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We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers.

This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability. We first

demonstrate the successful performance of this method by correcting the noisy measurements of the ground-state

energy of the longitudinal Ising model. We then generalize our results to arbitrary operators and test our method

both numerically and experimentally on IBM quantum hardware. As a result, our correction method reduces

the measurement error on the quantum hardware by up to one order of magnitude. We finally discuss how to

preprocess the method and extend it to other error sources beyond measurement errors. For local Hamiltonians,

the overhead costs are polynomial in the number of qubits, even if multiqubit correlations are included.
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I. INTRODUCTION

Quantum computers have the potential to outperform

classical computers in a variety of tasks ranging from combi-

natorial optimization [1,2] over cryptography [3,4] to machine

learning [5,6]. In particular, the prospect of being able to

efficiently simulate quantum systems makes them a promising

tool for solving quantum many-body problems in physics

and chemistry. Despite recent progress, a large-scale, fault-

tolerant digital quantum computer is still not available, and

current intermediate scale devices suffer from a considerable

level of noise. Although this limits the depth of the circuits

that can be executed faithfully, these noisy intermediate-scale

quantum (NISQ) devices [7] are already able to exceed the

capabilities of classical computes in certain cases [8].

In the context of quantum many-body systems, a promis-

ing approach for exploiting the power of NISQ devices is

variational quantum simulation (VQS), a class of hybrid

quantum-classical algorithms for solving optimization prob-

lems [9,10]. These make use of a feedback loop between a

classical computer and a quantum coprocessor; the latter is

used to efficiently evaluate the cost function for a given set

of variational parameters, which are optimized on a classical

computer based on the measurement outcome obtained from

the quantum coprocessor. In particular, it has been experi-

mentally demonstrated that VQS allows for finding both the

ground state and low-lying excitations of systems relevant for

condensed matter and particle physics as well as quantum

chemistry [11–20].

NISQ devices are susceptible to errors, which can only

be partially mitigated using error-mitigation procedures (see,

e.g., Refs. [12,21–41]). In particular, the qubit measurement

is among the most error-prone operations on NISQ devices,

with error rates ranging from 8% to 30% for current hardware

[38]. These errors arise from bit flips, i.e., from erroneously

recording an outcome as 0 given it was actually 1, and vice

versa.

The goal of this paper is to mitigate these types of mea-

surement errors, in principle, for any operator, any number of

qubits, and any bit-flip probability. We develop an efficient

mitigation method that relies on cancellations of different

erroneous measurement outcomes. This cancellation results

from relative minus signs stemming from the default measure-

ment basis of current hardware, Z = diag(1,−1). The only

input requirement for this approach is the knowledge of the

different bit-flip probabilities during readout for each qubit.

Our method mainly focuses on measurement bit flips that

are uncorrelated between the qubits for multiqubit measure-

ments, which is true in good approximation in many cases

(see, e.g., Refs. [42–44]). However, our method can also be

extended to multiqubit correlations and different error sources

beyond measurement errors, as we discuss in the end of the

paper.

Our paper is organized as follows. In Sec. II, we demon-

strate the performance of our mitigation method by correcting

the noisy energy histograms for the longitudinal Ising (LI)

model [the transversal Ising (TI) model is discussed in

Appendix A 5]. For simplicity, we assume all bit-flip prob-

abilities to be equal. In Sec. III, we generalize our method

to different bit-flip probabilities and arbitrary operators. We

now correct each bit flip directly at the measurement step,

which allows us to mitigate the measurement errors of any

expectation value of any operator. In Sec. IV, we demonstrate

the experimental applicability of our method on IBM quantum
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hardware. In Sec. V, we discuss our results and compare them

to previous work. Moreover, we comment on the inclusion of

multiqubit correlations, provide an extension of our method to

mitigate relaxation errors, work out a probabilistic implemen-

tation of our method, and finally discuss preprocessing and

overhead costs. In Sec. VI, we summarize our results.

II. MITIGATION OF MEASUREMENT ERRORS

FOR ENERGY HISTOGRAMS

Throughout this article, we focus on classical bit-flip errors

(referred to as measurement or readout errors) and neglect any

other sources of error, such as gate errors and decoherence.

Thus, we assume that the quantum device prepares a pure

state |ψ〉 for N qubits, which we measure in the computational

basis

|ψ〉 =
2N −1
∑

i=0

ci|i〉. (1)

Here, |i〉 is a shorthand notation for the computational-basis

state corresponding to a bit string for the binary representation

of i (e.g., for N = 4 the state |5〉 corresponds to |0101〉). A

perfect, noise-free projective measurement would thus yield

the bit string q with probability |ci|2; however, bit flips dur-

ing readout can lead to erroneously recording j �= i instead.

Throughout the main body of this article, we make the as-

sumption that each bit flips independently of the others, which

is a good approximation on current quantum hardware (see,

e.g., Ref. [43]). Eventually, we will discuss in Sec. V how to

relax this assumption and include multiqubit correlations into

our method.

Our goal is to obtain the expectation value 〈ψ |H|ψ〉 for a

given Hamiltonian H from a quantum device. Without loss of

generality, we assume that H is of the form

H =
∑

k

hkU
∗
k OkUk, (2)

where Ok is a string of the Pauli matrices 1 and Z acting

on N qubits, and the unitary Uk transforms this string to

U ∗
k OkUk ∈ {1, X,Y, Z}⊗N . Note that throughout the paper, we

denote the adjoint of operators with asterisks. Since in an

experiment we can only measure the final state in the Z basis,

we cannot directly obtain 〈ψ |H|ψ〉. We have to determine

instead the expectation values of individual Pauli strings Ok

by applying the postrotation Uk to |ψ〉. Subsequently, we can

correlate Ok against the distribution of bit strings obtained

from the measurement. Thus, we focus throughout the paper

on Pauli strings of the form {1, Z}⊗N . Moreover, in the fol-

lowing we assume that each summand U ∗
k OkUk in Eq. (2) is

measured separately. For efficient implementations, multiple

summands can also be measured simultaneously, which will

be considered later (see Sec. III E).

To obtain the distribution of bit strings, we have to execute

the quantum circuit preparing Uk|ψ〉 a number of times and

record the measurement outcome for each run. Throughout

the paper, we refer to this number of repetitions as the number

of shots s.

A. Prediction for the longitudinal Ising model

As a pedagogical introductory example that illustrates the

basic idea of our method, let us briefly analyze the noisy

energy histograms of the LI model with periodic boundary

conditions. For this, we assume for simplicity that all bit-

flip probabilities are equal, p(|0〉 → |1〉) = p(|1〉 → |0〉) =:

p, for all qubits. We will explain all technical details of this

example in Appendix A, and we will also discuss the TI model

in Appendix A 5. We will turn to the more general case in

Sec. III, where we will discuss different bit-flip probabilities,

arbitrary operators, and arbitrary (pure or mixed) states.

The Hamiltonian of the LI model reads

HLI = J

N
∑

q=1

ZqZq+1 + h

N
∑

q=1

Zq, (3)

where we assume J < 0 and h > 0 and we identify N + 1 with

1. The true ground-state energy of the model is

E0 = EZZ + EZ = NJ − Nh, (4)

which is the sum of the individual ground-state energies for

h = 0 and J = 0, which we call EZZ and EZ , respectively.

Now we wish to determine the expectation E of the

noisy ground-state energy Ẽ0 measured on a quantum com-

puter, where the tilde denotes a noisy outcome. We note

that “expectation” here means the expectation with respect

to the bit-flip probability p, which should not be confused

with the quantum-mechanical expectation value of the Hamil-

tonian, 〈ψ |H|ψ〉 = E . Thus, the expectation EH̃ is the

expected value (as an operator to be measured subject to

bit flips; see also Sec. III) for the noisy Hamiltonian H̃,

while E〈ψ |H̃|ψ〉 = EẼ is the expected value for the noisy

(quantum-mechanical) expectation value 〈ψ |H̃|ψ〉 = Ẽ .

To determine the noisy expectation of E0 in Eq. (4), we

will first discuss a single Zq operator, then a single ZqZq+1

operator, and finally we will take the sum over all qubits to

recover the LI model. Starting with a single Zq operator, we

notice the following:

(i) If there are no bit flips and both possible measure-

ment outcomes for the qubit are recorded correctly, i.e.,

|0〉 1−p−−→ |0〉, |1〉 1−p−−→ |1〉, we measure the true expectation

value 〈ψ |Z|ψ〉 with probability (1 − p)2.

(ii) If there are two bit flips and both measurement out-

comes are recorded incorrectly, i.e., |0〉 p−→ |1〉, |1〉 p−→ |0〉, we

measure the negative expectation value −〈ψ |Z|ψ〉 (due to

〈1|Z|1〉 = −〈0|Z|0〉) with probability p2.

(iii) If there are single bit flips and one possible measure-

ment outcome is recorded correctly, while the other one is

recorded incorrectly, i.e., |0〉 p−→ |1〉, |1〉 1−p−−→ |1〉 or |0〉 1−p−−→
|0〉, |1〉 p−→ |0〉, we measure outcomes with opposite signs that

cancel identically.

Thus, in total we get the expectation

E〈ψ |Z̃|ψ〉 = (1 − p)2〈ψ |Z|ψ〉 + p2(−〈ψ |Z|ψ〉)

= (1 − 2p)〈ψ |Z|ψ〉. (5)

For a single ZqZq+1 operator, we get three different nonzero

outcomes:
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(i) The absence of any bit flip gives the true expectation

value 〈ψ |ZqZq+1|ψ〉 with probability (1 − p)2, just as before.

(ii) Total bit flips, |0〉 p−→ |1〉 and |1〉 p−→ |0〉 for both

qubits, also give 〈ψ |ZqZq+1|ψ〉 (due to 〈00|Z1Z2|00〉 =
〈11|Z1Z2|11〉) with probability p2, unlike before.

(iii) Total bit flips for one qubit but no bit flip for the other

qubit gives the negative expectation value −〈ψ |ZqZq+1|ψ〉
with a combined probability of p(1 − p) + (1 − p)p =
2p(1 − p).

All other possible outcomes cancel identically, similar to

the third case discussed previously for the 〈ψ |Z|ψ〉 case. In

total, this yields

E〈ψ |Z̃qZ̃q+1|ψ〉
= (1 − p)2〈ψ |ZqZq+1|ψ〉 + p2〈ψ |ZqZq+1|ψ〉

+ 2p(1 − p)(−〈ψ |ZqZq+1|ψ〉)

= (1 − 2p)2〈ψ |ZqZq+1|ψ〉. (6)

A more detailed derivation of these results can be found in

Appendix A and Sec. III C.

Finally, to derive the noisy expectation of the full ground-

state energy E0 in Eq. (4), we can sum Eqs. (5) and (6) over

the N different qubits. Thus, the final result for the LI model

reads

EẼ0 = (1 − 2p)EZ + (1 − 2p)2EZZ . (7)

Our method allows us to predict the variance of the noisy

energy histograms as well, as we will explain in detail in

Sec. III E and Appendix B. Based on these results, Fig. 1

shows the resulting energy histograms for the ground state

of HLI with different choices of the parameters N , J , h, s,

and p, where we measure the ground state 2048 times for

each parameter combination. The noise model, with the mean

energy from Eq. (7) and the variance from Eq. (B17), agrees

with the data for all the parameters. Indeed, our prediction

(solid orange line in Fig. 1) perfectly matches the fitted data

of the histogram (dashed black line). This allows us to retrieve

the true ground-state energy E0 (dashed green line) using

Eq. (7).

III. MITIGATION OF MEASUREMENT ERRORS

FOR ARBITRARY OPERATORS

In this section, we generalize our previous results to arbi-

trary operators acting on Q different qubits q = 1, . . . , Q �

N , where N is the total number of qubits in the system (in-

cluding the ones the operators are not acting on). We also

generalize our previous results to allow for different bit-flip

probabilities, p(|0〉 → |1〉) �= p(|1〉 → |0〉), which can also

differ among the qubits.

These generalizations are greatly aided by a change in

point of view. Whereas previously we treated the bit-flip er-

ror as part of the measurement process, i.e., we projectively

measured the state |ψ〉 onto a basis bit string and randomly

flipped the bits of this bit string, we now consider the bit flip

as part of the operator. In other words, the measurement pro-

cess no longer includes the bit flips and instead we consider

random operators to be measured. While this point of view

is conceptually very different, we will demonstrate that these

FIG. 1. Energy histograms for the LI model. The vertical dashed

green line indicates the true ground-state energy, the solid orange line

the prediction from Eqs. (7) and (B17), and the dashed black line a fit

to the data. The left column corresponds to N = 4, J = −1, h = 2,

and s = 2048 with (a) p = 0.05, (c) p = 0.50, and (e) p = 0.95. The

right column shows varied N , h, and s: (b) h = 1, (d) s = 256, and

(f) N = 8.

random operators yield a distribution of measurements that

precisely coincides with the distribution of measurements for

a nonrandom operator subject to bit flips.

Our analysis will be split into four parts. First, we will

consider a single Z operator acting on a single qubit while

allowing for different bit-flip probabilities, p(|0〉 → |1〉) �=
p(|1〉 → |0〉), in Sec. III A. In particular, we will compute the

operator’s expectation as a random operator subject to classi-

cal bit flips during measurement. This computation will be the

stepping stone to subsequently construct the expectations for

noisy measurements of ZQ ⊗ · · · ⊗ Z1 operators with Q > 1

in Sec. III B. This construction is inductive with respect to

Q and will allow us to construct a classical bit-flip correc-

tion procedure for the noisy measurement of ZQ ⊗ · · · ⊗ Z1.

It is important to note that the classical bit-flip correction

procedure can be preprocessed (replacing the operator to be

measured; see Sec. V E) as well as postprocessed (measuring

the necessary information first and then extracting the bit-flip

corrected expectation values from the measured data).

In Sec. III C, we will consider the special case of equal

bit-flip probabilities for all qubits to compare the results

directly to Sec. II. In Sec. III D, we will generalize the clas-

sical bit-flip correction procedure to arbitrary operators that

are measured from bit-string distributions of the state |ψ〉.
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We note that Sec. III D denotes a change in measurement

paradigm compared to the previous sections, which affects the

variance of the histogram means. We will discuss the different

measurement paradigms in detail in Sec. III E and return to

the TI model for an explicit illustration. The derivation of the

corresponding variances is provided in Appendix B.

A. Measurement of a single Z operator

1. Prediction for the noisy expectation value

For Q = 1 and arbitrary N , the noise-free operator Zq gets

replaced by the random noisy operator Z̃q, which can take the

following values:

(i) Zq with probability (1 − pq,0)(1 − pq,1).

(ii) −1q with probability pq,0(1 − pq,1).

(iii) 1q with probability (1 − pq,0)pq,1.

(iv) −Zq with probability pq,0 pq,1.

Here, pq,b is the probability of flipping the qubit q given

that it is in the state b = |0〉 or |1〉. For example, p3,0 is the

probability of flipping |0〉 → |1〉 for qubit 3.

Then, we obtain the noisy expectation EZ̃q for the random

operator Z̃q,

EZ̃q = (1 − pq,0 − pq,1)Zq + (pq,1 − pq,0)1q, (8)

which reduces to Eq. (5) for pq,0 = pq,1 =: p. As before,

“expectation” here means the expectation with respect to the

bit-flip probabilities, which should not be confused with the

quantum-mechanical expectation value 〈ψ |O|ψ〉 of the op-

erator O. The expectation EÕ is the expected value (as an

operator) for the noisy operator Õ, while E〈ψ |Õ|ψ〉 is the

expected value for the noisy (quantum-mechanical) expecta-

tion value 〈ψ |Õ|ψ〉 of the operator Õ.

2. Density matrix description and visualization

of measurement noise

For the single-qubit case, it is instructive to express our

results in terms of density matrices. Starting from an arbitrary

single-qubit density operator,

ρ = (1 + 	r · 	σ )/2, (9)

where 	r is a real vector with ‖	r‖ � 1, and 	σ is the vector

containing the Pauli matrices, any quantum channel acting on

the state ρ is an affine linear map,

	r �→ 	r ′ = M	r + 	c, (10)

where M is a 3 × 3 real matrix and 	c is a constant real vector

[45]. In particular, a noise-free projective measurement in

the computational basis corresponds to a unital channel with

M = diag(0, 0, 1) and 	c = 0. For an arbitrary pure single-

qubit state, |ψ〉 = α|0〉 + β|1〉, with density operator

ρ =
(|α|2 αβ∗

βα∗ |β|2
)

, (11)

such a projective measurement yields the classical mixture

ρc = diag(|α|2, |β|2).

In the case of a noisy measurement, the bit flips change

the classical state that one obtains after the measurement.

As discussed above, (i) with probability (1 − p0)(1 − p1) we

obtain the original state, (ii) with probability p0(1 − p1) the

|0〉 flips to a |1〉, (iii) with probability (1 − p0)p1 the |1〉 flips

to a |0〉, and (iv) with probability p0 p1 both measurement

outcomes flip. The resulting classical state can be expressed

as a convex linear combination of the different outcomes,

ρ̃c =
(|α|2 0

0 |β|2
)

(1 − p0)(1 − p1) +
(

0 0

0 1

)

p0(1 − p1) +
(

1 0

0 0

)

p1(1 − p0) +
(|β|2 0

0 |α|2
)

p1 p0

=
(

(1 − p0 − p1)|α|2 + p1 0

0 (1 − p0 − p1)|β|2 + p0

)

. (12)

The expectation value of the Zq operator then reads

〈Z̃q〉 = Tr(ρ̃cZq)

= (1 − p0 − p1)(|α|2 − |β|2) + p1 − p0, (13)

which is equivalent to computing the quantum expectation

value of Eq. (8), Tr(ρ EZ̃q).

Moreover, we see that Eq. (12) arises from the original

density operator ρ by applying the quantum channel

M̃ =







0

0

1 − p0 − p1






, 	̃c =







0

0

p1 − p0






. (14)

From the equation above, it is apparent that the channel is

no longer unital. For p0 = p1, all quantum states ρ in the

equatorial plane of the Bloch sphere, corresponding to rz = 0,

are unaffected. The closer the state is to the polar region of

the sphere, the more pronounced is the effect of the mea-

surement errors. Compared to the classical state ρc obtained

from a noise-free projective measurement, the Bloch vector

corresponding to ρ̃c is shortened because of M̃, and translated

along the z axis by 	̃c (see Fig. 2). Moreover, for p0 + p1 = 1,

the channel maps any state to the same point inside the Bloch

sphere. As a result, our mitigation method is not applicable to

that special case, which will be further discussed in the next

section.

B. Measurement of ZQ ⊗ · · · ⊗ Z1 operators

Going beyond Q = 1, we can now compute the noisy ex-

pectations for arbitrary operators ZQ ⊗ · · · ⊗ Z1 with Q > 1

and arbitrary N . For this, we assume that the expectations

of the individual operators can be measured independently of
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FIG. 2. Left panel: possible range of Bloch vectors of the classi-

cal states ρc obtained from a noise-free projective measurement in the

computational basis. Right panel: deformed range of Bloch vectors

corresponding to the classical state ρ̃c resulting from a measurement

in the presence of measurement noise.

each other. In this case, the noisy expectation of the tensor

product Z̃Q ⊗ · · · ⊗ Z̃1 equals the tensor product of the indi-

vidual noisy expectations,

E(Z̃Q ⊗ · · · ⊗ Z̃1) = EZ̃Q ⊗ · · · ⊗ EZ̃1. (15)

Equation (15) can be proven by considering two differ-

ent noisy operators Õ1 and Õ2 acting on different qubits,

and defining their conditional expectations E
Õ1 Õ1 =: �1 and

E
Õ2 Õ2 =: �2. The term “conditional” here means that the

expectations are only taken with respect to the qubits on which

the operators are acting, leaving the other qubits untouched.

Now, if we assume Õ1 takes the values χα with probabilities

pα , for example Õ1 = Z̃q could take χα ∈ {Zq,−1q,1q,−Zq}
as above, then we observe

E(Õ1 ⊗ Õ2) =
∑

α

pα E
Õ2 (χα ⊗ Õ2)

=
∑

α

pα χα ⊗ �2 = �1 ⊗ �2, (16)

which directly yields Eq. (15).

Our final goal is to reconstruct the noise-free quantum-

mechanical expectation value 〈ψ |O|ψ〉 of an arbitrary

operator O = OQ ⊗ · · · ⊗ O1 ∈ {1, Z}⊗Q from its noisy mea-

surement. To this end, we need to find a matrix ω−1 that

multiplies the noisy expectations E〈ψ |Õ|ψ〉 and yields the

noise-free expectation values 〈ψ |O|ψ〉,

〈ψ |O|ψ〉 =
∑

Õ∈{1,Z}⊗Q

ω−1

O,Õ
E〈ψ |Õ|ψ〉. (17)

For this, we first express the noisy expectation of Z̃Q ⊗ · · · ⊗
Z̃1 in Eq. (15) in terms of the noise-free operators OQ ⊗ · · · ⊗
O1. Using Eq. (8), we find

E(Z̃Q ⊗ · · · ⊗ Z̃1)

=
∑

O∈{1,Z}⊗Q

γ (OQ)OQ ⊗ · · · ⊗ γ (O1)O1, (18)

where the coefficients γ in front of the noise-free operators

are defined as

γ (Oq) :=
{

1 − pq,0 − pq,1 for Oq = Zq,

pq,1 − pq,0 for Oq = 1q.
(19)

To construct the value of E(Z̃Q ⊗ · · · ⊗ Z̃1) in Eq. (18) induc-

tively, it is advantageous to choose the “lexicographic order”


 for both the noise-free operators O ∈ {1, Z}⊗Q and the

noisy operators Õ ∈ {1, Z}⊗Q,

13 ⊗ 12 ⊗ 11 
 13 ⊗ 12 ⊗ Z1


13 ⊗ Z2 ⊗ 11 
 13 ⊗ Z2 ⊗ Z1


Z3 ⊗ 12 ⊗ 11 
 Z3 ⊗ 12 ⊗ Z1


Z3 ⊗ Z2 ⊗ 11 
 Z3 ⊗ Z2 ⊗ Z1 
 · · · . (20)

This choice implies OQ ⊗ · · · ⊗ O1 
 ZQ ⊗ · · · ⊗ Z1 and will

later ensure that the matrix ω in Eq. (17) is a lower triangular

matrix, which is invertible as long as none of its diagonal en-

tries vanish. To determine the matrix ω, we need to generalize

Eq. (18) to arbitrary noisy operators,

E(ÕQ ⊗ · · · ⊗ Õ1)

=
∑

O∈{1,Z}⊗Q

Ŵ(OQ|ÕQ)OQ ⊗ · · · ⊗ Ŵ(O1|Õ1)O1, (21)

where the coefficients Ŵ in front of the noise-free operators

are now defined as

Ŵ(Oq|Õq) =











γ (Oq) for Õq = Z̃q,

1 for Oq = 1q ∧ Õq = 1̃q,

0 for Oq = Zq ∧ Õq = 1̃q.

(22)

Using this definition, we can now define the matrix ω as

ω(O|Õ) :=
Q

∏

q=1

Ŵ(Oq|Õq),

ω := [ω(O|Õ)]Õ,O∈{1,Z}⊗Q . (23)

It is important to note that Õ ≺ O implies ω(O|Õ) = 0. In

other words, ω is a lower triangular matrix and therefore is

invertible as long as none of its diagonal entries vanish. The

diagonal entries are
∏Q

q=1 Ŵ(Oq|Õq) and thus can only vanish

if one of the γ (Zq) vanishes, i.e., ω is invertible as long as

∀ q : pq,0 + pq,1 �= 1. If that is the case, then we obtain the

bit-flip corrected operators

(O)O∈{1,Z}⊗Q = ω−1(EÕ)Õ∈{1,Z}⊗Q . (24)

In particular, for O = Z2 ⊗ Z1, we obtain

Z2 ⊗ Z1 = 1

γ (Z2)γ (Z1)
E(Z̃2 ⊗ Z̃1) − γ (11)

γ (Z2)γ (Z1)
E(Z̃2) ⊗11

− γ (12)

γ (Z2)γ (Z1)
12 ⊗ E(Z̃1) + γ (12)γ (11)

γ (Z2)γ (Z1)
12 ⊗11.

(25)

In Fig. 3, we show the relative error for the bit-flip cor-

rected expectation value of 〈ψ |Z̃Q ⊗ · · · ⊗ Z̃1|ψ〉, as retrieved

from histogram data using Eq. (17), compared to the bit-flip
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FIG. 3. Mean value �rel,av (blue dots, left y-axis) and standard

deviations σ (�rel,av) (orange triangles, right y-axis) of the relative

error for the bit-flip corrected expectation values of 〈ψ |Z̃Q ⊗ · · · ⊗
Z̃1|ψ〉, as retrieved from histogram data using Eq. (17), compared to

the “true” bit-flip free expectation values of 〈ψ |ZQ ⊗ · · · ⊗ Z1|ψ〉;
see Eq. (26). Shown are the four different operators (a) Z1, (b) Z2 ⊗
Z1, (c) Z3 ⊗ Z2 ⊗ Z1, and (d) Z4 ⊗ Z3 ⊗ Z2 ⊗ Z1. The average rel-

ative errors are fitted with a power law in the number of shots

s, y(s) ∝ sα (green lines); the slopes obtained are indicated in the

different panels. The standard deviations of the relative errors are

extracted from 212 = 4096 random states |ψ〉 and random bit-flip

probabilities pq,b.

free expectation value 〈ψ |ZQ ⊗ · · · ⊗ Z1|ψ〉:

�rel = |〈ψ |Z̃Q ⊗ · · · ⊗ Z̃1|ψ〉 − 〈ψ |ZQ ⊗ · · · ⊗ Z1|ψ〉|
|〈ψ |ZQ ⊗ · · · ⊗ Z1|ψ〉| .

(26)

We also plot the standard deviation of this relative error, alter-

natively to plotting the error bars. Figure 3 also contains a fit

y(s) = Cs−α of the relative error in Eq. (26), where s is again

the number of shots, i.e., the number of 〈ψ |Z̃Q ⊗ · · · ⊗ Z̃1|ψ〉
evaluations needed to produce the histogram. In particular, the

fit indicates Monte-Carlo-type convergence α ≈ 1/2 for Q ∈
{1, 2, 3, 4}. Figure 3 has been generated using 212 = 4096

random states |ψ〉 satisfying |〈ψ |ZQ ⊗ · · · ⊗ Z1|ψ〉| � 0.25

to avoid dividing by small numbers when computing relative

errors. For each |ψ〉 we randomly chose the bit-flip probabili-

ties pq,b uniformly in (0.05,0.25).

C. Measurement of ZQ ⊗ · · · ⊗ Z1 operators

assuming equal bit-flip probabilities

To compare the results of the previous two subsections

with the results obtained in Sec. II, we now set all bit-flip

probabilities pq,b = p to be equal. For the case Q = 1, the

expectation EZ̃q in Eq. (8) reduces to

EZ̃q = (1 − 2p)Zq, (27)

in agreement with Eq. (5). For Q > 1, the expectation in

Eq. (15) reduces to

E(Z̃Q ⊗ · · · ⊗ Z̃1) = (1 − 2p)Q ZQ ⊗ · · · ⊗ Z1, (28)

which yields Eq. (6) for Q = 2. This implies that the matrix ω

in Eq. (23) becomes diagonal with

E(ÕQ ⊗ · · · ⊗ Õ1) = (1 − 2p)#Z (O)OQ ⊗ · · · ⊗ O1, (29)

where #Z (O) is the number of terms Oq = Zq in the tensor

product O = ON ⊗ · · · ⊗ O1. In particular, ω is invertible as

long as p �= 1/2. We again observe in Eqs. (28) and (29) that

the noisy expectations of arbitrary operators can be related

to the true operators in a surprisingly simple way, which

requires no knowledge of the quantum hardware apart from

the different bit-flip probabilities of the qubits.

D. Measurement of general operators H from

bit-string distributions of |ψ〉

1. Prediction for the noisy expectation value

Our analysis of the bit-flip error above assumed that we

measure general operators H by expressing them as linear

combinations of operators U ∗OU with O ∈ {1, Z}⊗N on an

N-qubit machine, and by measuring each O independently

(U being the transformation into the Z basis). For exam-

ple, if we are interested in measuring HZZ = J
∑N

i=1 ZiZi+1

with N = 3 qubits, then we generate independent histograms

for 〈ψ |13 ⊗ Z2 ⊗ Z1|ψ〉, 〈ψ |Z3 ⊗ Z2 ⊗ 11|ψ〉, and 〈ψ |Z3 ⊗
12 ⊗ Z1|ψ〉, we extract their expectation values, and we re-

cover 〈ψ |HZZ |ψ〉 accordingly. Alternatively, we can measure

the distribution of |ψ〉 and obtain a single histogram in

terms of the computational basis {| j〉; j ∈ N0,<2N }. Hence,

if the probability of measuring | j〉 is p j , then we can recover

〈ψ |HZZ |ψ〉 from
∑

j p j〈 j|H| j〉. While both approaches yield

the same expectation value, the variance obtained for both

approaches will in general be different, as we will discuss

further below.

Moreover, for a general Hamiltonian H, the full expecta-

tion value 〈ψ |H|ψ〉 cannot always be recovered from a single

histogram via
∑

j p j〈 j|H| j〉. For example, if we are interested

in measuring the TI Hamiltonian HTI = J
∑N

i=1 ZiZi+1 +
h

∑N
i=1 Xi, we cannot directly recover the full expectation

value 〈ψ |HTI|ψ〉 from measuring the distribution of |ψ〉,
because the terms in the Hamiltonian do not all commute.
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FIG. 4. Contributions to the variance of histogram means for the

bit-flip corrected TI Hamiltonian in Eq. (37) evaluated on the ground

state of the “true” TI Hamiltonian in Eq. (A12). The different bars

correspond to the bit-flip (BF, blue) and quantum-mechanical (QM,

orange) variance contributions for the three different measurement

methods. We used the parameters N = 4, J = −1, h = 2, and pq,b =
p = 0.05. All values are normalized by setting s = 1.

However, as we discussed below Eq. (2), an efficient im-

plementation on the quantum hardware can be achieved by

splitting the Hamiltonian into two sums of Pauli strings

U ∗
k OkUk ∈ {1, X,Y, Z}⊗N , where multiple summands of the

Hamiltonian are measured simultaneously. For example, both

HZZ = J
∑N

i=1 ZiZi+1 and HX = h
∑N

i=1 Xi can be measured

using bit-string distributions. Here, HZZ can be measured di-

rectly by using the bit-string distribution of the state |ψ〉, and

HX can be measured by using h
∑N

i=1 Zi and the bit-string dis-

tribution of the state H⊗N |ψ〉, i.e., after applying a Hadamard

gate H on each qubit. Hence, using the bit-string distribution,

we can measure all the ZZ terms and all the X terms in

the TI Hamiltonian simultaneously. In other words, we are

only required to measure two bit-string distributions instead of

measuring each of the 2N Pauli terms separately. This allows

for an efficient implementation on the quantum hardware.
If we measure the distribution of |ψ〉, the measurements

of 〈ψ |U ∗OU |ψ〉 comprising 〈ψ |H|ψ〉 are no longer inde-
pendent. This has an impact on the variance of measurement
histograms, as we will discuss in Sec. III E. However, it has no
impact on the expectation subject to bit flips, since linearity of
the expectation value implies

E〈ψ |H̃|ψ〉 = E〈ψ |
∑

α

λαU ∗
α ÕαUα|ψ〉

= 〈ψ |
∑

α

λαU ∗
α (EÕα )Uα|ψ〉, (30)

which is precisely the expression we would obtain from sum-
ming the independently measured operators Õα .

2. Prediction for the bit-flip corrected operator

To correct for bit flips in this setting, we need to keep

in mind that the general case requires measurements of all

operators O 
 Oα (with respect to the lexicographic order


 on {1, Z}⊗N ) for all operators Oα in H = ∑

α λαU ∗
α OαUα .

Hence, the histogram for 〈ψ |H̃|ψ〉 does not contain sufficient

information. However, we can use the classical bit-flip correc-

tion method as discussed above to find coefficients ωα,O such

that

Oα =
∑

O
Oα

ωα,OEÕ (31)

holds. Inserting this into H, we can express H as

H =
∑

α

λαU ∗
α

∑

O
Oα

ωα,OEÕUα. (32)

In other words, we can replace the operator H by the bit-flip

corrected noisy operator

H̃bfc :=
∑

α

λαU ∗
α

∑

O
Oα

ωα,OÕUα (33)

and obtain

E〈ψ |H̃bfc|ψ〉 = 〈ψ |H|ψ〉. (34)

3. Prediction for equal bit-flip probabilities

To compare our results to Secs. II and III C, let us assume

that the bit-flip probabilities pq,b satisfy pq,0 = pq,1 = pq, i.e.,

there is no difference between p(|0〉 → |1〉) and p(|1〉 → |0〉)

for each qubit, but this value might depend on the individual

qubit. Then we obtain ωα,O = 0 unless O = Oα = Oα,N ⊗
· · · ⊗ Oα,1, for which we find

ωα,Oα
=: ωα =

∏

q

1

(1 − 2pq)
, (35)

where q ranges over all qubits satisfying Oα,q = Zq. For

pq,b = p, this result agrees with Eqs. (5), (6), and (28).

Thus, the bit-flip corrected noisy operator

H̃bfc :=
∑

α

λαωαU ∗
α ÕαUα (36)

has the same Pauli-sum structure as the original operator H,

changing only the coefficients. This is completely analogous

to the independent measurement case. In both cases, if we

have pq,0 = pq,1, then we can correct for bit flips without

additional cost to the quantum device.

E. Impact of measurement choices

In general, we will extract the quantum-mechanical ex-

pectation of an operator by running the circuit preparing |ψ〉
followed by a projective measurement in the computational

basis a number of times. As before, we refer to these repeti-

tions as the number of shots, s. Of course, these shots are still

subject to statistical fluctuations. Hence, if we generate Nhist

histograms with s shots each, we can generate a histogram

from the means extracted from each histogram. This will yield

results as in Figs. 1 and 7. Using bit-flip corrected operators as

in Eq. (33), we can shift the expected mean to coincide with

the quantum-mechanical expectation of the operator we wish

to measure. However, the variance of histogram means is then

highly dependent on the measurement paradigm.

For illustration, let us consider the TI model HTI =
J

∑N
j=1 Z jZ j+1 + h

∑N
j=1 X j , which we will measure on the

ground state |ψ〉. The first step is to compute the bit-flip

corrected noisy Hamiltonian H̃TI,bfc. For simplicity, we will
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FIG. 5. Mean value �1,abs,av (blue dots, left y-axes) and standard deviation σ (�1,abs,av) (orange triangles, right y-axes) of the absolute error

in Eq. (38) after applying the correction procedure (filled symbols) and without it (open symbols) as a function of the number of shots s. The

panels in the upper row correspond to data obtained for ibmq_london, the panels in the lower row to data obtained for ibmq_burlington. The

different columns correspond to a classical simulation of the quantum device taking into account only readout error (first column), the full

hardware noise model (second column), and data obtained on actual quantum hardware (third column). The solid green lines correspond to a

power-law fit to all our data points for the mean absolute error, while the red dashed lines correspond to a fit including the lowest four number

of shots. The vertical gray dashed lines in panels (a),(b) and (d),(e) indicate the maximum number of shots that can be executed on the actual

hardware.

assume that all bit-flip probabilities pq,b coincide with some

value p. This yields

H̃TI,bfc = Jp

N
∑

j=1

Z̃ j Z̃ j+1 + hp

N
∑

j=1

X̃ j (37)

with Jp := J (1 − 2p)−2 and hp := h(1 − 2p)−1. Of course,

this process changes the variances. In particular, since Figs. 1

and 7 show histograms without the bit-flip correction, the

prediction of variances in Fig. 1 (and Fig. 7 in Appendix A)

uses J and h instead of Jp and hp.

At this point, we need to decide upon the precise way of

measuring the Hamiltonian. Essentially, we have a spectrum

of possibilities that contains three interesting cases:

(i) Method 1: measure each Z̃ j Z̃ j+1 and X̃ j in Eq. (37)

independently.

(ii) Method 2: measure the entire Hamiltonian H̃TI,bfc in

Eq. (37) from distributions of |ψ〉 measurements.

(iii) Method 3: measure H̃ZZ := Jp

∑N
j=1 Z̃ j Z̃ j+1 and

H̃X := hp

∑N
j=1 X̃ j independently from distributions of |ψ〉

measurements.

Methods 1 and 2 are the two extremes discussed in

Secs. III A–III C and Sec. III D, respectively. Note that

Method 2 would require us to perform global projective

measurements in the eigenbasis of the Hamiltonian, and

therefore it is in general not applicable on real hardware

devices. Nevertheless, the results allow us to quantify the

effect of the bit-flip variance for the idealized setting where

the quantum-mechanical contribution to the variance vanishes

(up to statistical fluctuations due to a finite number of shots).

Method 3 is a reasonable compromise, and it is precisely

the method we used for Figs. 1 and 7. Method 3 is also an

example that is closely related to implementations of quantum

algorithms that are optimized for the number of calls to the

quantum device, i.e., implementations in which only parts of

an operator can be measured simultaneously, and both Meth-

ods 1 and 2 are impractical to various degrees.

The variance of histogram means has two contributions:

bit-flip variance and quantum-mechanical variance. These

contributions for each of the three methods are shown in

Fig. 4. The derivation of these variances can be found in

Appendix B; in particular, Fig. 4 shows Eqs. (B19), (B21), and

(B24). To remove the dependence on the number of shots per

histogram, all variances are multiplied by the number of shots
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s, i.e., all values in Fig. 4 correspond to the normalization

s = 1.

It is interesting to note that not only does the full variance

vary in magnitude, but also the relative contribution from bit

flips and quantum mechanics is vastly different between the

three methods.

If we compare the two extremes—Method 1 and Method

2—we notice that for Method 1 the bit-flip induced vari-

ance is small compared to the quantum-mechanical variance,

whereas for Method 2 the situation is reversed. Generi-

cally, this pattern is to be expected. Method 1 is likely to

produce a much smaller bit-flip contribution since all sum-

mands are measured independently. Meanwhile, measuring

with Method 2 introduces O(4N ) covariance terms, which

vanish in Method 1 due to independent measurements of

summands. Moreover, concerning Method 2, we note that

the quantum-mechanical variance vanishes upon evaluation

on an eigenstate of the operator. In Fig. 4, we evaluated the

bit-flip corrected TI Hamiltonian H̃TI,bfc = Jp

∑N
j=1 Z̃ j Z̃ j+1 +

hp

∑N
j=1 X̃ j with equal bit-flip probabilities pq,b = p = 0.05

on the ground state of the “true” TI Hamiltonian HTI =
J

∑N
j=1 Z jZ j+1 + h

∑N
j=1 X j . For small values of p, we can

interpret the bit-flip correction as a small perturbation to the

original operator. Hence, the ground state of HTI is close to

an eigenstate of H̃TI,bfc, and thus the quantum-mechanical

contribution to the variance is small.

For intermediate methods, such as Method 3, it is generally

difficult to predict the different contributions to the variance

using similar arguments as above. Depending on the practical

limitation of any given implementation, it will be imperative

to balance the different contributions to the variance with

the number of quantum device calls. For example, for the

TI model, fewer quantum device calls per evaluation of the

Hamiltonian introduce more covariance terms. In turn, this

requires more quantum device calls to obtain the necessary

statistical power if we aim to extract a histogram mean with a

required level of precision. Thus, this balancing act is highly

problem-specific. However, considering Method 3 for the TI

model, it clearly shows that great care has to be taken when

constructing an intermediate method if the aim is to reduce the

overall variance on a given budget of quantum device calls.

IV. EXPERIMENTAL RESULTS

To demonstrate the experimental applicability of our mea-

surement error-mitigation method, we generate data on IBM

quantum hardware using the QISKIT software development

kit (SDK) [46]. To assess the performance of our correction

procedure, we first simulate the quantum hardware classically

using the noise models for the different backends provided by

QISKIT before we proceed to the actual hardware.

A. Single-qubit case

To begin with, let us focus on the simplest case of a single

qubit. In a first step, we determine the bit-flip probabilities

of the qubit. The probability p0 can be easily obtained by

measuring the initial state |0〉 and recording the number of

1 outcomes, while p1 requires preparing the state |1〉 through

applying a single X gate to the initial |0〉 state and recording

the number of 0 outcomes. To account for statistical fluctu-

ations, we repeat this procedure several times and average

over the bit-flip probabilities obtained for each run (see Ap-

pendix C 1 for details).

After obtaining the bit-flip probabilities, we measure

〈ψ |Z|ψ〉 for a randomly chosen |ψ〉. Starting from the initial

state |0〉, we can prepare any state on the Bloch sphere by

first applying a rotation gate around the x-axis followed by a

rotation around the z-axis. Hence, we choose the circuit

|0〉 Rx(θ0) Rz(θ1)

c

in our experiments, where the angles θ0, θ1 are both drawn

uniformly from the interval [0, 2π]. Our measurement out-

comes allow us to determine the noisy expectation value of Z ,

E(Z̃ ). Subsequently, we can apply our correction procedure

using Eq. (8). To acquire statistics for E(Z̃ ), we repeat the

process for 1050 randomly chosen |ψ〉 and monitor the mean

and the standard deviation of the absolute error,

�1,abs = |〈ψ |Z̃|ψ〉measured − 〈ψ |Z|ψ〉exact|, (38)

for both the noisy expectation value and the corrected expec-

tation value. Moreover, each individual measurement for fixed

values of θ0 and θ1 requires running the circuit multiple times

to get the probability distribution of basis states in |ψ〉. Thus

we also explore the dependence of our results on the number

of shots s.

1. Classical simulation of quantum hardware

To benchmark the performance of our correction

procedure, we first simulate ibmq_london [47] and

ibmq_burlington [48] classically. The QISKIT SDK provides

a noise model for each of the respective chips comprising

various sources of error, including readout errors during

the measurement process, which can be switched on and

off individually. To begin with, we simulate the quantum

hardware incorporating the measurement errors only, and

subsequently we use the full noise model to see the effect

of the various other errors. Our results for the mean and the

standard deviation of the absolute error as a function of s are

shown in Figs. 5(a), 5(b) and Figs. 5(d), 5(e).

First, let us comment on our results before applying the

mitigation procedure. For the case in which the only noise

present on the device is the readout error, corresponding to

Figs. 5(a) and 5(d), we can derive a relation between the

bit-flip probabilities and the saturation values for the mean

value of the absolute error in Eq. (38) (open blue dots). As

we are interested in the plateau value of the average absolute

error in the limit s → ∞, we neglect in the following the

statistical uncertainty due to a finite number of shots. Starting

from Eq. (8), we can express the absolute error as

|E〈Z̃〉 − 〈Z〉| = |−(p0 + p1)〈Z〉 + p1 − p0|. (39)

For our choice of ansatz |ψ (θ1, θ0)〉 = Rz(θ1)Rx(θ0)|0〉, a

short analytic calculation yields that 〈Z〉 = cos2(θ0/2) −
sin2(θ0/2). Note that this expression is independent of θ1.

Inserting this result into the equation above, we find

|E〈Z̃〉 − 〈Z〉| = | − 2p0 cos2(θ0/2) + 2p1 sin2(θ0/2)|. (40)
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Averaging this quantity over the angles θ0 and θ1, we find the

following expression for the average absolute error:

|E〈Z̃〉 − 〈Z〉|

= 1

4π2

∫ 2π

0

∫ 2π

0

| − 2p0 cos2(θ0/2)

+ 2p1 sin2(θ0/2)|dθ0dθ1

= 2(p0 + p1)

π

(

2 arccos

√

p1

p0 + p1

+ 2

√
p0 p1

p0 + p1

− π

2

)

+
4p1

(

π
2

− 2 arccos
√

p1

p0+p1

)

π
. (41)

For our numerical simulations using the noise model that

keeps the readout error only, the bit-flip probabilities from

the QISKIT for the ibmq_london device are p0 = 0 and p1 =
0.0317. Thus, we can insert these values into Eq. (41), which

results in a value of |E〈Z̃〉 − 〈Z〉| = p1, compatible with

the plateau value of the absolute error (open blue dots) in

Fig. 5(a). For ibmq_burlington, the noise model has the val-

ues p0 = 0.015 and p1 = 0.034, which yields |E〈Z̃〉 − 〈Z〉| ≈
0.0336, in agreement with our results in Fig. 5(d).

Now, let us comment on our results after applying the

mitigation procedure. Focusing on the case with readout er-

ror only in Figs. 5(a) and 5(d), we see that correcting our

results according to Eq. (8) clearly reduces the mean and the

standard deviation of the absolute error in both cases. Without

correction, the mean (standard deviation) of the absolute error

converges to a value around 0.03 (0.02), and increasing s

beyond 1024 does not significantly improve the results. In

particular, this stagnation already happens for values of s

below the maximum one possible on real hardware, hence

showing that the readout error severely limits the accuracy

that can be achieved. On the contrary, the corrected results

show a significant improvement and a power-law decay of

these quantities with s. In particular, in the ideal, completely

noise-free case, performing a projective measurement on |ψ〉
is nothing but sampling from a probability distribution, thus

one would expect the mean error to decay as ∝ s−1/2. To check

for that behavior, we can fit the same functional form as in

Sec. III B to our data; the resulting exponents are shown in

Table I. Indeed, we recover α = 1/2, thus demonstrating that

our correction procedure essentially allows us to recover the

noise-free case.

TABLE I. Exponents α obtained from fitting the power law Cs−α

to our simulator data for the mean absolute error in Figs. 5(a), 5(b),

and 5(d), 5(e) after applying the correction.

Readout error only First four points Full range

ibmq_london 0.519 0.501

ibmq_burlington 0.503 0.499

Full noise model First four points Full range

ibmq_london 0.508 0.500

ibmq_burlington 0.459 0.503

TABLE II. Exponents α obtained from fitting the function Cs−α

to our hardware data for the mean absolute error in Figs. 5(c) and

5(f) after applying the correction.

Chip name First four points Full range

ibmq_london 0.460 0.298

ibmq_burlington 0.405 0.217

Taking into account the full noise model in our simulations,

which contains, for instance, gate errors and decoherence, we

obtain the results in Figs. 5(b) and 5(e). Compared to the case

with readout errors only, the picture is very similar, which

shows that the dominant error contribution for the single-qubit

case is coming from the readout procedure. The mean and the

standard deviation of the absolute error without any correc-

tion only approach marginally higher values than previously.

Again, we observe a significant reduction of the mean and

the standard deviation of the absolute error after applying the

correction procedure, and a power-law decay with s. Fitting a

power law to our data yields once more exponents around 1/2

(see Table I).

2. Quantum hardware

Our experiments can be readily carried out on quan-

tum hardware, and we repeat the same simulations on

ibmq_london and ibmq_burlington. The only difference with

respect to the classical simulation is that s on those two de-

vices is limited to a maximum number of 8192. Figures 5(c)

and 5(d) show our results obtained on real devices.

Comparing our data for the chip imbq_london in Fig. 5(c)

to the classical simulation of the quantum hardware in

Figs. 5(a) and 5(b), we observe qualitative agreement for

s � 1024. Compared to the classical simulation of the quan-

tum device, the mean value and the standard deviation of

the absolute error are in general larger on the hardware.

Correcting for the readout error yields again a significant

improvement and reduces the mean and the standard deviation

of absolute error considerably. As before, we can fit our data

to a power law. While for a small number of shots about

s < 500 we observe again an exponent of about 1/2, for a

larger number of measurements the curve for the corrected

result starts to flatten out, and the exponent obtained for fitting

the entire range is considerably smaller than 1/2 (see Table II

for details). Since increasing s should decrease the inherent

statistical fluctuations of the projective measurements, and

readout errors can be managed with our scheme, this might

be an indication that in addition to readout errors, also other

sources of noise play a significant role. Their effects cannot be

corrected with our procedure and thus dominate from a certain

point on.

Looking at the results for imbq_burlington in Fig. 5(f)

and comparing them with the classical simulation of the

quantum hardware in Figs. 5(d) and 5(e), we see that the

discrepancies in this case are more severe and the data are

less consistent. Applying our mitigation to the data again

yields an improvement, which is less pronounced than in the

case of imbq_london. For a small number of shots, the mean

of the absolute error after correction shows again roughly a
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power-law decay. The exponent obtained from a fit to our data

in that range is smaller compared to the one from our data

from ibmq_london (see Table II for details). From s = 1024

on, the uncorrected data are already less consistent. Making

use of our mitigation scheme still yields an improvement,

however the corrected results scatter similarly to the original

ones and do not follow the same power law as for a small

number of shots, as a fit to our data reveals. This suggests that

noise other than the one resulting from the measurement has

a considerable contribution.

B. Two-qubit case

Since our bit-flip correction procedure is not limited to

the single-qubit setup, we can straightforwardly apply it to

multiple qubits. To assess the performance for that case, we

repeat the same procedure that we did previously but now for a

circuit encompassing two qubits. Since we assume the bit-flip

probabilities pq,b (with q = 1, 2, b = 0, 1) of the qubits to be

independent of each other, we apply the same procedure that

we used to obtain the bit-flip probabilities in the single-qubit

case, but this time for each qubit individually.

Subsequently, we prepare a two-qubit state using the fol-

lowing circuit:

|0〉 Rx(θ0) Rz(θ1) •

|0〉 Rx(θ2) Rz(θ3)

c

where the angles θ0, . . . , θ3 are again random numbers drawn

uniformly from [0, 2π], and the final CNOT gate allows for

creating entanglement between the two qubits. Analogous to

the single-qubit case, we first simulate the quantum hardware

classically before we eventually carry out our experiments on

a real quantum device. In both cases, we measure the noisy

expectation value of Z2 ⊗ Z1, E(Z̃2 ⊗ Z̃1), and apply Eq. (17)

to correct for noise caused by readout errors. Again, we repeat

the procedure for 1050 randomly chosen sets of angles and

compute the mean and the standard deviation of the absolute

error,

�2,abs = |〈ψ |Z̃2 ⊗ Z̃1|ψ〉measured − 〈ψ |Z2 ⊗ Z1|ψ〉exact|,

(42)

as a function of the number of shots, s, with and without

applying the mitigation scheme.

1. Classical simulation of quantum hardware

As for the single-qubit case, we use the QISKIT

SDK to classically simulate the chips imq_london and

ibmq_burlington first with readout error only and subse-

quently using the full noise model. Figures 6(a), 6(b) and 6(d),

6(e) show our results for both cases.

Looking at Figs. 6(a) and 6(d), we see that the two-qubit

case with just readout error behaves like the single-qubit case.

Without applying any correction, the mean and the standard

deviation of the absolute error initially decrease with in-

creasing s, before eventually converging to fixed values that

are slightly higher than for the single-qubit case [compare

Fig. 5(a) with Fig. 6(a) and Fig. 5(b) with Fig. 6(b)]. Applying

the correction procedure, we can significantly decrease the

values and observe again a power-law decay with an exponent

of 1/2 over the entire range of s that we study, as a fit to our

corrected data reveals (see also Table III).

Repeating the same simulations, but this time with the

full noise model, yields the results in Figs. 6(b) and 6(e).

Comparing this to the case with readout error only, we see

a more pronounced effect than in the single-qubit case. Ap-

plying the correction still reduces the mean and the standard

deviation of the absolute error considerably, nevertheless one

can observe that data after correction converge to a fixed

value with increasing s. In particular, the power-law decay

with α = 1/2 is only present for a small number of shots.

Considering the entire range of s that we study, the classical

simulation of ibmq_london predicts that the data are not very

compatible with a power law. In contrast, our simulation data

for ibmq_burlington are still reasonably well described by

a power law, however with an exponent of 0.38 and thus

considerably smaller than 1/2 (see Table III for details). Most

notably, from a comparison between the results for classically

simulating two qubits using the full noise model to the single-

qubit case in Figs. 5(b) and 5(e), we see that noise has a

substantially larger effect in the two-qubit case. This can be

partially explained by the CNOT gate in the circuit, as the error

rates for two-qubit gates are in general much larger than for

single-qubit rotations.

2. Quantum hardware

For the two-qubit case, we can carry out the simulations on

real quantum hardware as well. Using again imbq_london and

ibmq_burlington, we obtain the data depicted in Figs. 6(c) and

6(f).

Our results for ibmq_london in Fig. 6(c) show qualitative

agreement with the classical simulation. Once more, we see

that the mean and the standard deviation of the absolute error

obtained on the hardware converge to higher values than the

ones obtained from the simulation [compare Figs. 6(b) and

6(c)]. Correcting our data according to Eq. (17), the mean of

the absolute error and its standard deviation are significantly

reduced. Comparing the reduction to the single-qubit case in

Fig. 5, we observe that for the two-qubit case, the improve-

ment is even larger. In particular, for our largest number of

shots s = 8192, the mean and the standard deviation of the

absolute error are reduced by approximately one order of mag-

nitude. The corrected data are again well described by a power

law. Fitting the first four data points, we obtain an exponent of

0.48. Using the entire range of s for the fit, the exponent only

decreases moderately to 0.39 (see also Table IV), thus show-

ing that the readout error still has a significant contribution to

the overall error.

Turning to our results for ibmq_burlington in Fig. 6(f), we

see that the data for this chip are significantly worse. For one,

the mean value (standard deviation) of the absolute error with-

out applying any correction procedure is roughly a factor 3 (2)

larger than the one obtained on ibmq_london. Applying the

correction procedure still yields an improvement, however this

time it is a lot smaller than for ibmq_london, as a comparison

between Figs. 6(c) and 6(f) shows. While for a small number

of shots the mean value of the absolute error after correction
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FIG. 6. Mean value �2,abs,av (blue dots, left y-axes) and standard deviation σ (�2,abs,av) (orange triangles, right y-axes) of the absolute error

in Eq. (42) after applying the correction procedure (filled symbols) and without it (open symbols) as a function of the number of shots s. The

panels in the upper row correspond to data obtained for ibmq_london, the panels in the lower row to data obtained for ibmq_burlington. The

different columns correspond to a classical simulation of the quantum device taking into account only readout error (first column), the full

hardware noise model (second column), and data obtained on actual quantum hardware (third column). The solid green lines correspond to a

power-law fit to all our data points for the mean absolute error, while the red dashed lines correspond to a fit including the lowest four number

of shots. The vertical gray dashed lines in panels (a),(b) and (d),(e) indicate the maximum number of shots that can be executed on the actual

hardware.

still shows a power-law decay, albeit with an exponent a lot

smaller than 1/2, for a large number of shots this trend stops,

as fits to our data reveal (see also Table IV). This behavior

indicates that for ibmq_burlington, the readout error is not

the dominant one, but rather other errors have a significant

contribution that cannot be corrected for using our scheme.

V. DISCUSSION

After demonstrating the applicability of our mitigation

method to real quantum hardware, we discuss our results here

TABLE III. Exponents α obtained from fitting the power law

Cs−α to our simulator data for the mean absolute error in Figs. 6(a),

6(b) and 6(d), 6(e).

Readout error only First four points Full range

ibmq_london 0.492 0.501

ibmq_burlington 0.522 0.503

Full noise model First four points Full range

ibmq_london 0.446 0.238

ibmq_burlington 0.492 0.383

in greater detail. We comment on the relation to previous

works on error mitigation, and we address how our scheme

allows for extensions beyond those. In particular, we discuss

the inclusion of multiqubit correlations and the generalization

to other types of errors such as relaxation. Moreover, we ad-

dress some questions regarding the practical implementation,

such as the overhead costs introduced, preprocessing versus

postprocessing, and the possibility of doing probabilistic error

mitigation.

A. Comparison to previous work

One way to mitigate measurement errors that has been put

forward in the literature (see, e.g., Ref. [46]) is to construct

TABLE IV. Exponents α obtained from fitting the power law

Cs−α to our hardware data for the mean absolute error in Figs. 6(c)

and 6(f).

Chip name First four points Full range

ibmq_london 0.478 0.390

ibmq_burlington 0.105 0.047
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a linear map, which relates the observed measurement out-

comes for each computational basis state to the state that was

actually prepared. To this end, one prepares all computational

basis states |i〉, i = 0, . . . , 2N − 1, on the quantum device and

records the probabilities p ji of obtaining the computational

basis state | j〉 after a projective measurement. The linear map

ω = (p ji )
2N −1
i, j=0 now relates the observed probability distribu-

tion of basis states P̃ in a noisy measurement to the ideal

distribution P as P̃ = ωP. Thus, one can in principle obtain

the exact solution P from the observed results by inverting

ω and postprocessing P̃. Obviously, the method scales expo-

nentially with N in terms of the number of measurements and

memory requirements. In addition, ω can be singular, and a

direct inversion might not be possible. Even if ω−1 exists, it is

not guaranteed to be stochastic, such that the result obtained

might not be a valid probability distribution.

To overcome these shortcomings, it has been proposed to

mitigate measurement errors by expressing the error-corrected

result in terms of a sum of noisy outcomes and combinations

of bit-flip probabilities [12,39,40]. This was first studied by

Kandala et al. [12] for the case of single-qubit Z-operator

measurements. An extension of this method has been provided

by Yeter-Aydeniz et al. [39,40] for multiqubit ZQ ⊗ · · · ⊗ Z1

operators with expectation values measured from bit-string

distributions. Our approach provides an alternative proof for

some of the results in Refs. [39,40], which offers an im-

plementation beyond bit-string distributions and allows for

several further generalizations, which are discussed in the fol-

lowing subsections. In particular, our results can be extended

to multiqubit correlation errors (see Sec. V B), relaxation

errors (see Sec. V C), and probabilistic mitigation schemes

(see Sec. V D). Moreover, while previous results all rely on

postprocessing of the error-mitigation scheme, our method

allows for preprocessing as well. Thus, it can be readily in-

tegrated into hybrid quantum-classical algorithms, such as the

variational quantum eigensolver (VQE) (see Sec. V E).

B. Inclusion of multiqubit correlations

In our paper, we have assumed for simplicity that there

are no multiqubit correlations in multiqubit ZQ ⊗ · · · ⊗ Z1-

operator measurements. This is because most of the physically

relevant Hamiltonians only contain local interaction terms

(see the discussion in Sec. V F). As such, the number of qubits

for each multiqubit ZQ ⊗ · · · ⊗ Z1-operator measurement is

relatively small and the correlations are negligible.

However, as more qubits are measured simultaneously,

multiqubit correlations can become significant and have to be

taken into account. This has not been incorporated into the

above-mentioned mitigation schemes [12,39,40], and, to our

knowledge, it has only been addressed with methods that are

exponentially costly with the number of qubits [49,50].

Our measurement mitigation scheme can easily take mul-

tiqubit correlations into account, because the fundamental

step of our approach is the replacement of the operator to

be measured with a probability distribution of operators.

Adding multiqubit correlations into this probability distribu-

tion is straightforward and only requires multiqubit calibration

results similar to the single-qubit calibrations discussed in

Appendix C. For example, while the single-qubit calibrations

required measuring p(| j〉||k〉) for j, k ∈ {0, 1}, the two-qubit

calibrations would require measuring p(| j〉||k〉) for j, k ∈
{00, 01, 10, 11}. Since we are interested in n-local Hamiltoni-

ans with at most n-qubit interactions (see also the discussion

in Sec. V F), the calibration cost scales polynomially in

the number of qubits N , as no more than n qubits are

measured simultaneously. Indeed, the multiqubit calibration

method requires the calibration of
(

N

n

)

n-qubit systems with

fixed n, which requires O(Nn) calibrations. Thus, incorpo-

rating multiqubit correlations into our mitigation scheme is

straightforward and requires relatively small overhead costs

compared to previous approaches.

C. Extension to relaxation errors

Our method of replacing noisy operators with random op-

erators that model the noise behavior, as presented in Sec. III,

can in principle be generalized to other types of errors on

noisy quantum computers. For example, if we wish to measure

the operator Z and consider the relaxation error T1 (decay

of |1〉 to |0〉) [46], then we have a probability distribution

of measuring Z (not yet decayed) and 1 (decayed). Hence,

the measurement outcome subject to the T1 error is described

by Z̃ = p(t )Z + [1 − p(t )]1, where p(t ) = exp(− t
T1

) is the

probability that |1〉 has not yet decayed. With our scheme of

replacing noisy with random operators, this T1 error can be

corrected as Z = 1
p(t )

Z̃ − 1−p(t )

p(t )
1. As such, our approach is

generalizable to other types of errors beyond measurement

errors, and it needs to be adapted accordingly in order to

correctly incorporate the parameters underlying the specific

type of error.

D. Probabilistic implementation of the measurement

error-mitigation scheme

The probabilistic description of the noisy operator nat-

urally lends itself to a probabilistic implementation of the

mitigation scheme. While deterministic mitigation schemes

require the measurement of all mitigation terms, a probabilis-

tic protocol allows for partial error mitigation if the full miti-

gation is too costly. For example, if the corrected operator Z ⊗
Z is given by α1Z̃ ⊗ Z̃ + α2Z̃ ⊗ 1 + α31 ⊗ Z̃ + α41 ⊗ 1 =
A(p1s1Z̃ ⊗ Z̃ + p2s2Z̃ ⊗ 1 + p3s31 ⊗ Z̃ + p4s41 ⊗ 1) with

A := ∑

j |α j |, s j := sgn(α j ), p j := |α j |
A

, and
∑

j p j = 1,

then we may randomly draw the operator to measure; namely,

As1Z̃ ⊗ Z̃ with probability p1, As2Z̃ ⊗ 1 with probability p2,

etc. This can be used on a single-operator measurement, com-

muting sets of operators, as well as on the level of drawing

random Hamiltonians. It can also be generalized to other types

of errors, such as the inclusion of multiqubit correlations.

E. Preprocessing the mitigation scheme

All of the previously known measurement mitigation

schemes rely on postprocessing, that is, first measuring with-

out taking the error into account and afterwards manipulating

the obtained data (see, e.g., Refs. [12,39,40,46,49,50]). How-

ever, this is not always possible using “black box subroutines,”

such as VQE routines provided by SDKs. Such routines typ-

ically ask for the Hamiltonian to be passed as an argument,
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and they will return the optimized parameter set. They do

not allow for user-supplied error-mitigation methods to be

incorporated. In contrast, the approach presented in this work

allows for preprocessing. Hence, rather than passing on the

Hamiltonian we are interested in solving, we can pass on

the bit-flip corrected Hamiltonian instead. The user is there-

fore able to manually insert an error-mitigation scheme into

the “black-box subroutine.”

F. Moderate overhead costs

For local Hamiltonians, the computational cost of our miti-

gation routine scales polynomially with the number of qubits.

For nonlocal Hamiltonians, our mitigation routine does not

add any computational cost with respect to the measurement

itself, as the measurement of the expectation value already ex-

hibits exponential complexity. We will explain and exemplify

both of these cases in the following.

For nonlocal Hamiltonians, let us consider the example

of a generic operator acting on N qubits. This operators is

a linear combination of all 4N N-qubit Pauli matrices, i.e.,

a tensor product of N 2 × 2 Pauli matrices, which include

the 2 × 2 identity. Our mitigation method now replaces each

tensor product by a sum of up to 2N operators, which already

need to be measured for the full Hamiltonian measurement.

Thus, the replacement only changes the coefficients of these

operators but does not incur any overhead on the quantum

device. Moreover, Hamiltonians with nonlocal interactions are

likely to incur exponential complexity already in the evalua-

tion of the expectation value, thus making them unfeasible to

measure, let alone error-correct.

For n-local Hamiltonians, the individual Pauli terms do

not act on all N qubits but on a given number Q � n � N

of qubits, which is independent of the total number N of

qubits. For example, the Ising model, the Heisenberg model,

and the Schwinger model (after integrating out the gauge

field; see, e.g., Refs. [51–54]) exhibit at most two-qubit in-

teraction terms and thus have Q � n = 2. For our mitigation

method, we now need to replace each tensor product of the

Q nonidentity Pauli matrices by up to 2Q operators. For

each Q � n, there are polynomially many of these terms,
(

N

Q

)

, and we can estimate the total number using the upper

bound
∑

Q�n

(

N

Q

)

� (n + 1)Nn. For each of these terms, the

error-correction matrix ω is of magnitude 2Q, i.e., bounded

by a constant of magnitude 2n. Each of the matrices ω are

triangular and thus can be inverted with a computational cost

of O(4n), which is still constant. The entire operation requires

fewer than (n + 1)Nn times O(1) operations, i.e., the com-

putational complexity is O(Nn) and thus scales polynomially

in the number of qubits N . Note that for n-local interactions

between adjacent qubits, the computational complexity gets

reduced even further, because we then only have nN instead

of
∑n

Q=1

(

N

Q

)

different terms.

For the Ising, Heisenberg, and Schwinger models men-

tioned above, we can explicitly estimate the number of terms

required for our error-mitigation method. For each qubit q,

we have at most three single-qubit Paulis (Xq, Yq, Zq), as well

as three two-qubit Paulis (XqXq+1, YqYq+1, ZqZq+1). Hence,

for N qubits, our mitigation method requires the inversion

of 3N matrices ω (size 2 × 2) for the single-qubit Paulis and

3N matrices ω (size 4 × 4) for the two-qubit Paulis. In other

words, the overall complexity of the error mitigation for N

qubits is bounded by 3N triangular matrix inversions of size

2 × 2 plus 3N triangular matrix inversions of size 4 × 4.

In some cases, the number of additional terms that have

to be measured on the quantum device can be reduced even

further. For example, the LI model discussed in Sec. II A only

contains the Paulis ZqZq+1 and Zq for each qubit q. While

error-correcting the ZqZq+1 terms, we automatically error-

correct the Zq terms as well. Hence, the overall complexity for

the error mitigation of the LI model for N qubits is equivalent

to N triangular matrix inversions of size 4 × 4. Thus, the LI

model incurs no overhead cost on the quantum device.

VI. CONCLUSIONS

In this paper, we proposed a classical bit-flip correction

method to mitigate measurement errors on noisy quantum

computers. This method relies on cancellations of different

erroneous measurement outcomes and requires knowledge

of the different bit-flip probabilities during readout for each

qubit. We tested the performance of this method by correcting

the noisy energy histograms of the longitudinal and transver-

sal Ising models. Moreover, we demonstrated that the method

can be applied to any operator, any number of qubits, and

any realistic bit-flip probability. For the single-qubit case,

we also provided a density matrix description and a visual-

ization scheme of the measurement noise. Finally, we tested

our method both numerically and experimentally for the IBM

quantum devices ibmq_london and ibmq_burlington for both

a single qubit and two qubits. We observe that our method is

able to improve the data significantly for both cases and to

reduce the error by up to one order of magnitude.

Our method of replacing noisy operators with random

operators that model the noise behavior, as we presented in

Sec. III, is generally applicable to arbitrary observables and

could also be applied to other error sources, such as relax-

ation errors. As stated in Sec. V, the computational cost of

our mitigation routine is moderate (i.e., polynomial) for local

Hamiltonians, even if multiqubit correlations are included.

For nonlocal Hamiltonians, our mitigation routine does not

add any computational cost with respect to the measurement

itself, as the measurement of the expectation value already

exhibits exponential complexity.

In addition to the moderate overhead cost, another ad-

vantage of our mitigation scheme is that it can be readily

integrated into hybrid quantum-classical algorithms, as, for

example, the quantum approximate optimization algorithm

[55] and VQS. After initially measuring the bit-flip probabil-

ities, one can simply correct the values obtained for the cost

function from the quantum device, before passing them on to a

classical algorithm for optimizing the variational parameters.

Moreover, in contrast to previous mitigation schemes, our

method also allows for preprocessing. Thus, the user can man-

ually insert the bit-flip corrected Hamiltonian into “black-box

subroutines” such as VQS routines provided by SDKs, which

allows for on-the-fly error mitigation.

Finally, our method is completely platform-independent

and lends itself not only to superconducting qubits, but also
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to other architectures such as trapped ions. As long as the

measurement errors are constant to a certain degree and not

excessively large, they can be reliably corrected for with our

procedure. These advantages make our mitigation method

promising for various applications on NISQ devices but also

beyond.

Note added. Recently, we became aware of a related

mitigation method [56], which also assumes uncorrelated

measurement errors and thus replaces the exponential scaling

of common methods by a polynomial one. The implementa-

tion in the current paper goes further by constructing operators

that correct for the measurement error on the operator level.

While the current paper demonstrates the performance of

the method with two-qubit experiments, Ref. [56] provides a

demonstration on up to 42 qubits.
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APPENDIX A: ILLUSTRATION OF THE MITIGATION

METHOD FOR SIMPLIFIED ENERGY HISTOGRAMS

In this Appendix, we provide a pedagogic explanation of

our mitigation method. We describe in Appendix A 1 how

the measured energy histograms can be described by a bi-

nomial distribution in certain cases. We then discover in

Appendix A 2 that the mean energy of the distribution van-

ishes if all qubits have equal bit-flip probabilities, p = 0.5.

We finally discuss the deviation �Ẽ between the measured

mean energy and the noiseless true energy for the specific

cases of noninteracting Hamiltonians (Appendix A 3), inter-

acting Hamiltonians (Appendix A 4), and the example of the

TI model (Appendix A 5).

1. Binomial distribution of measurements

To start with, let us focus on a diagonal Hamiltonian H

with eigenstate |ψ〉. To evaluate the corresponding energy,

E = 〈ψ |H|ψ〉, on a quantum device, we have to (i) run the

quantum circuit preparing the state |ψ〉, (ii) projectively mea-

sure the energy in the (computational) basis, and (iii) record

the outcomes. Performing s shots, we record k correct results

with Ẽ = E but s − k incorrect results with Ẽ �= E , where the

tilde denotes a noisy outcome. For simplicity, we assume that

(i) a wrong measurement originates from a single bit flip with

probability p, and (ii) each bit flip yields the same deviation

from E . We will see later that these assumptions will need

to be modified in the presence of multiqubit interactions, for

example for the LI and TI models.

The probability of getting k correct measurement results is

given by the probability mass function

f (k, s, 1 − p) =
(

s

k

)

(1 − p)k ps−k, (A1)

where p is the probability of incorrectly measuring the energy.

The resulting noisy energy histograms can be described in

terms of the number k of correct measurements,

Ẽ (k) = E + (s − k)�Ẽ

=
{

E for k = s,

E + s�Ẽ for k = 0,
(A2)

where �Ẽ is the deviation from E per bit flip. In terms of the

bit-flip probability p, the resulting noisy expectation E of the

measured energy Ẽ reads

EẼ = E + sp�Ẽ

=
{

E for p = 0,

E + s�Ẽ for p = 1.
(A3)

We note that “expectation” here means the expectation with

respect to the probability p, which should not be con-

fused with the quantum-mechanical expectation value of the

Hamiltonian, 〈ψ |H|ψ〉 = E . Thus, the expectation EH̃ is

the expected value (as an operator to be measured subject

to bit flips; see also Sec. III) for the noisy Hamiltonian H̃,

while E〈ψ |H̃|ψ〉 = EẼ is the expected value for the noisy

(quantum-mechanical) expectation value 〈ψ |H̃|ψ〉 = Ẽ .

For a large number of shots s, the noisy energy histograms

can be described by a normal distribution with mean energy

EẼ given by Eq. (A3). The only free parameter of this mea-

surement noise model is �Ẽ , since s and p are known input

parameters.

2. Mean energy vanishes for p = 0.5

The first step towards eliminating the free parameter �Ẽ

is to study the dependence of this parameter on the bit-flip

probability p, for example for p = 0.5. Let us consider the

noise-free Hamiltonian H acting on the state |ψ〉 = c0|0〉 +
c1|1〉 and yielding the energy

〈ψ |H|ψ〉 = (c∗
0〈0| + c∗

1〈1|) H (c0|0〉 + c1|1〉) = E . (A4)

The noisy measurement of this energy on the quantum hard-

ware is performed along the basis Z = diag(1,−1). We note

that this noisy measurement yields EẼ = 0 for p = 0.5, due

to the opposite signs of the terms resulting from bit-flipping

the terms in Eq. (A4).

Let us demonstrate this for a simple example, HX = X =
HZH , where H is the Hadamard gate, and study the possi-

ble outcomes of the energy measurements in the single-qubit

case:
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(i) The absence of any bit flip gives the true energy of the

noise-free Hamiltonian:

〈ψ |HX |ψ〉 = 〈ψ |HZH |ψ〉
= [c∗

0 (〈0| + 〈1|) + c∗
1 (〈0| − 〈1|)]

× Z [c0(|0〉 + |1〉) + c1(|0〉 − |1〉)]

= |c0 + c1|2 − |c0 − c1|2 = E . (A5)

(ii) The bit flip |0〉 → |1〉, |1〉 → |1〉 changes one sign:

〈ψ |H̃X |ψ〉 = −|c0 + c1|2 − |c0 − c1|2.

(iii) The bit flip |0〉 → |0〉, |1〉 → |0〉 changes the other

sign: 〈ψ |H̃X |ψ〉 = |c0 + c1|2 + |c0 − c1|2.

(iv) The bit flip |0〉 → |1〉, |1〉 → |0〉 changes both signs:

〈ψ |H̃X |ψ〉 = −|c0 + c1|2 + |c0 − c1|2 and thus yields the

outcome −E .

For p = 0.5, each of these four possible outcomes has

the same probability p2 = 0.25, and thus cancellation yields

EẼ = 0. This result holds true for any operator and any num-

ber of qubits, as we showed in Eq. (29).

3. �Ẽ for noninteracting Hamiltonians

The next step towards eliminating the free parameter �Ẽ is

to examine the four possible measurement outcomes from the

previous section for any bit-flip probability p. We observe that

the second and third outcomes have opposite signs and equal

probability and thus cancel, given the above assumption that

p(|0〉 → |1〉) = p(|1〉 → |0〉). For N qubits, one can similarly

show that among the 4N possible measurement outcomes, all

outcomes cancel apart from the ones corresponding to no bit

flip and all bit flips. This justifies our previous assumption

that we either measure a correct energy with probability 1 − p

or an incorrect energy with probability p. Crucially, the latter

probability is not given by p2N as one might expect at first

glance. Thus, each incorrect measurement yields the same

deviation from the correct energy of −2E with the same

probability p. This can be seen by evaluating the probabilities

of the four different outcomes above:

(i) The absence of any bit flip, |0〉 1−p−−→ |0〉, |1〉 1−p−−→ |1〉,
gives 〈ψ |HX |ψ〉 = E with probability (1 − p)2.

(ii) The “mixed” bit flips |0〉 p−→ |1〉, |1〉 1−p−−→ |1〉 and

|0〉 1−p−−→ |0〉, |1〉 p−→ |0〉 give 〈ψ |H̃X |ψ〉 = 0 with a combined

probability of 2p(1 − p).

(iii) The “total” bit flip |0〉 p−→ |1〉, |1〉 p−→ |0〉 gives

〈ψ |H̃X |ψ〉 = −E with probability p2.

Note that the cancellation 〈ψ |H̃|ψ〉 = 0 for the “mixed”

bit flips seems to require |H|0〉| = |H|1〉| at first glance.

While this is not true in general, the measurement of 〈ψ |H̃|ψ〉
in the Z basis reduces to measuring Pauli strings composed

of 1 and Z matrices, which are unitary. Thus, after the ap-

propriate postrotation, the condition |H|0〉| = |H|1〉| changes

to |Z|0〉| = |Z|1〉| and |1|0〉| = |1|1〉|, which is trivially

fulfilled.

This yields the simple relation for the mean energy,

EẼ = (1 − p)2E + p2(−E )

= (1 − 2p)E . (A6)

Combining Eqs. (A3) and (A6), we find for the parameter �Ẽ

EẼ = E + sp�Ẽ ↔ �Ẽ = −2E

s
, (A7)

where �Ẽ is normalized by the number of shots s, i.e.,

the number of evaluations of the energy (A4) required to

produce the energy histogram. For p = 1, the first three

possible measurement outcomes have zero probability, inde-

pendently of any cancellations, and only the last outcome with

〈ψ |H̃X |ψ〉 = −E contributes.

As we will discuss in the next subsection, Eq. (A7) only

applies to noninteracting Hamiltonians, i.e., without any mul-

tiqubit interaction terms. For example, for the Hamiltonians

HX = h
∑N

i=1 Xi or HZ = h
∑N

i=1 Zi with the ground-state

energy E0 = −Nh, we would get �Ẽ0 = 2Nh/s when mea-

suring the ground-state energy. Thus, after measuring the

noisy expectation value of any (trivial) noninteracting Hamil-

tonian on a quantum computer, Eq. (A7) allows us to predict

the corresponding true energy.

4. �Ẽ for interacting Hamiltonians

For two-qubit interaction terms in the Hamiltonian, e.g., for

HZZ = J
∑N

i=1 ZiZi+1, our previous considerations need to be

modified in two ways: first, we observe that the one-qubit bit

flips from the previous subsection give the same contribution

to the mean energy as before, but now with a probability of

2p(1 − p) instead of p2. This is because the one-qubit “total”

bit flips yield 〈ψ |H̃ZZ |ψ〉 = −E . Here, “one-qubit ‘total’ bit

flip” means that one of the two qubits experiences a bit flip

during readout (|0〉 → |1〉, |1〉 → |0〉), while the other qubit

has no bit flip (|0〉 → |0〉, |1〉 → |1〉). Second, the mean en-

ergy receives small O(p2) corrections since the parameter �Ẽ

becomes p-dependent for the interacting case. These O(p2)

corrections come from the two-qubit bit flips and have the

opposite sign of the O(p) terms, because the two minus signs

from the measurement bases Z1 and Z2 cancel. Indeed, the

two-qubit “total” bit flips, i.e., |0〉 → |1〉 and |1〉 → |0〉 for

both qubits, yield 〈ψ |H̃ZZ |ψ〉 = E with probability p2.

Let us demonstrate the latter for the simple two-qubit

Hamiltonian HZZ = Z1Z2, which gives

〈ψ |H11|ψ〉 = 〈ψ |Z1Z2|ψ〉
= [c∗

0〈00| + c∗
1〈01| + c∗

2〈10| + c∗
3〈11|]Z1Z2

× [c0|00〉 + c1|01〉 + c2|10〉 + c3|11〉]
= |c0|2 − |c1|2 − |c2|2 + |c3|2 = E (A8)

without any bit flip. For two-qubit bit flips with p = 1, we

obtain the same result and thus recover the true energy E ,

〈ψ |H̃ZZ |ψ〉 = 〈ψ |Z̃1Z̃2|ψ〉
= [c∗

0〈11| + c∗
1〈10| + c∗

2〈01| + c∗
3〈00|]Z1Z2

× [c1|11〉 + c2|10〉 + c3|01〉 + c4|00〉]
= |c0|2 − |c1|2 − |c2|2 + |c3|2 = E , (A9)

since the two minus signs from the Z-matrices cancel, i.e.,

〈00|Z1Z2|00〉 = 〈11|Z1Z2|11〉.
The contributions from “mixed” bit flips, such as all basis

states |b1b0〉 flipping to |11〉, cancel for any p due to opposite
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signs and equal probabilities, just as in the noninteracting

case. Therefore, the “total” two-qubit bit flips as discussed in

Eq. (A9) have a probability of p2 instead of p4N . This yields

for the total mean energy

EẼ = (1 − p)2E + 2p(1 − p)(−E ) + p2E

= E − 4pE + 4p2E = (1 − 2p)2E . (A10)

Thus, the parameter �Ẽ now has two contributions,

EẼ = E + sp�Ẽ ⇔ �Ẽ = −4E

s
(1 − p). (A11)

Equations (A10) and (A11) imply that the two-qubit interact-

ing Hamiltonian yields the correct energy EẼ = E for both

p = 0 and 1, in contrast to the noninteracting case where

p = 1 gave EẼ = −E [see Eq. (A6)]. Moreover, EẼ = 0 is

still given for p = 0.5.

5. Prediction for the transversal Ising model

Next, we apply our results to the ground-state energy of the

TI model with the Hamiltonian

HTI = J

N
∑

i=1

ZiZi+1 + h

N
∑

i=1

Xi, (A12)

where we again assume J < 0 and h > 0 and periodic bound-

ary conditions. The true ground-state energy can be derived as

[57–61]

E0 = − 1

2

∑

k

γ (α2 + 4β2)

= − 1

2

∑

k

γ

[

4h2 + 4J2 − 8Jh cos

(

2πk

N

)]

, (A13)

where the sum runs from k = −( N−1
2

) to ( N−1
2

), and the con-

stants α, β, and γ are defined as

α = 2h − 2J cos

(

2πk

N

)

,

β = J sin

(

2πk

N

)

,

γ = sgn(α)

α

√

α2

α2 + 4β2
. (A14)

Just as for the LI model (7), the mean energy of the noisy

ground-state energy histograms receives three different con-

tributions,

EẼ0 = (1 − p)2E1 + 2p(1 − p)E2 + p2E3. (A15)

The probabilities of the three different terms in Eqs. (7)

and (A15) are the same because they are determined by the

number of interacting qubits in the different terms of the

respective Hamiltonian. However, the measurement outcomes

Ei in Eq. (A15) deviate from the ones in Eq. (7) because E0

in Eq. (A13) is not simply the sum of the J- and h-dependent

parts of the ground-state energy as in Eq. (4).

The different measurement outcomes Ei in Eq. (A15) can

be derived in the following way. First, we know that E1 = E0.

Second, we know that EẼ vanishes for |J| = |h| and p = 1

because the two terms in the Hamiltonian (A12) contribute

equally to E0 and thus cancel for p = 1. This cancellation

happens due to opposite signs of the noninteracting and in-

teracting energy contributions in the case of a total bit flip,

as discussed above. In particular, any mixed terms, such as

the mixed Jh-term in Eq. (A13), vanish for p = 1, as also

discussed above. This fixes E3. Third, we know that EẼ (p =
0.5) = 0, so we can find E2 by solving Eq. (A15) for p = 0.5

and inserting the known expressions for E1 and E3. In total,

we obtain

E1 = EZZ + EX ,

E2 = −EZZ , (A16)

E3 = EZZ − EX ,

which is similar to Eq. (7), but with EZZ and EX given by

EZZ = − 1

2

∑

k

γ

[

4J2 − 4Jh cos

(

2πk

N

)]

,

EX = − 1

2

∑

k

γ

[

4h2 − 4Jh cos

(

2πk

N

)]

. (A17)

Thus, the mean energy in Eq. (A15) can be brought into a

similar form as the true ground-state energy in Eq. (A13),

EẼ0 = (1 − 2p)EX + (1 − 2p)2EZZ

= − 1

2

∑

k

γ

[

(1 − 2p)4h2 + (1 − 2p)24J2

− (1 − 3p + 2p2)8Jh cos

(

2πk

N

)]

. (A18)

The resulting parameter �Ẽ0 now has three contributions,

�Ẽ0 = −1

s
(2EX + 4EZZ − 4pEZZ ). (A19)

We note that this expression is identical to the one for the LI

model but with different EZZ and EZ/X . For the LI model,

�Ẽ0 rises strictly linearly with N . For the TI model, the

sum over k yields N contributions to each Ei in Eq. (A16),

which are equal for E3 but differ for E1 and E2 due to the

N-dependence of the cosine in Eq. (A18). Thus, �Ẽ0(N ) only

becomes approximately linear for large N , where these small

differences average out.

In Fig. 7, we plot the energy histograms for the ground

state of HTI with different N , J , h, s, and p, where we again

measure the ground state 2048 times for each parameter com-

bination. As before, the noise model with the mean energy

from Eq. (A18) and the variance from Eq. (B17) agrees with

the data for any choice of parameters we study. Note that the

variance is larger compared to the longitudinal case in Fig. 1,

because the measurement Z-basis is not an eigenbasis of the

Xi operator. Thus, the histograms are wider for the transversal

case.

APPENDIX B: PREDICTION FOR THE VARIANCES

OF NOISY EXPECTATION VALUES

In this Appendix, we derive the variances of the different

noisy expectation values presented in Secs. II and III. To this
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FIG. 7. Energy histograms for the TI model. The vertical dashed

green line indicates the true ground-state energy, the solid orange

line indicates the prediction, and the dashed black line indicates a

fit to the data. The left column corresponds to N = 4, J = −1, h =
2, s = 2048 with (a) p = 0.05, (c) p = 0.50, and (e) p = 0.95. The

right column shows varied N , h, and s: (b) h = 1, (d) s = 256, and

(f) N = 8.

end, we construct again random operators whose expectation

value yields the variance with respect to the bit-flip probabil-

ity. We follow the structure of Sec. III: we first discuss a single

Z operator in Appendix B 1, followed by the general case of

ZQ ⊗ · · · ⊗ Z1 operators in Appendix B 2. We then simplify

our results to the case of equal bit-flip probabilities in Ap-

pendix B 3. Finally, we discuss the case of measuring general

operators from bit-string distributions of |ψ〉 in Appendix B 4.

In this Appendix, we will also discuss different measurement

paradigms and their impact on the variance of means extracted

from histogram data. We will eventually return to the TI model

for an explicit illustration.

1. Measurement of a single Z operator

For computing the variance V Z̃q of the noisy expectation

in Eq. (8),

V Z̃q = E(Z̃q ⊗ Z̃q) − (EZ̃q)2

= �′
Z̃q

(0) ⊗ �′
Z̃q

(0) − �′′
Z̃q

(0), (B1)

we need to evaluate the derivatives �′
q(0) = iEZ̃q and

�′′
Z̃q

(0) = −E(Z̃q)2 of the characteristic function

�Z̃q
(t ) := E exp[i Tr(t∗Z̃q)]. (B2)

This yields

�′
Z̃q

(0) = i(1 − pq,0 − pq,1)Zq + i(pq,1 − pq,0)1q,

�′′
Z̃q

(0) = − (1 − pq,0 − pq,1 + 2pq,0 pq,1)Zq ⊗ Zq

− (pq,0 + pq,1 − 2pq,0 pq,1)1q ⊗ 1q. (B3)

Thus, the variance operator in Eq. (B1) reads

V Z̃q = [(pq,0 + pq,1)(1 − pq,0 − pq,1) + 2pq,0 pq,1]

× Zq ⊗ Zq

− (1 − pq,0 − pq,1)(pq,1 − pq,0)Zq ⊗ 1q

− (1 − pq,0 − pq,1)(pq,1 − pq,0)1q ⊗ Zq

+ (pq,0 + pq,1 − p2
q,0 − p2

q,1)1q ⊗ 1q. (B4)

2. Measurement of ZQ ⊗ · · · ⊗ Z1 operators

We now generalize the variance for Q = 1 in Eq. (B4) to

operators acting on multiple qubits, i.e., Q > 1. According to

Eq. (16), operators Õ1 and Õ2 acting on different qubits are

uncorrelated, i.e., the covariance vanishes,

Cov⊗(Õ1, Õ2) := E(Õ1 ⊗ Õ2) − E(Õ1) ⊗ E(Õ2)

= 0. (B5)

Hence, we obtain the variance operator

V (Z̃Q ⊗ · · · ⊗ Z̃1)

= E(Z̃Q ⊗ · · · ⊗ Z̃1 ⊗ Z̃Q ⊗ · · · ⊗ Z̃1)

− E(Z̃Q ⊗ · · · ⊗ Z̃1) ⊗ E(Z̃Q ⊗ · · · ⊗ Z̃1)

= U ∗
(

E(Z̃Q ⊗ Z̃Q) ⊗ · · · ⊗ E(Z̃1 ⊗ Z̃1)

−
Q

⊗

q=1

(EZ̃q ⊗ EZ̃q)

)

U

= U ∗
(

(V Z̃Q + EZ̃Q ⊗ EZ̃Q) ⊗ · · ·

· · · ⊗ (V Z̃1 + EZ̃1 ⊗ EZ̃1)

−
Q

⊗

q=1

(EZ̃q ⊗ EZ̃q)

)

U, (B6)

where the unitary operation U reorders the tensor prod-

ucts from |ψQ〉 ⊗ · · · ⊗ |ψ1〉 ⊗ |ψQ〉 ⊗ · · · ⊗ |ψ1〉 to (|ψQ〉 ⊗
|ψQ〉) ⊗ · · · ⊗ (|ψ1〉 ⊗ |ψ1〉). That is, for two qubits the re-

ordering maps the basis state |b3b2b1b0〉 to |b3b1b2b0〉,
and for three qubits the reordering maps |b5b4b3b2b1b0〉 to

|b5b2b4b1b3b0〉, etc.

3. Measurement of ZQ ⊗ · · · ⊗ Z1 operators assuming

equal bit-flip probabilities

For Q = 1, the variance in Eq. (B6) reduces to

V Z̃q = 2p(1 − p)(Zq ⊗ Zq + 1q ⊗ 1q). (B7)
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For Q = 2, the reordering of the tensor product |ψ〉 ⊗ |ψ〉 in

Eq. (B6) becomes important, which yields

V (〈ψ |Z̃2 ⊗ Z̃1|ψ〉)

= (〈ψ | ⊗ 〈ψ |)U ∗(V Z̃2 ⊗ V Z̃1)U (|ψ〉 ⊗ |ψ〉)

+ (〈ψ | ⊗ 〈ψ |)U ∗(V Z̃2 ⊗ EZ̃1 ⊗ EZ̃1)U (|ψ〉 ⊗ |ψ〉)

+ (〈ψ | ⊗ 〈ψ |)U ∗(EZ̃2 ⊗ EZ̃2 ⊗ V Z̃1)U (|ψ〉 ⊗ |ψ〉).

(B8)

For arbitrary Q, we can evaluate the variance operator in

Eq. (B6) for the ground state, |ψ〉 = |0, . . . , 0〉, and we obtain

the expression

V (〈ψ |Z̃Q ⊗ · · · ⊗ Z̃1|ψ〉)

=
Q

∏

q=1

〈ψ |V Z̃q + EZ̃q ⊗ EZ̃q|ψ〉

−
Q

∏

q=1

〈ψ |EZ̃q ⊗ EZ̃q|ψ〉

=
Q

∏

q=1

(

4p(1 − p) + (1 − 2p)2
)

− (1 − 2p)2Q

= 1 − (1 − 2p)2Q. (B9)

This surprisingly simple result can be verified directly

by noting that the measurement of 〈0, . . . , 0|Z̃Q ⊗ · · · ⊗
Z̃1|0, . . . , 0〉 yields the values +1 with probability p1 and −1

with probability p−1. Thus, we conclude

V (〈0, . . . , 0|Z̃Q ⊗ · · · ⊗ Z̃1|0, . . . , 0〉)

= E
(

〈0, . . . , 0|Z̃Q ⊗ · · · ⊗ Z̃1|0, . . . , 0〉2
)

− E(〈0, . . . , 0|Z̃Q ⊗ · · · ⊗ Z̃1|0, . . . , 0〉)
2

= p1 + p−1(−1)2

− (1 − 2p)2Q〈0, . . . , 0|ZQ ⊗ · · · ⊗ Z1|0, . . . , 0〉2

= 1 − (1 − 2p)2Q. (B10)

4. Measurement of general operators H from

bit-string distributions of |ψ〉

a. Prediction for the variance of operators

While measuring the entire Hamiltonian simultaneously

makes no difference for the measured mean value, the

variance, on the other hand, is affected by this change in mea-

surement paradigm. If we consider HZZ with N = 2 and J =
1, i.e., HZZ = Z2Z1 + Z1Z2, then we would formally com-

pute 〈ψ |Z2 ⊗ Z1|ψ〉 twice independently using the approach

considered so far, whereas the expectation from the bit-string

distribution of |ψ〉 directly extracts 2〈ψ |Z2 ⊗ Z1|ψ〉. Thus the

variance using independent histograms for each summand is

given by

Vind〈ψ |H̃ZZ |ψ〉 = V 〈ψ |Z̃2 ⊗ Z̃1|ψ〉 + V 〈ψ |Z̃2 ⊗ Z̃1|ψ〉
= 2V 〈ψ |Z̃2 ⊗ Z̃1|ψ〉, (B11)

whereas the variance using the bit-string distribution of |ψ〉 is

Vbsd〈ψ |H̃ZZ |ψ〉 = V (2〈ψ |Z̃2 ⊗ Z̃1|ψ〉)

= 4V 〈ψ |Z̃2 ⊗ Z̃1|ψ〉
= 2Vind〈ψ |H̃ZZ |ψ〉. (B12)

In general, if H̃ = ∑

α λαU ∗
α ÕαUα , we are still able to predict

the variance Vbsd〈ψ |H̃|ψ〉 using the same method as above,

albeit the covariance terms no longer vanish (each Õα is a

tensor product Õα,Q ⊗ · · · ⊗ Õα,1). For Õα,q = Z̃q, Õα,q takes

one of the possible values {Zq,−1q,1q,−Zq}, as in Sec. III A.

For Õα,q = 1̃q, Õα,q always takes the value 1q. Using these

replacements for all summands in H̃, we obtain that H̃ takes

finitely many (up to 2N ) values Hα with probability pα . Hence,

the characteristic function �
H̃

is given by

�
H̃

(t ) := E exp[iTr(t∗
H̃)]

=
∑

α

pα exp [iTr(t∗
Hα )]. (B13)

As such, we can directly conclude

�′
H̃

(0) =
∑

α

pαiHα = iEH̃, (B14)

�′′
H̃

(0) = −
∑

α

pαHα ⊗ Hα, (B15)

and we find the variance operator

VbsdH̃ = �′
H̃

(0) ⊗ �′
H̃

(0) − �′′
H̃

(0)

=
(

∑

α

pαHα ⊗ Hα

)

−
(

EH̃
)

⊗ (EH̃)

=
(

∑

α

pαHα ⊗ Hα

)

−
(

∑

α,β

pα pβHα ⊗ Hβ

)

.

(B16)

Similarly, we can measure the operator H̃ on the state |ψ〉 and

obtain the variance

Vbsd〈ψ |H̃|ψ〉 =
(

∑

α

pα〈ψ |Hα|ψ〉2

)

−
(

∑

α,β

pα pβ〈ψ |Hα|ψ〉〈ψ |Hβ |ψ〉
)

.

(B17)

b. Prediction for the variance of histogram means

Lastly, we can combine the bit-flip induced variances

with quantum mechanically induced variances to obtain the

full variances observed in measuring histogram means. In

particular, we will construct the variances for the three

methods discussed in Sec. III E. There we measured the

bit-flip corrected TI Hamiltonian H̃TI,bfc = Jp

∑N
j=1 Z̃ j Z̃ j+1 +

hp

∑N
j=1 X̃ j in Eq. (37) subject to bit flips on the ground

state of the “true” TI Hamiltonian HTI = J
∑N

j=1 Z jZ j+1 +
h

∑N
j=1 X j . For simplicity, we assumed that all bit-flip prob-

abilities pq,b equal p. The three methods are as follows:
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(i) Method 1. measure each Z̃ j Z̃ j+1 and X̃ j in Eq. (37)

independently.

(ii) Method 2. measure the entire Hamiltonian H̃TI,bfc in

Eq. (37) from distributions of |ψ〉 measurements.

(iii) Method 3. measure H̃ZZ := Jp

∑N
j=1 Z̃ j Z̃ j+1 and

H̃X := hp

∑N
j=1 X̃ j independently from distributions of |ψ〉

measurements.

Method 1. Since each Z̃ j Z̃ j+1 and X̃ j is measured

independently, the bit-flip contributions Vbf〈ψ |Z̃ j Z̃ j+1|ψ〉
and Vbf〈ψ |X̃ j |ψ〉 to the variance can be directly ob-

tained from Eq. (B6), keeping in mind that X̃ j = H j Z̃ jH j ,

where H j is the Hadamard gate on qubit j. But since

|ψ〉, in general, will not be an eigenstate of all Z jZ j+1

and X j simultaneously, we also have a contribution from

the quantum-mechanical variances VQM〈ψ |Z jZ j+1|ψ〉 = 1 −
〈ψ |Z jZ j+1|ψ〉2 and VQM〈ψ |X j |ψ〉 = 1 − 〈ψ |X j |ψ〉2. We

therefore obtain the variance of histogram means

VM1〈ψ |H̃TI,bfc|ψ〉

=
J2

p

s

N
∑

j=1

Vbf〈ψ |Z̃ j Z̃ j+1|ψ〉 +
J2

p

s

N
∑

j=1

VQM〈ψ |Z jZ j+1|ψ〉

+
h2

p

s

N
∑

j=1

Vbf〈ψ |X̃ j |ψ〉 +
h2

p

s

N
∑

j=1

VQM〈ψ |X j |ψ〉.

(B18)

In particular, if the state |ψ〉 is translationally invariant, such

as the ground state of HTI, then this further simplifies to

VM1〈ψ |H̃TI,bfc|ψ〉

=
J2

pN

s
Vbf〈ψ |Z̃ j Z̃ j+1|ψ〉 +

J2
pN

s
VQM〈ψ |Z jZ j+1|ψ〉

+
h2

pN

s
Vbf〈ψ |X̃ j |ψ〉 +

h2
pN

s
VQM〈ψ |X j |ψ〉 (B19)

for any choice of j.

Method 2. In this case, the bit-flip contribution

Vbf〈ψ |H̃TI,bfc|ψ〉 is given by Eq. (B17) and the quantum-

mechanical variance is given by

VQM〈ψ |H̃TI,bfc|ψ〉 = 〈ψ |(H̃TI,bfc)2|ψ〉 − 〈ψ |H̃TI,bfc|ψ〉2.

(B20)

Hence, the variance of histogram means is

VM2〈ψ |H̃TI,bfc|ψ〉 = 1

s
Vbf〈ψ |H̃TI,bfc|ψ〉

+ 1

s
VQM〈ψ |H̃TI,bfc|ψ〉. (B21)

While this expression appears simpler than its counterpart for

Method 1, it is also important to note that O(4N ) terms are

required to compute VM2〈ψ |H̃TI,bfc|ψ〉, whereas the number

of terms required to compute VM1H̃TI,bfc is only O(N ) and

can even be reduced to O(1) for translationally invariant states

|ψ〉.
Method 3. Being a combination of Method 1 and Method

2, the variance can be constructed combining the results from

Methods 1 and 2. The bit-flip contributions Vbf〈ψ |H̃ZZ |ψ〉
and Vbf〈ψ |H̃X |ψ〉 follow from Eq. (B17) again. Furthermore,

the quantum-mechanical variances contribute as

VQM〈ψ |H̃ZZ |ψ〉 = 〈ψ |(H̃ZZ )2|ψ〉 − 〈ψ |H̃ZZ |ψ〉2 (B22)

and

VQM〈ψ |H̃X |ψ〉 = 〈ψ |(H̃X )2|ψ〉 − 〈ψ |H̃X |ψ〉2. (B23)

The variance of histogram means is thus

VM3〈ψ |H̃TI,bfc|ψ〉

= 1

s
Vbf〈ψ |H̃ZZ |ψ〉 + 1

s
Vbf〈ψ |H̃X |ψ〉

+ 1

s
VQM〈ψ |H̃ZZ |ψ〉 + 1

s
VQM〈ψ |H̃X |ψ〉. (B24)

Methods 1 and 2 are the two extreme cases, which we

discussed in Secs. III A–III C and Sec. III D, respectively.

Method 3 is a reasonable compromise, which is closely related

to implementations of quantum algorithms that are optimized

for the number of calls to the quantum device. In such im-

plementations, only parts of an operator can be measured

simultaneously, such that both Methods 1 and 2 are imprac-

tical to various degrees.

APPENDIX C: TECHNICAL DETAILS

OF THE SIMULATIONS

Here we briefly summarize the details on how to determine

the bit-flip probabilities, the simulations, and the data evalua-

tion procedure for the results shown in Sec. IV.

1. Calibration of the bit-flip probabilities

Although the QISKIT SDK [46] provides values for the

bit-flip probabilities for the different qubits on the different

chips, we choose to calibrate pq,0 and pq,1 ourselves. To obtain

pq,0, we simply measure the initial state using scalibration shots

and record the number of 1 outcomes. Similarly, we determine

pq,1 by first applying an X gate to the qubit q, thus preparing

the state |1〉, and we measure the resulting state again scalibration

times and record the number of 0 outcomes. For all data

shown in the main text, we use scalibration = 8192, which is the

maximum number of repetitions possible on the real quantum

hardware. Moreover, to acquire some statistics on how the ob-

tained values for the bit-flip probabilities fluctuate, we repeat

this procedure multiple times. Subsequently, we average all

the data obtained for pq,b. The resulting bit-flip probabilities

are the ones used for correcting the data in Sec. IV.

a. Single-qubit case

In Figs. 8 and 9, we show the bit-flip probabilities we

obtained for ibmq_london and ibmq_burlington. Looking

at the data resulting from simulating ibmq_london classically

with readout noise only in Fig. 8(a), we observe that the

bit-flip probabilities our calibration procedure yields scatter

around the value provided by the noise model. Using the full

noise model does not change the picture a lot; only the values

for p0,1 scatter slightly more around the value of the noise

model, as Fig. 8(b) reveals. The data generated on the actual

ibmq_london quantum hardware in Fig. 8(c) do not agree very

well with the values of the noise model. Even the values for
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FIG. 8. Bit-flip probabilities p0,0 (blue triangles) and p0,1 (orange

dots) for the single-qubit case measured with the calibration pro-

cedure as a function of the repetition for (a) classically simulating

ibmq_london with readout errors only, (b) the full noise model, and

(c) data obtained on the quantum hardware. The blue solid and the

orange dashed line represent the corresponding data provided by the

noise model.

p0,0, which do not involve a single gate, are in general lower

than the value provided by the noise model. In contrast, p0,1

exceeds the value of the noise model. Despite the fact that the

values for the experimentally obtained bit-flip probabilities

deviate from the noise model, they only fluctuate moderately

and we can extract a reasonable bit-flip probability by aver-

aging over all repetitions. Comparing the different panels of

Fig. 8 closely, one can also observe that the values for the

bit-flip probabilities provided by the noise model in panel (c)

differ slightly from those in panels (a) and (b). The reason for

that is that the data in the noise model are updated every day,
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FIG. 9. Bit-flip probabilities p0,0 (blue triangles) and p0,1 (orange

dots) for the single-qubit case measured with the calibration pro-

cedure as a function of the repetition for (a) classically simulating

ibmq_burlington with readout error only, (b) the full noise model,

and (c) data obtained on the hardware. The blue solid and the orange

dashed line represent the corresponding data provided by the noise

model.
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FIG. 10. Bit-flip probabilities p0,0 (blue triangles), p0,1 (orange

dots), p1,0 (green squares), and p1,1 (red diamonds) for the two-qubit

case measured with the calibration procedure as a function of the

repetition for (a) classically simulating ibmq_london with readout

error only, (b) the full noise model, and (c) data obtained on the

hardware. The blue solid, orange dashed, green dotted, and red dash-

dotted lines represent the corresponding data provided by the noise

model.

and our classical simulations as well as our simulations on real

quantum hardware were not carried out the same day.

The corresponding results for imbq_burlington are shown

in Fig. 9. Again, the classical simulation of the chip using

the noise model produces as expected bit-flip probabilities

in agreement with the values provided. Looking at the data

from the real chip in Fig. 9(c), we see that these fluctuate

over a wide range between different repetitions. Thus, in this

case the bit-flip probabilities cannot be extracted as reliably

as for imbq_london. Since our correction procedure relies on

being able to estimate the bit-flip probabilities precisely, this

partially explains why the improvement in Sec. IV A after

applying the correction to our data for ibmq_burlington is

smaller.

b. Two-qubit case

Analogously to the single-qubit case, Figs. 10 and 11

show the data for extracting the bit-flip probabilities for

ibmq_london and ibmq_burlington obtained in our two-

qubit simulations. The results for the two-qubit case on

ibmq_london in Fig. 10 show a fairly similar behavior to the

single-qubit case. The classical simulations in panels (a) and

(b) yield as expected good agreement with the values provided

in the noise model. In contrast, the data obtained on the real

quantum device [Fig. 10(c)] do not agree with the data in the

noise model, in particular for p0,1 and p1,0. Nevertheless, the

experimental data are fairly consistent and allow us to reliably

determine the bit-flip probabilities for ibmq_london. Again,

we see that the theoretical values differ noticeably between the

panels in the upper row and the lower row. This is once more

due to the fact that the hardware data were taken on a different

day from the simulator data, and the noise model was updated

in between.

062404-21



LENA FUNCKE et al. PHYSICAL REVIEW A 105, 062404 (2022)

0 5 10
Repetition

0.02

0.04

0.06

p
q
,b

(a)

0 5 10
Repetition

0.02

0.04

0.06

p
q
,b

(b)

0 5 10
Repetition

0.1

0.2

p
q
,b

(c)

FIG. 11. Bit-flip probabilities p0,0 (blue triangles), p0,1 (orange

dots), p1,0 (green squares), and p1,1 (red diamonds) for the two-qubit

case measured with the calibration procedure as a function of the

repetition for (a) classically simulating ibmq_burlington with readout

error only, (b) the full noise model, and (c) data obtained on the

hardware. The blue solid, orange dashed, green dotted, and red dash-

dotted lines represent the corresponding data provided by the noise

model.

The bit-flip probabilities obtained from classically simulat-

ing ibmq_burlington in Figs. 11(a) and 11(b) show a similar

picture to the previous cases, and they agree well with the

values provided in the noise model. On the contrary, the data

from the real quantum device again do not agree very well

with the values provided in the noise model. Moreover, the

values for p0,0 and p0,1 show large fluctuations. In this case as

well, the theoretical values for the bit-flip probabilities differ

between the simulator data and the hardware data. Most no-

ticeably, the theoretical value for p1,1 almost doubled during

the time span between carrying out the classical simulations

and the experiments on quantum hardware.

2. Technical details for generating the experimental

data on quantum hardware

Each of the data points in Figs. 5(c), 5(f) and Figs. 6(c),

6(f) is obtained by preparing 1050 random wave functions

|ψ〉 using the circuits shown in Sec. IV. While running the

1050 circuits is unproblematic for classical simulations, as of

completion of this paper one can only submit 75 circuits per

job to real quantum hardware. Thus, we divide them into 14

chunks of 75 circuits. This procedure is repeated for every

value of s. Since we have to run a considerable number of

jobs, which might take some time depending on how busy the

queue of the device is, we insert a job running the circuits for

determining the bit-flip probabilities before every chunk. This

way we can monitor the bit-flip probabilities over the duration

of the run and detect potential outliers.

Moreover, before running our circuits, we use the transpiler

to optimize them for the hardware we intend to use. To ensure

that we have the same mapping between logical and physical

qubits in every case, we inspect the transpiler results obtained

for the circuits used to extract the bit-flip probabilities and to

prepare the random wave function |ψ〉. For all the data re-

ported in the main text, we checked that the mapping between

logical and physical qubits is indeed the same, and the bit-flip

probabilities we extract correspond to the qubits we use for

generating our random wave functions.
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