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Abstract

We pursue the hypothesis that the events with a large rapidity gap, observed at

HERA, re
ect the scattering of electrons o� lumps of wee partons inside the proton.

A simple scaling behaviour is predicted for the di�ractive structure functions, which

are related to the inclusive structure function F

2

(x;Q

2

) at small values of the

scaling variable x. The results are compared with recent measurements of the

di�ractive structure function F

D

2

(x;Q

2

;M

2

).



In the so-called \rapidity gap" events, observed and studied at HERA [1]-[3], a

system of hadrons is observed with small invariant mass and with a gap in rapidity

in the hadronic energy 
ow adjacent to the proton beam direction. This suggests, that

in the scattering process a colour neutral part of the proton with small momentum

fraction is stripped o�, which then fragments into the hadrons visible in the detector.

The proton remnant, carrying most of the energy, escapes undetected close to the proton

direction. The rapidity gap re
ects the absense of a colour 
ow between proton and

current fragments. In analogy to hadronic processes of similar kind the \rapidity gap"

events are also referred to as \di�ractive" events.

It is a remarkable feature of this new class of events, that the cross section at large

momentum transfer Q

2

is not suppressed relative to the total inclusive cross section.

Naively, one might expect that the rate for extracting more than one parton from the

proton should rapidly decrease with increasing Q

2

. This, however, is not the case. It is a

theoretical challenge to derive the observed \leading twist" behaviour of the di�ractive

cross section from QCD, the theory of strong interactions.

In a recent paper [4], we have proposed to describe the multi-parton processes un-

derlying the di�ractive events by means of an e�ective lagrangian which speci�es the

coupling between the virtual photon, the colour singlet wee parton cluster inside the

proton and the hadronic �nal state. Together with further information on the cluster

density and the mass spectrum of the �nal states, one then obtains a prediction for

the di�ractive di�erential cross section. Recently, the H1 collaboration at HERA has

published a �rst measurement of the di�ractive structure function F

D

2

for a large range

of the kinematic variables [3]. In this letter, we therefore extend our previous work [4]

and compare the results with the recent measurements as well as predictions of other

theoretical approaches.

We consider the inelastic scattering process

e(k) + p(P )! e(k

0

) + ~p(P

0

) +X(P

X

) ; (1)

where ~p andX denote the proton remnant and the detected hadronic system, respectively.

From the four momenta k, P , P

0

= (1 � �)P , q = k � k

0

and P

X

= q + �P one obtains

the Lorentz invariant kinematic variables

s = (k + P )

2

; Q

2

= �q

2

; x =

Q

2

2q � P

; M

2

= (q + �P )

2

: (2)

In addition to the �rst three variables, which characterize ordinary deep inelastic scatter-

ing, the invariant mass M of the detected hadronic �nal state occurs as fourth variable.
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Di�ractive events have been observed for small values of Bjorken's scaling variable x. In

this case one has,

� =

M

2

+Q

2

W

2

+Q

2

' x

M

2

+Q

2

Q

2

; W

2

= (q + P )

2

'

Q

2

x

; (3)

where W is the invariant mass of the total hadronic �nal state including the proton

remnant.

The e�ective lagrangian used in [4] is based on the hypothesis that the wee parton

clusters inside the proton can be described by a scalar �eld �, carrying vacuum quantum

numbers. The hadronic system in the �nal state is represented by a spectrum of massive

vector states, analogous to generalized vector meson dominance [5]. The coupling between

virtual photon, scalar and vector �elds is then given the unique dimension �ve operator,

L

I

= �

1

4�

�(x)F

��

(x)V

��

(x) ; (4)

where F

��

= @

�

A

�

� @

�

A

�

and V

��

= @

�

V

�

� @

�

V

�

are the �eld strength tensors of the

photon �eld and the hadronic vector �eld, respectively. The physical picture, that the

virtual photon acts like a disk of radius 1=Q [6], determines the length in eq. (4) as

1=� = e�=Q, where e is the electric charge and � is an unknown constant.

The total di�ractive cross section can now be expressed as

�

D

(ep! e~pX) =

Z

dxdQ

2

dM

2

d�

d�̂(e�! eV (M))

d�dQ

2

�(Q

2

;M

2

)f

�

(�;Q

2

) ; (5)

where d�̂ is the quasi-elastic cross section for the production of a vector state of mass

M , calculated according to eq. (4), �(Q

2

;M

2

) is the spectral density of vector states,

and f

�

(�;Q

2

) is the probability density of �nding a wee parton cluster with momentum

fraction � inside the proton. Here we have assumed that the spectral density only depends

on the transverse size and the mass of the produced �nal state.

The spectral densities �

T

and �

L

, assumed in [4] for transversely and longitudinally

polarized vector states, were obtained from a �t to the inclusive structure function F

2

at small values of Q

2

and M

2

[7]. In the kinematic range probed at HERA this choice

appears no longer appropriate. In the following, we shall instead use the ansatz,

�

T

= �

L

� � =

C

Q

2

+M

2

: (6)

This is a simple interpolation between � / 1=Q

2

for M

2

� Q

2

, and � / 1=M

2

for

Q

2

�M

2

, which one may guess based on dimensional analysis. Note, that at large M

2
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� has to fall o� at least as 1=M

2

in order to satisfy the unitarity bound �

D

� �

max

/

ln(W

2

=Q

2

)=Q

2

. The most general spectral density is obtained by multiplying the ansatz

(6) with an arbitrary function of �, where

� =

Q

2

Q

2

+M

2

: (7)

Some examples and their interpretation will be discussed below.

The di�ractive cross section is now easily evaluated. For kinematical reasons, one

has

d�̂

d�dQ

2

/ �(� � x

Q

2

+M

2

Q

2

) : (8)

From eqs. (4) and (5) one obtains for the di�erential cross section in x, Q

2

and M

2

[4],

d�

D

dxdQ

2

dM

2

=

��

2

�

2

4xQ

4

 

1� y +

y

2

2

� 2

Q

2

M

2

(Q

2

+M

2

)

2

y

2

!

�(Q

2

;M

2

)�f

�

(�;Q

2

) : (9)

� is now the function of x, Q

2

and M

2

, for which the argument of the �-function in eq.

(8) vanishes. It corresponds to the momentum fraction of the parton cluster needed to

produce the invariant mass M (cf. (3)).

De�ning transverse and longitudinal di�ractive structure functions in the usual way,

d�

D

dxdQ

2

d�

=

4��

2

xQ

4

  

1� y +

y

2

2

!

F

D

2

(x;Q

2

;M

2

)�

y

2

2

F

D

L

(x;Q

2

;M

2

)

!

; (10)

one obtains (d� = x=Q

2

dM

2

),

F

D

2

(x;Q

2

;M

2

) =

�

2

C

16

f

�

(�;Q

2

) ; (11)

F

D

L

(x;Q

2

;M

2

) = 4�(1� �)F

D

2

(x;Q

2

;M

2

) : (12)

This result is very simple. Up to an unknown constant, F

D

2

is identical with the probabil-

ity density for �nding a wee parton cluster with momentum fraction � inside the proton.

It is independent of �, which is a consequence of our ansatz for the spectral density.

The relation between F

D

2

and F

D

L

follows from the Lorentz structure of the e�ective

lagrangian (4) and the assumption �

T

= �

L

. The obtained di�ractive cross section scales

with Q

2

, i.e., �

D

/

R

d�F

D

2

=Q

2

/ 1=Q

2

. Note, that our calculation does not require the

proton remnant ~p to be a proton. Based on ideas of generalized vector meson dominance,

the cross section �

D

(ep! epX) has been predicted to fall o� faster than 1=Q

2

[8].

In order to proceed further, we have to determine the probability density f

�

(�;Q

2

).

Within the parton model, it appears natural to build up f

�

from products of the gluon

4



density g(x;Q

2

) and the sea-quark density S(x;Q

2

), which re
ect the possible colour

singlet states,

f

�

(�;Q

2

) =

Z

���

�

d�

0

�

f

g

g(�

0

; Q

2

)g(� � �

0

; Q

2

) + f

S

S(�

0

; Q

2

)S(� � �

0

; Q

2

) + : : :

�

: (13)

Here f

g

, f

S

and � � 1 are constants, and products with three and more parton densities

are represented by the dots. The parton densities extracted from deep inelastic scattering

are singular at small values of x, such that the integral (13) diverges as the infrared

cuto� � approaches zero. Since the integral is dominated by the contributions from the

two regions �

0

' 0 and �

0

' �, one obtaines approximately,

f

�

(�;Q

2

) '

�

f

g

g(�;Q

2

) +

�

f

S

S(�;Q

2

) + : : : ; (14)

where the constants

�

f

g

and

�

f

S

depend on the cuto� �

1

.

At small values of x, several sets of parton densities [9, 10] show the universal be-

haviour,

S(x;Q

2

) / g(x;Q

2

) : (15)

For the GRV parton densities, for instance, the ratio g=S is constant within 10% for values

of x between 10

�4

and 10

�3

[11]. In this case one obtains a simple relation between the

di�ractive structure function F

D

2

and the inclusive structure function F

2

(x;Q

2

), which

is proportional to xS(x;Q

2

). From eqs. (11), (14) and (15) one then obtains the simple

scaling relation,

F

D

2

(x;Q

2

;M

2

) '

D

�

F

2

(�;Q

2

) ; (16)

with an unknown constant D. Although the di�ractive structure function is de�ned as a

function of three variables, it only depends on two kinematic variables, the momentum

fraction � of the wee parton cluster and Q

2

. The simple connection with the inclusive

structure function re
ects the fact that the momentum of the parton cluster is essentially

carried by a single parton (cf. (14)). The remaining ones only screen the colour. The

additional factor 1=� occurs for kinematical reasons.

The scaling relation (16) can be directly compared with recent measurements of the

two structure functions by the H1 collaboration. The experimental data for the di�ractive

structure function F

D

2

are consistent with

F

D

2

(x;Q

2

;M

2

) / ln(Q

2

) �

�n

; (17)

1

In [4], the integral (13) was approximated in a di�erent way which, however, ignored the fact that

the dominant contributions come from the region close to the end points of integration.
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where n = 1:19�0:06�0:07 [3]. On the other hand, at small values of x, the data for the

inclusive structure function can be parametrized as F

2

(x;Q

2

) / ln(Q

2

)x

�d

, with d = 0:19

[12]. These measurements of F

2

and F

D

2

are in agreement with the scaling relation (16).

The model described above is similar in spirit to \aligned jet" models (AJM) [13]-

[15], where the current fragment is produced by a quark-antiquark pair of transverse size

1=Q penetrating the proton. The predictions of the two approaches may be compared

in terms of the di�ractive structure function or, equivalently, in terms of the di�ractive

cross section, conventionally de�ned as (x� 1),

d�

D

dM

2

=

4�

2

�

Q

2

F

D

2

(x;Q

2

;M

2

)

d�

dM

2

: (18)

From eqs. (11),(14), and using g(�;Q

2

) � S(�;Q

2

) � �

�1��

, one obtaines

d�

D

dM

2

/

1

Q

2

(Q

2

+M

2

)

�

��

: (19)

In its simplest form, neglecting perturbative QCD corrections [14], the AJM predicts the

di�ractive cross section [13],

d�

AJM

D

dM

2

/

1

(Q

2

+M

2

)

2

: (20)

Integrated over M

2

, the model yields a total di�ractive cross section �

D

/ 1=Q

2

. Note,

that this prediction of \hard di�raction" as a \leading twist" e�ect was made already

before the development of QCD! The structure function corresponding to the AJM cross

section is F

D

2

/ �=�. In the cluster model described above, the AJM cross section could

be obtained with \
at" parton densities (� = 0) and with the choice of the spectral

density �

AJM

/ Q

2

=(Q

2

+M

2

)

2

in eq. (6). Another choice, �

NZ

/ Q

2

M

2

=(Q

2

+M

2

)

3

,

would lead to the model of Nikolaev and Zakharov, which predicts for the di�ractive

cross section [15],

d�

NZ

D

dM

2

/

M

2

(Q

2

+M

2

)

3

; (21)

corresponding to the structure function F

D

2

/ �(1� �)=�.

The occurence of jets with large transverse momentum in di�ractive events was �rst

predicted based on the idea of a \pomeron structure function" [16], which can also

account for the HERA results on the di�ractive structure function in deep inelastic

scattering [16]-[20]. Here, a pomeron structure function

~

F

2

(�;Q

2

) at some �xed value Q

2

0

is needed as non-perturbative input, where � is now interpreted as momentum fraction of

a parton inside the pomeron. The predictions of the model are then the Q

2

-dependence

6



of this pomeron structure function as well as the \pomeron 
ux factor", which plays

the role of the cluster density in the model described above. More precise measurements

of the �-dependence and the �-dependence should be able to distinguish between the

various models.

Starting from the hypothesis, that the di�ractive events in deep inelastic scatter-

ing represent the scattering of electrons o� lumps of wee partons, we have obtained a

di�ractive structure function which is consistent with recent measurements. In particu-

lar, a simple scaling relation has been derived between the di�ractive and the inclusive

structure functions, which appears to be in agreement with experimental data. This sug-

gests, that the momentum of the wee parton cluster is essentially carried by a single

parton. Hence, like the inclusive cross section in deep inelastic electron-proton scatter-

ing, also the di�ractive cross section may be essentially due to incoherent electron-parton

scattering. In the case of di�ractive processes, however, this interpretation requires some

non-perturbative mechanism of colour screening.

I would like to thank A. Hebecker, G. Ingelman and A. Vogt for valuable discussions.
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