

most two factors containing the dependence on the polar angle �

1

and the azimuthal angle �

2

. This

decomposition is described in Appendix B.1.

The infrared-collinear cross section (s

3

� �) for the two-gluon �nal states (16) is obtained from

the expression

"

s

2

d�

(1)

dt

1

du

1

#

S

=

1

2!

1

(N

2

� 1)

1

4(1� �)

2

�

2�

(4�)

�4+2�

2�(1� 2�)

 

t

1

u

1

� 4m

2

s

�

2

s

!

��

�(s

1

+ t

1

+ u

1

+ 8m

2

)

�

Z

�

0

ds

3

s

��

3

Z

d


n

X

�

�

�
M

R

�

�

�

2

: (20)

For the light-quark-antiquark �nal state the symmetry factor 1=2! has to be dropped. The calcu-

lation of the infrared-collinear cross section (20) is described in detail in Appendix B.2. Adding

11



the resulting expression (101,102) to the virtual correction leads to a cancellation of the infrared

singularities.

3.3 The photon-quark subprocess

The cross section in next-to-leading order involves a new production mechanism where the photon

is scattered o� a light (anti-)quark from the proton


(k

1

) + q(q)(k

2

)! J= (2p) + g(k

3

) + q(q)(k

4

) : (21)

Because of spin and colour projection the J= particle can only be produced in the Bethe-Heitler

reaction shown in Fig.5. The amplitude of the 
q(�q) subprocess does not depend on the electric

charge of the light quarks. Averaging over spin and colour of the initial state particles the 
q(�q)

Figure 5: Feynman diagrams contributing to the photon-(anti-)quark

subprocess 
q(q) ! J= gq(q). Additional graphs are obtained by reversing the arrows on the

heavy quark lines.

cross section is given by

s

2

d

2

�

(1)

q


dt

1

du

1

= n

lf

1

N

1

4(1� �)

�

2�

(4�)

�4+2�

2�(1� 2�)

 

t

1

u

1

� 4m

2

s

�

2

s

!

��

s

��

3

Z

d


n

X

jM

q


j

2

: (22)

The cross section (22) contains collinear divergences � 1=� due to gluon emission from the initial-

state light (anti-)quark which have to be removed by mass factorization.

3.4 Mass factorization

The collinear singularities contained in the hard-gluon bremsstrahlung reaction and the 
q(�q) sub-

process are universal and can be absorbed, as usual, into the renormalization of the parton densities.

According to the factorization theorem [1] the parton cross section can be written as

d

2

�


i

(s; t

1

; u

1

; �

2

; �)

dt

1

du

1

=

Z

1

0

dx x �

gi

(x;Q

2

; �

2

; �)

d

2

�̂


g

(ŝ; t

1

; û

1

; Q

2

)

dt

1

dû

1

; (23)

where ŝ = xs, û

1

= xu

1

and i = g; q(�q). The reduced cross sections d�̂


g

and d�̂


q(�q)

de�ned by

the above equation are free of collinear singularities and depend on the mass factorization scale

Q

2

. This scale separates long and short distance e�ects and is a priori only determined to be

of the order of the heavy quark mass m. The collinear singularities are contained in the splitting

12



functions �

gi

of the incoming partons (gluons or light quarks). The splitting functions depend on the

mass factorization scale Q

2

and further on the parameter �

2

which is an artefact of n-dimensional

regularization. Up to leading order in �

s

they are given by [43]

�

ij

(x;Q

2

; �

2

; �) = �

ij

�(1� x) +

�

s

2�

�

�

1

�

P

ij

(x) + f

ij

(x;Q

2

; �

2

)

�

; (24)

where the universal Altarelli-Parisi splitting kernels [44] are denoted by P

ij

(x). The �nite functions

f

ij

are completely arbitrary, di�erent choices corresponding to di�erent factorization schemes. Here

we have adopted the MS-scheme corresponding to

f

MS

ij

(x;Q

2

; �

2

) = P

ij

(x)

 




E

� ln 4� + ln

Q

2

�

2

!

: (25)

For the reduced cross section of the 
-gluon process one �nds from (23)

d

2

�̂

(1)


g

(s; t

1

; u

1

; Q

2

)

dt

1

du

1

=

d

2

�

(1)


g

(s; t

1

; u

1

; �

2

; �)

dt

1

du

1

�

�

s

2�

Z

1

0

dx x P

gg

(x)

"

�

1

�

+ 


E

� ln 4� + ln

Q

2

�

2

#

d

2

�

(0)


g

(xs; t

1

; xu

1

)

dt

1

dû

1

: (26)

The corresponding expression for the 
 � q(�q) scattering reaction reads

d

2

�̂

(1)


q

(s; t

1

; u

1

; Q

2

)

dt

1

du

1

=

d

2

�

(1)


q

(s; t

1

; u

1

; �

2

; �)

dt

1

du

1

�

�

s

2�

Z

1

0

dx x P

gq

(x)

"

�

1

�

+ 


E

� ln 4� + ln

Q

2

�

2

#

d

2

�

(0)


g

(xs; t

1

; xu

1

)

dt

1

dû

1

: (27)

The Altarelli-Parisi kernel P

gg

(x) of the gluon-splitting function has the form

P

gg

(x) = N

�

�(1� x� �) � 2

�

1� x

x

+

x

1� x

+ x(1� x)

�

+ �(1� x)

�

2 ln � +

11

6

��

�

1

3

n

lf

�(1� x) ; (28)

where the number of light 
avours is denoted by n

lf

. We have adopted the convention introduced

in Ref.[41] to regulate the pole at x = 1. The parameter � allows one to distinguish between soft

(x > 1��) and hard (x < 1��) gluons and is related to the cut-o� parameter � by � = �=(s+u

1

).

Finally, the Altarelli-Parisi kernel P

gq

appearing in (27) is given by

P

g�q

(x) = P

gq

(x) = C

F

"

1 + (1� x)

2

x

#

: (29)

After mass factorization and cancellation of the infrared singularities between the virtual cor-

rections and the contribution of soft gluon emission we obtain a �nite expression for the O(��

3

s

)

inelastic J= photoproduction cross section. An analytical result has been derived for the dou-

ble di�erential one-particle-inclusive cross section d�=dt

1

du

1

. The corresponding expressions are

however too long to be presented here.
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4 The parton cross section

The perturbative expansion of the total photon-parton cross section can be expressed in terms of

scaling functions,

�̂

i


(s;m

2

c

) =

��

2

s

e

2

c

m

2

c

j'(0)j

2

m

3

c

"

c

(0)

i


(�) + 4��

s

(

c

(1)

i


(�) + c

(1)

i


(�) ln

Q

2

m

2

c

+

�

0

(n

lf

)

8�

2

c

(0)

i


(�) ln

�

2

R

Q

2

)#

; (30)

where i = g; q; q denote the parton targets and �

0

(n

lf

) = (11N � 2n

lf

)=3. The scaling functions

depend on the energy variable � = s=4m

2

c

� 1. c

(0)


g

is the lowest-order contribution which scales

� �

�1

� 4m

2

c

=s asymptotically. The cross section is put into a form in which the renormalization

scale �

R

and the factorization scale Q can be varied independently. The scaling functions c


i

(�)

are shown in Figs.6(a) and (b) for the parton cross sections integrated over z � z

1

where we have

chosen z

1

= 0:9 as discussed before. [Note that the de�nition of z is the same at the nucleon and

parton level since the momentum fraction x of the partons cancels in the ratio z = p � k

 

= p � k




.]

In Fig.7 the scaling function of the gluon initiated parton process has been decomposed into a

"virtual + soft" (V+S) piece and a "hard" (H) gluon-radiation piece. The ln

i

� singularities of the

(V+S) cross sections are mapped into (H), cancelling the equivalent logarithms in this contribution

so that the limit � ! 0 can safely be carried out. The nomenclature "hard" and "virtual + soft"

is therefore a matter of de�nition, and negative values of c

(H)

may occur in some regions of the

parameter space. [In the range 0:2

�

<

�

�

<

2 the hard gluon-radiation piece c

(1,H)

g


as well as c

(1)


g

di�er from the curves in Ref.[28] by a few percent since the experimental cut z < 0:9 was not

implemented properly in one term of Ref.[28].]

The following comments can be inferred from the �gures. (i) The form of the hard-gluon

radiation piece c

(H)

resembles the corresponding scaling function in open-charm photoproduc-

tion [33]. The logarithmic enhancement near threshold can be attributed to initial state gluon

bremsstrahlung. The "virtual + soft" contribution for J= production is, however, signi�cantly

more negative than for open-charm production. The destructive interference with the lowest-order

amplitude is not unplausible though, as the momentum transfer of virtual gluons has a larger chance

[in a quasi-classical approach] to scatter quarks out of the small phase-space element centered at

p

c

+ p

c

= p

J= 

than to scatter them from outside into this small element. (ii) While c

(0)

g


and

c

(1,V+S)

g


scale asymptotically � 1=s, the hard coe�cients c

(1,H)

g


and c

(1)

q


[as well as c

(1)

g;q


] approach

plateaus for high energies, built-up by the 
avour excitation mechanism. (iii) The cross sections

on the quark targets are more than one order of magnitude smaller than those on the gluon target.

(iv) A more detailed presentation of the spectra would reveal that the perturbative analysis is not

under proper control in the limit z ! 1, as anticipated for this singular boundary region (see the

detailed discussion in Sec.5). Outside the di�ractive region, i.e. in the truly inelastic domain, the

perturbation theory is well-behaved however.

5 The photon-proton cross section

The results for inelastic J= production in photon-proton collisions


 + P ! J= +X (31)
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Figure 6: (a) Coe�cients of the QCD corrected total inelastic [z � 0:9] cross section 
+g ! J= +X

in the physically relevant range of the scaling variable � = s


p

=4m

2

� 1; and (b) for


 + q=q ! J= +X .
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Figure 7: Coe�cients of the QCD corrected total inelastic [z � 0:9] cross section 
+ g ! J= +X

split into a hard piece and a virtual plus soft piece.

are obtained from the partonic cross sections by convolution with the gluon and light-quark distri-

butions f

P

i

in the proton

d�


P

=

X

i=g;q(q)

Z

dx f

P

i

(x;Q

2

) d�̂


i

: (32)

In the following we present a comprehensive analysis of total cross sections and di�erential distri-

butions for the energy range of the �xed-target experiments and for inelastic J= photoproduction

at HERA.

5.1 The energy range of the �xed target experiments

Inelastic J= photoproduction has been measured in �xed-target experiments [20,21] at photon

energies near E




= 100 GeV, corresponding to invariant energies of about

p

s


p

� 14 GeV. Before

comparing the theoretical predictions with the experimental data we will examine the e�ect of the

next-to-leading order corrections in some detail.

In Figs.8 and 9 the J= energy spectrum d�=dz and the J= transverse momentum distribution

d�=dp

2

?

are shown at an initial photon energy of E




= 100 GeV. The GRV parametrizations of the

parton densities [45] have been adopted. They are particularly suited to characterize the magnitude

of the radiative corrections since they allow one to compare the results for the Born cross section

folded with leading-order parton densities, with the cross sections consistently evaluated for parton

cross sections and parton densities in next-to-leading order. As the average momentum fraction

of the partons <x>� 0:1 is moderate, the curves are not sensitive to the parametrization in the

small-x region. The renormalization scale has been identi�ed with the factorization scale and set to

�

R

= Q =M

J= 

. For �

s

the two-loop formula is used with n

lf

active 
avours and �

(5)

MS

= 215 MeV,

corresponding to the average �t value in Ref.[46]. Since the cross section depends strongly on the
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Figure 8: Energy distribution d�=dz at an initial photon energy of E




= 100 GeV.

Figure 9: Transverse momentum distribution d�=dp

2

?

at an initial photon energy of E




= 100 GeV

integrated in the inelastic region z � 0:9.
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QCD coupling, we adopt this measured value, thus allowing for a slight inconsistency to the extend

that the GRV �ts are based on a marginally lower value of �

s

(cf. Ref.[47]). In next-to-leading

order, the wave-function at the origin is related to the leptonic J= width by

�

ee

=

�

1�

16

3

�

s

�

�

16��

2

e

2

c

M

2

J= 

j'(0)j

2

(33)

with only transverse gluon corrections taken into account explicitly [48]. We use �

ee

= 5:26 keV,

M

J= 

= 3:097 GeV [46] and m

c

=M

J= 

=2.

From Fig.8 one can infer that the perturbative QCD analysis is not under proper control in

the limit z ! 1, as anticipated for this singular boundary region. If we restrict the analysis to

the inelastic domain z

�

<

0:9 the perturbative expansion is well-behaved however and the next-

to-leading order corrections do not strongly a�ect the shape of the distributions. The K-factor,

K � �

NLO

=�

LO

, is nearly independent of z and p

?

in the inelastic region z

�

<

0:9. Its magnitude

turns out to be K � 2:0 with one part � 1:73 due to the QCD radiative corrections of the leptonic

J= width [48] and a second part � 1:2 due to the dynamical QCD corrections. The slope of the

transverse momentum distribution, d�=dp

2

?

/ exp(�b p

2

?

), is predicted to be b � 0:6 GeV

�2

, in

good agreement with the experimental value b = 0:62� 0:2 GeV

�2

[20].

The scale dependence of the theoretical prediction is reduced considerably when higher-order

QCD corrections are included. This is demonstrated in Fig.10 where we compare the scale depen-

dence of the leading and next-to-leading order total cross section in the inelastic region z � 0:9.

Figure 10: Dependence of the total cross section 
 + P ! J= + X on the renormaliza-

tion/factorization scale Q at an initial photon energy of E




= 100 GeV.

For the sake of simplicity, the renormalization scale has been identi�ed with the factorization scale,

�

R

= Q. While the ratio of the cross sections in leading order for Q

2

= m

2

c

: (2m

2

c

) :M

2

J= 

is given

by 1:7 : 1:3 : 1, it is much closer to unity, 0:7 : 1:1 : 1, in the next-to-leading order calculation. The

cross section runs through a maximum [49] near Q

2

� 2m

2

c

with broad width, the origin of the

stable behaviour in Q.
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The next-to-leading order predictions can be confronted with photoproduction data of the �xed

target experiments. For a meaningful comparison, the theoretical uncertainties due to variation

of the charm quark mass and the strong coupling have to be taken into account properly. In

the static approximation the choice m

c

= M

J= 

=2 is required for a consistent description of the

bound state formation. A smaller mass value, however, is favoured to describe the charm quark

creation in the hard scattering process [50]. The value of the heavy quark mass in the short

distance amplitude is the main parameter controlling the normalization of the cross section. It

is therefore appropriate to adopt charm masses below m

c

= M

J= 

=2, thus allowing for a slight

correction in the bound state formation. Leading-order analyses of J= production that go beyond

the static limit and incorporate a non-vanishing binding energy, �nd an e�ective charm mass value

of m

c

= 1:43 GeV [25], in fairly good agreement with potential model calculations [51]. In order to

demonstrate the uncertainty due to the variation of the charm quark mass, the strong coupling and

the renormalization/factorization scale the results will be shown for (i) m

c

= M

J= 

=2 � 1:55 GeV

with �

(5)

MS

= 215 MeV and Q

2

= �

2

R

=M

2

J= 

(as used in the previous �gures) and (ii) m

c

= 1:4 GeV

with �

(5)

MS

= 300 MeV (corresponding to the 1 � upper boundary of the error band in Ref.[46]) and

Q

2

= �

2

R

= 2m

2

c

.

In Fig.11 we confront the leading and next-to-leading order calculations with the J= energy

spectra measured at photon energies near E




= 100 GeV [20,21]. It is clear from Fig.11 that

Figure 11: Energy spectrum d�=dz, at the initial photon energy E




= 100 GeV compared with the

photoproduction data [20,21].

the variation of the charm mass and the strong coupling does not strongly a�ect the shape of

the distribution but only results in some uncertainty concerning the overall normalization. In a

systematic expansion one may �nally add the relativistic corrections as estimated in Ref.[25].

The dependence of the total cross section 
+P ! J= +X on the photon energy E




is presented

in Fig.12, again for the two choices of parameters (i) and (ii) as de�ned above, together with the

photoproduction data [20,21]. From the curves shown in Fig.12 we deduce that the QCD corrections

are large at moderate photon energies, but decrease with increasing energies, a consequence of the
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negative dip in the c

(1)

scaling function of Fig.6.

Figure 12: The total cross section [z � 0:9] as a function of the initial photon energy.

Two conclusions can be drawn from the comparison of the next-to-leading order results with

the experimental data. (i) The J= energy dependence d�=dz and the slope of the transverse

momentum distribution d�=dp

2

?

are adequately accounted for by the theoretical prediction in the

inelastic region. (ii) The absolute normalization of the cross section is somewhat less certain.

However, taking into account the theoretical uncertainty due to variation of the charm quark mass

and the strong coupling and allowing for higher-twist uncertainties of order (�=m

c

)

k

�

<

30% for

k � 1, we conclude that the normalization too appears to be under semi-quantitative control.

5.2 Inelastic J= photoproduction at HERA

The production of J= particles in high energy ep collisions at HERA is dominated by photopro-

duction events where the electron is scattered by a small angle producing photons of almost zero

virtuality. The measurements at HERA provide information on the dynamics of inelastic J= pho-

toproduction in a kinematical region very di�erent from that available at �xed target experiments.

The 
p centre of mass energies accessible at HERA are in the range 30 GeV

�

<

p

s


p

�

<

200 GeV, cor-

responding to initial photon energies in a �xed-target experiment of 450 GeV

�

<

E




�

<

20; 000 GeV.

To begin with, we discuss the J= energy spectrum d�=dz and the J= transverse momentum

distribution d�=dp

2

?

at a typical HERA energy of

p

s


p

= 100 GeV. The parameters have been

chosen as in the corresponding �gures of Sec.5.1. From Figs.13 and 14 one can conclude that the

next-to-leading order corrections are dominated by strong negative contributions in the limit z ! 1

and p

?

! 0. This behaviour which has already been observed in the low energy region of the

�xed-target experiments is much more pronounced in the high energy range at HERA. Even if

the analysis is restricted to the region z � 0:8 we still �nd that the �xed-order perturbative QCD

calculation is not under proper control for p

?

! 0. This can be inferred from Fig.14 where the
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transverse momentum spectrum is shown integrated in the range z � 0:9 and z � 0:8, respectively.

Figure 13: Energy distribution d�=dz at the photon-proton centre of mass energy

p

s


p

= 100 GeV

integrated in the full p

?

range and in the restricted range p

?

� 1 GeV.

Figure 14: Transverse momentum distribution d�=dp

2

?

at the photon-proton centre of mass energy

p

s


p

= 100 GeV integrated in the region z � 0:9 and z � 0:8.

For p

?

�

<

0:5 GeV the results of this calculation obviously require missing contributions from even

higher orders in the perturbative expansion. No reliable prediction can be made in the small p

?

and large z domain without resummation of large logarithmic corrections caused by multiple gluon
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emission. It is therefore appropriate to exclude the region z ! 1 and p

?

! 0 from the analysis.

In the following we will present the results in two kinematic domains, (I) z � 0:9, which is the

minimal restriction in order to eliminate elastic/di�ractive contributions, and (II) z � 0:8 and

p

?

� 1 GeV, which was found to be the region where �xed-order perturbation theory allows for

a reliable prediction in the HERA energy range. The next-to-leading order results for the J= 

energy spectrum are shown in Fig.13 integrated in the full p

?

range and in the restricted range

p

?

� 1 GeV. No singular behaviour is observed for the latter curve even in the limit z ! 1.

In Fig.15 we compare the scale dependence of the leading order and next-to-leading order

total cross sections at the invariant energy

p

s


p

= 100 GeV. The renormalization scale has been

Figure 15: Dependence of the total cross section 
 + P ! J= + X on the renormaliza-

tion/factorization scale Q at the photon-proton centre of mass energy

p

s


p

= 100 GeV. The

results are shown in two kinematic domains: (I) z � 0:9; (II) z � 0:8 and p

?

� 1 GeV.

identi�ed with the factorization scale, �

R

= Q. The results are shown in the two kinematic domains

(I) z � 0:9 and (II) z � 0:8 with p

?

� 1 GeV, as discussed above. From Fig.15 one can infer that

the next-to-leading order result is insensitive to scale variations in an appreciable range near the

reference scale �

2

R

= Q

2

= M

2

J= 

. For scales below �

2

R

= Q

2

� M

2

J= 

=2 no stable prediction

is possible. In contrast to the low energy region, the cross section in the HERA energy range

does not exhibit a point of minimal scale sensitivity. In the BLM scheme [52] we �nd a value of

�

2

R

�M

2

J= 

=2. This scale is signi�cantly larger than the corresponding BLM value for J= decays.

The typical kinematical energy scale is not set any more by the small gluon energy in the J= 

decay but rather by the typical initial-state parton energies.

We will now present our �nal predictions for di�erential distributions and total cross sections for

inelastic J= photoproduction at HERA. In a systematic expansion we have added the relativistic

corrections [25] which enhance the large z and small p

?

region and thereby increase the total cross

section integrated in the range z � 0:9 by � 10%. The inclusion of relativistic corrections does

not change the results obtained in the more restricted domain z � 0:8 and p

?

� 1 GeV. In order
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to demonstrate the theoretical uncertainty the results are shown for (i) m

c

=M

J= 

=2 � 1:55 GeV

with �

(5)

MS

= 215 MeV and Q

2

= �

2

R

=M

2

J= 

(as used in the previous �gures) and (ii) m

c

= 1:4 GeV

with �

(5)

MS

= 300 MeV and Q

2

= �

2

R

= 2m

2

c

, as discussed in Sec.5.1. In Fig.16 we plot the transverse

momentum distribution at the photon-proton centre of mass energy

p

s


p

= 100 GeV integrated

in the region z � 0:9 and z � 0:8. As could already be inferred from Fig.14, the inclusion of the

Figure 16: Transverse momentum distribution d�=dp

2

?

at the photon-proton centre of mass energy

p

s


p

= 100 GeV integrated in the region z � 0:9 and z � 0:8.

next-to-leading order corrections increases the cross section in the range p

?

�

>

1 GeV and results

in a hardening of the distribution. For the slope, d�=dp

2

?

/ exp(�b p

2

?

), we predict b � 0:3 GeV

�2

.

The J= energy distribution is shown in Fig.17 integrated in the full p

?

range and in the restricted

range p

?

� 1 GeV, again for two choices of the charm quark mass and the strong coupling. In

Figs.18(a) and (b) we plot the total cross section as a function of the photon-proton centre of mass

energy in the HERA range. The results are shown in the two kinematic domains (I) z � 0:9 and

(II) z � 0:8 with p

?

� 1 GeV. For domain (I), Fig.18(a), the K-factor is � 0:75, a consequence of

the strong negative contribution present in the region p

?

! 0. In the more restricted kinematic

domain (II), Fig.18(b), the next-to-leading order corrections signi�cantly increase the cross section.

For m

c

= 1:4 GeV with �

(5)

MS

= 300 MeV and Q

2

= �

2

R

= 2m

2

c

, we �nd K � �

NLO

=�

LO

� 1:7.

An estimate of the cross section for inelastic photoproduction of  

0

particles can be obtained

from the results presented here by replacing the leptonic decay width and multiplying with a phase

space correction factor

�(
P !  

0

X) � �

 

0

ee

=�

J= 

ee

(M

J= 

=M

 

0

)

3

� �(
P ! J= X)

� 1=4� �(
P ! J= X) : (34)

The estimate (34) should be considered as a lower bound since it is based on a purely static

approach. In the derivation of the phase space suppression factor (M

J= 

=M

 

0
)

3

it is assumed that

the e�ective charm masses in the short distance amplitudes scale like the corresponding  

0

and J= 
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Figure 17: Energy distribution d�=dz at the photon-proton centre of mass energy

p

s


p

= 100 GeV

integrated in the full p

?

range and in the restricted range p

?

� 1 GeV.

masses. This di�erence might be reduced by including relativistic corrections which are expected

to be signi�cantly larger for the  

0

state than for the J= [51]. A measurement of the inelastic  

0

photoproduction cross section at HERA would clearly help to understand the impact of relativistic

corrections on charmonium production.

The production of � bottomonium bound states is suppressed, compared with J= states, by

a factor of about 300 at HERA, a consequence of the smaller bottom electric charge and the phase

space reduction by the large b mass.

Since the momentum fraction of the partons at HERA energies is small, the cross sections

presented above are sensitive to the parametrization of the gluon distribution in the small-x region

<x>� 0:003. In Figs.19(a) and (b) we compare the next-to-leading order predictions for di�erent

parametrizations of the gluon distribution in the proton with �rst results measured at HERA

[53,54]. We have used m

c

= 1:4 GeV with �

(5)

MS

= 300 MeV and Q

2

= �

2

R

= 2m

2

c

, as favoured

by the low energy data. The data samples [53,54] contain background events from production of

 

0

states with subsequent J= decay [18]. This contribution has been included in the theoretical

prediction, Figs.19(a) and (b), in order to allow for a meaningful comparison. According to (34) and

the measured branching ratio BR( 

0

! J= X) = 57 % [46] the cascade production from  

0

states

is conservatively expected to increase the cross section by � 15%. For the parametrizations of the

parton densities in the proton we have chosen four sets that are compatible with the recent HERA

measurements of the proton structure functions [55]: the GRV parametrization [45], which has been

adopted in all previous �gures, the sets MRS(G), MRS(A') [56] and the CTEQ3 parametrization

[57]. The di�erence in the small x behaviour of the gluon densities, xg � x

��

where �

GRV

� 0:3�0:4,

�

MRS(G)

� 0:4, �

MRS(A')

� 0:2 and �

CTEQ3M

� 0:3, results in di�erent normalizations and, to a

smaller extend, in di�erent shapes of the cross section as a function of the photon-proton centre of

mass energy. The shape of the di�erential distributions in z and p

?

is not very sensitive to changes
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Figure 18: The total cross section for inelastic J= photoproduction 
+P ! J= +X as a function

of the photon-proton centre of mass energy in the HERA energy range. The results are shown in

two kinematic domains: (a) z � 0:9; (b) z � 0:8 and p

?

� 1 GeV.
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Figure 19: The total cross section as a function of the photon-proton centre of mass energy for

di�erent parametrizations of the gluon distribution of the proton compared with preliminary data

from H1 [53] and ZEUS [54]. The results are shown in two kinematic domains: (a) z � 0:9; (b)

z � 0:8 and p

?

� 1 GeV.
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in the proton structure function. The theoretical result for the total cross section integrated in the

kinematic domain z � 0:9 on average underestimates the experimentally observed production rate,

Fig.19(a). This could be anticipated since the perturbative analysis is not under proper control

in the limit p

?

! 0 and the next-to-leading order corrections are dominated by strong negative

contributions for p

?

�

<

0:5 GeV, as shown in Fig.14. Following the arguments above, it is more

adequate to compare theory and experiment in the kinematic domain z � 0:8 and p

?

� 1 GeV,

where �xed-order perturbation theory allows for a reliable prediction in the HERA energy range.

This comparison is shown in Fig.19(b). It can be inferred from the plot that the next-to-leading

order result not only accounts for the energy dependence of the cross section but also for the

overall normalization. The sensitivity of the prediction to the gluon distribution in the proton is,

however, not very distinctive in the more restricted domain z � 0:8 and p

?

� 1 GeV. In particular

the MRS(G) and GRV parton densities lead to almost identical results over the whole kinematical

range accessible at HERA. A detailed analysis reveals that the size of the QCD corrections increases

when adopting parton densities with 
atter gluons. The sensitivity to di�erent gluon distributions

is thus reduced in next-to-leading order as compared to the leading-order result, in particular when

choosing a small charm mass and a large value for the strong coupling. Parametrizations with

extremely 
at gluons like MRS(D0') [58] are clearly disfavoured by the recent HERA measurements

of the proton structure function [55] and do not allow for a reliable prediction in the high energy

region. For the parameters adopted in Fig.19(b), the MRS(D0') distribution leads to next-to-

leading order results not very di�erent from those obtained with the MRS(A') parametrization. The

corresponding K-factors are however uncomfortably large, K � 4, casting doubts on the reliability

of the perturbative expansion as obtained by using 
at gluon distributions. If parton distributions

with steep gluon densities are adopted, the next-to-leading order cross section is well-behaved and

gives an adequate description of the experimental data, as demonstrated in Fig.19.

6 Conclusion

We have presented a complete calculation of the higher-order perturbative QCD corrections to

inelastic photoproduction of J= particles. In the energy range of the �xed target experiments,

E




� 100 GeV, including the next-to-leading order corrections reduces the scale dependence of

the theoretical prediction and increases the cross section by about a factor of two. A comparison

with photoproduction data of �xed-target experiments reveals that the J= energy dependence and

the slope of the transverse momentum distribution are adequately accounted for by the theoretical

prediction in the inelastic region z

�

<

0:9. Taking into account the uncertainty due to variation

of the charm quark mass and the strong coupling and allowing for higher-twist e�ects of order

(�=m

c

)

�

<

30%, we conclude that the normalization too appears to be under semi-quantitative

control. In the high energy range at HERA, a detailed analysis of the spectra has shown that

the perturbative calculation is not well-behaved in the limit p

?

! 0. No reliable prediction can

be made in this singular boundary region without resummation of large logarithmic corrections

caused by multiple gluon emission. First experimental results from HERA indeed indicate that

the production rate, obtained in the full p

?

range, is on average underestimated by the theoretical

predictions. If the small p

?

region is excluded from the analysis, the next-to-leading order result not

only accounts for the energy dependence of the cross section but also for the overall normalization.

The results seem to favour a gluon density in the proton rising toward low x, consistent with recent

measurements of the proton structure functions. Higher-twist e�ects must be included to improve
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the quality of the theoretical analysis further.
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APPENDICES

A The scalar integrals

Analytical results for the scalar integrals which emerge from the Passarino-Veltman reduction of

the virtual amplitude are listed in this Appendix. The exchange of longitudinal gluons between

the massive quarks in diagram Fig.3b leads to a Coulomb singularity � �

2

=v, which appears in the

evaluation of the corresponding loop integrals. The singularity has been isolated by introducing

a small quark velocity v, as discussed in detail below. First, we will give the expressions for the

Coulomb-�nite integrals. The results are not analytically continued into the physical region

s ; s

1

+ 4m

2

� 4m

2

; t ; t

1

+ 4m

2

� 0; u ; u

1

+ 4m

2

� 0 ; (35)

with s

1

, t

1

and u

1

as de�ned in (7). Therefore, the expressions for all permutations of the photon

and gluon momenta can be obtained from the formulae listed below by interchanging t

1

$ u

1

,

s

1

$ t

1

, or s

1

$ u

1

. Since any imaginary part of the integrals will disappear in the �nal result,

only the real parts are given. The four-momenta are related by k

1

+ k

2

= 2p+ k

3

and all particles

are taken to be on-mass-shell, k

2

1

= k

2

2

= k

2

3

= 0 and p

2

= m

2

.

� The scalar one-point function is given by

A(m

2

) = �

4�n

Z

d

n

q

(2�)

n

1

q

2

�m

2

= iC

�

m

2

�

1

�

+ 1

�

(36)

where

C

�

=

1

16�

2

e

��(


E

�ln 4�)

 

�

2

m

2

!

�

(37)

and n = 4� 2�.

� The scalar two-point function is de�ned by

B(p;m

1

; m

2

) = �

4�n

Z

d

n

q

(2�)

n

1

[q

2

�m

2

1

] [(q+ p)

2

�m

2

2

]

(38)

The following types of two-point functions appear in the calculation of the virtual amplitude:

B(k

1

; 0; 0) = 0 (39)
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B(k

2

� k

3

; 0; 0) = iC

�

�

1

�

� ln

�

�

t

m

2

�

+ 2

�

(40)

B(p; 0; m) = B(2p;m;m) = iC

�

�

1

�

+ 2

�

(41)

B(p� k

1

; 0; m) = iC

�

�

1

�

+ 2�

t

1

t

1

+ 2m

2

ln

�

�t

1

2m

2

��

(42)

B(k

1

+ k

2

; m;m) = iC

�

�

1

�

+ 2 + � ln

�

1� �

1 + �

��

: (43)

Here and below we have used the shorthand notation � � �(s) =

p

1� 4m

2

=s.

� The scalar three-point function is de�ned by

C(p

1

; p

2

; m

1

; m

2

; m

3

) =

�

4�n

Z

d

n

q

(2�)

n

1

[q

2

�m

2

1

] [(q+ p

1

)

2

�m

2

2

] [(q + p

2

)

2

�m

2

3

]

: (44)

Eight di�erent types of three-point functions appear in the virtual amplitude:

C(k

2

; k

3

; 0; 0; 0) = iC

�

1

t

�

1

�

2

�

1

�

ln

�

�t
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�
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1

2
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2

�

�t

m

2

�

�

1
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(45)

C(�k
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;�k
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s
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�
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s
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C(k

1
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1

+ k

2

; m;m;m) = �iC

�

1

s

�
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2

�

2

1 + �

�

+ Li

2

�
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1� �

��

; (52)

where �(2) = �

2

=6.

� The scalar four-point function is de�ned by
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There are three di�erent types of four-point functions:
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where � � �(s

1

; t

1

) =

s

s

1

s
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+ 4m

2

t

1

+ 4m

2

t

1

:

The �ve-point functions appearing in the calculation of the Feynman amplitudes shown in Fig.3(e,f)

can be rewritten as linear combinations of the four-point integrals listed above.

In order to evaluate the Coulomb-singular diagrams shown in Fig.3(b) three �ve-point tensor

integrals of the type
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(57)

have to be calculated. The two additional integrals can be obtained from (57) by exchanging the

photon and gluon momenta. The Coulomb singularity has been isolated by introducing a small
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quark velocity v and the momenta p

c

and p

c

ful�ll the relations ~p

c

+ ~p

c

=

~

0 and j~p

c

� ~p

c

j = mv.

Since all loop integrals which have at least one power of the loop momentum q in the numerator

are Coulomb-�nite, the tensor reduction of (57) can be performed at v = 0. The �

2

=v singularity

is thus contained only in the scalar �ve-point integrals E

0

and in four- and three-point functions

of the type D(p

c

; p

c

� k

1

;�p

c

; 0; m;m;m) and C(p

c

;�p

c

; 0; m;m) which emerge from the tensor

reduction. The integration of the three-point function is straightforward and we obtain in the static

limit v ! 0
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Alternatively, the Coulomb singularity (as well as the infrared pole) can be isolated by introducing

a small gluon mass �. In the limit �! 0 one �nds
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which shows the correspondence between the di�erent regularization schemes (cf. Ref.[59]):
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(Coulomb-singularity) : (60)

The singular piece of the four- and �ve point functions is determined by the infrared part of the

integration region, q ! 0, and can thus be extracted by neglecting the loop momentum in the

infrared �nite propagators. In the limit j~p

c

� ~p

c

j = mv ! 0 one �nds for example
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(61)

and similar expressions for the other four- and �ve-point functions. No terms linear in v appear

in the relativistic expansion of the coe�cients multiplying the Coulomb-singular integrals. The

corresponding expressions can thus be evaluated in the static limit v = 0 from the start.

For the �nite part of the four-point integral we obtain
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Similarly, the �nite part of the �ve-point integral is given by
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The di�erence E

(�n)

= E � E

(IR)

is infrared- and Coulomb-�nite and a complete analytical result

has been obtained. Since the corresponding expression is rather extensive we will only outline the
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basic steps of the calculation. By using the Feynman parametrization technique one obtains
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i
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where
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and
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Substituting

x̂ = x+ y � 1 ; ŷ = w ; ẑ = z � w ; ŵ = x� z ; (67)

we arrive at an expression which does not depend on the integration variable x:
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Interchanging the order of integration and evaluating two integrations, we �nd
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where
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^
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�

h

(1� y)

2

� (1� z)(y(

^
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The singularity is contained in the expression

I

S

=

1

2 + �

Z

1

0

dz

Z

z

0

dy (y � 1) f

S

(�; ŝ;
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i

�2��

�

h

(1� y)

2

�

^

t(1� z)

i

�2��

�

: (72)

The integration of I

S

is straightforward and we obtain
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The remaining di�erence
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is �nite and can be evaluated in the limit �! 0 by using elementary integration techniques.
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B The three-particle �nal states

In this Appendix we outline the kinematics for the processes involving three-particle �nal states

and give explicit results for the infrared-collinear cross section.

B.1 The phase space integration

For the calculation of the two-to-three-body processes (16), (17) and (21) we closely follow Ref.[35]

and introduce the following 10 kinematical invariants:
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(75)

where k

1

+ k

2

= 2p+ k

3

+ k

4

. The invariants s, t

1

and u

1

have already been de�ned in (7). Since

we are dealing with a three-particle �nal state only �ve of the invariants are linearly independent.

In the centre of mass frame of the outgoing light particles (gluons and/or light (anti-)quarks), the

momenta are given by
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The coordinate axes can be chosen in such a way that the n � 4 unspeci�ed angular components

do not contribute to the matrix element squared. From four-momentum conservation and the

on-mass-shell constraints one can derive the identities
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For the cross section one has
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K

C

and K

S

denoting the colour and spin averaging factors. The factor 1=2! has to be included for

the two-gluon �nal states because of Bose symmetry. It is convenient to rewrite the cross section

according to
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The integral over the phase space of the two outgoing light partons is evaluated in the corresponding

centre of mass frame:
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The remaining integrations are performed in the centre of mass frame of the initial state particles

with momenta given by
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One �nds for the cross section
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After changing the integration variables (E
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we �nally obtain
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The kinematical limits on t
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; u

1

can be deduced from the constraints �1 � cos� � 1 and s
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To perform the angular integrations the matrix element squared has been decomposed into

sums of terms which have at most two factors containing the dependence on the polar angle �

1

and the azimuthal angle �

2

. This partial fractioning exploits the kinematical relations between the

invariants de�ned in (75):
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By using identities as e.g.
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the angular integration can be reduced to the evaluation of standard integrals of the form
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The results for these integrals can be found in Ref.[35].

B.2 The infrared-collinear cross section

The calculation of the infrared-collinear cross section (20) will be outlined in this Appendix. The

resulting expressions contain all divergences due to soft gluon emission and splitting of the �nal

state gluon into gluon and light quark-antiquark pairs.

We begin by considering the infrared region of phase space where one of the �nal state gluon

momenta k

3;4

becomes soft. In the limit k

4

! 0 the amplitude of the real gluon emission factorizes

into an eikonal factor multiplying the Born amplitude:
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and analogous for k

3

! 0

jM

R

j

2

�

�

�

k

3

!0

=

�2k

2

� k

4

s

3

t

6

g

2

1

2

(f

abc

)

2

jM

B

j

2

�

�

�

Tr

2

(T

a

T

b

)=1

; (90)

where (f

abc

)

2

= N(N

2

� 1).

In addition to the soft gluon divergences, the amplitudes for the 2! 3 processes contain terms

which are singular when the two outgoing light partons become collinear, k

3

kk

4

, i.e. cos �

34

�

cos � = 1. For the calculation of the collinear matrix element we choose the four-momenta in the

centre of mass frame of the incoming partons according to
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Hence, in the limit � ! 0 the condition s
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< � is given by
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When integrated over the solid angle
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the 1=s

3

� 1=�

2

terms in the matrix element squared lead to logarithmic singularities in the limit

� ! 0. The pieces with additional powers of � in the numerator only give contributions of the

O(�) which vanish in the limit � ! 0. Accordingly, all invariants in the expressions multiplying
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the 1=s

3

propagator can be replaced by their values at � = 0:
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The other invariants remain unaltered. The splitting parameter z is de�ned as

z =
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(95)

and should not be confused with the J= energy variable de�ned in (2). The parts of the matrix

element squared which are proportional to 1=s

2
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� 1=�

4

have to be expanded up to the O(�
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). Gauge

invariance ensures that in the resulting expression all terms� 1=�

4

cancel. The contributions � �=�
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are proportional to cos� and vanish after the azimuthal integration. The parts � �
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contribute to the collinear matrix element and lead to logarithmic singularities when integrated

over the solid angle (93).

For the process 
g ! J= + gg we obtain the following result for the matrix element squared

in the limit � ! 0:
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where B(x; y) = �(x)�(y)=�(x+ y) is the Beta-function. The gluon-gluon splitting function P

gg

is

given by

P

gg

= 6
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1� z
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1� z

+ z(1� z)
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: (97)

As mentioned before, the terms of the order 1=� which have not been included in (96) only give

contributions of the O(�) and thus vanish in the limit �! 0.

The infrared-collinear region of phase space (92) is illustrated in the z-�-plane in Fig.20. For

Figure 20: The infrared-col-

linear region of phase space

in the z-�-plane. The in-

frared parameter � and the

collinear parameter � are ob-

tained from s

3

= � with

s

3

� z (1 � z) (1 � cos �) and

vanish when �! 0.

k

4

! 0 (z ! 0) and k

3

! 0 (z ! 1), the matrix element squared can be approximated by the

expressions (89) and (90), respectively, while for � ! 0 the collinear limit (96) has to be used. It is
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clear from (89), (90) and (96) that in the infrared-collinear region, i.e. in the upper left and right

corner in Fig.20, both approximations are identical.

In order to obtain a result for the matrix element squared in the region s

3

< � which is Lorentz-

frame independent, the splitting function P

gg

of the collinear cross section can be rewritten in terms

of invariant variables according to

1

6
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(z) =

�

1� z
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+
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1� z

+ z(1� z)
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4
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5
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2

+O(�) : (98)

The expression (98) is Lorentz-invariant and can be used as an eikonal factor not only for the

collinear con�guration but also for the infrared region. Note that no additional divergences have

been introduced in (98) since for k

2

kk

4

and k

2

kk

3

also the corresponding numerators vanish in the

limit � ! 0, k

2

kk

3

and k

2

kk

4

, respectively. Alternative ways of rewriting the splitting function in

terms of invariants as e.g.

1� z

z

=

p � k

3

p � k

4

+O(�) (99)

only approximate the collinear matrix element squared but can not be used to describe the infrared

region.

An explicit distinction between collinear and infrared con�gurations as has been introduced in

the centre of mass frame of the incoming partons according to (91) is no longer necessary. Using

the invariant formulation for the matrix element squared in the region s

3

< � as given by the

eikonal factor (98), the phase space integrations necessary for the calculation of the corresponding

cross section can conveniently be performed the centre of mass frame of the outgoing light partons:
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By using (20) and (100) one �nally obtains for the cross section of the process 
g ! J= + gg in

the region s

3

< �:
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(101)

with C

�

as de�ned in (37).

The collinear matrix element squared for the process 
g! J= + qq is found to be
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with the gluon-(anti)quark splitting function P

qg
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: (103)

By using the invariant expression
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we �nd for the cross section of the process 
g! J= + qq in the region s

3

< �:
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It has been checked explicitly that an expansion of the full matrix element squared in terms of

small s

3

leads to results identical to the equation above.

C The kinematics of the photon-hadron cross section

In this Appendix we discuss the kinematics of the hadronic di�erential and total cross section. The

single-particle inclusive hadronic cross section for the process
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) + P (P
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)! J= (2p) +X (106)
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; (107)

f

P

g

and f

P

q(q)

denoting the parton distributions in the proton. The hadronic invariants are de�ned

according to
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From (108) and the kinematical condition xS + T
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+ xU

1

+ 4m

2

� � one deduces
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It is convenient to rewrite the integration in terms of the J= energy variable z (2) and the

J= transverse momentum p

?

. By using the relations
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where
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The total hadronic cross section is obtained by integration over p

2
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and z:

�


P

(S;m

2

) =

Z

z

max

z

min

dz

Z

p

2

?max

p

2

?min

dp

2

?

d�


P

dp

2

?

dz

(S; p

2

?

; z;m

2

) ; (113)

with
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Finally, the p

2

?

distribution is given by
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where
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The cut-o� parameter � in the formulas above has to be included only for the calculation

of the hard-gluon cross section. In our numerical program we have rewritten the ln

i

�(i = 1; 2)

singularities of the virtual plus soft cross section as integrals over the momentum fractions of

the partons x. The corresponding contributions have then been added to the hard cross section,

cancelling the equivalent logarithms in this part so that the limit � ! 0 could safely be carried

out.
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