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ABSTRACT: We derive a factorization theorem that allows for resummation of small-x loga-
rithms by exploiting Glauber operators in the soft collinear effective field theory. Our analysis
is carried out for the hadronic tensor W#" in deep inelastic scattering, and leads to the defi-
nition of a new gauge invariant soft function S*” that describes quark and gluon emission in
the central region. This soft function provides a new framework for extending resummed cal-
culations for coefficient functions to higher logarithmic orders. Our factorization also defines
impact factors by universal collinear functions that are process independent, for instance being
identical in small-z DIS and Drell-Yan.
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1 Introduction

The forward scattering regime of a field theory has long been an object of interest. Of chief
concern is the question of what form should a strongly-interacting bound state take, such that
when scattering at high-energies, the interactions of its constituents with the other projectile
correctly unitarizes the cross-section [1]. Typically, one tries to reduce questions about the
structure of the bound state in high energy scattering by relating it to universal correlation
functions, like the parton distribution function, through the process of collinear factorization
(or equivalently, the twist expansion). This requires a hard momentum transfer to occur in
the scattering process at a scale Q? > AQQCD. Then through asymptotic freedom, one can
access the partonic constituents of the bound state. The high-energy scattering regime is
accessed when we keep the momentum transfer Q? between the scattering states fixed, and
instead increase the center-of-mass energy s to asymptotically large scales. Historically in
quantum chromodynamics, two general approaches to the high-energy scattering regime have
evolved, both united by the critical role played within each by the so-called Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation [2-5]. One is dominated by concerns of how the bound
state manages to unitarize the scattering cross-section through the formation of a saturated
state! of partonic constituents, created in a dynamical process described through a hierarchy of
nonlinear functional equations known as the “B-JIMWLK” equations, or its functional closure
through the large N, limit into the BK equation [9-13]. The second approach is concerned
with how to connect the resummation carried out by the BFKL equation to the DGLAP
resummation appearing within collinear factorization with parton distribution functions, since
within collinear factorization we have the most reliable perturbative control. This approach
was initiated by Ref. [14], that first resummed the leading small-z;, logarithms in the coefficient
functions and anomalous dimensions defined through the standard dimensional regularization
approach to collinear factorization, and sparked several groups to address concerns about the
stability of the perturbation series (Refs. [15-20] and [21-25] and [26]) when extending the
BFKL equation to next-to-leading order, Ref. [27]. In this paper we bring a new set of tools
to these problems using soft-collinear effective field theory (SCET) [28-32]. We will make
use of the SCET based description of the forward scattering limit with Glauber operators
from Ref. [33].

An important classic observable for studying the forward scattering regime in QCD is
Deep Inelastic Scattering (DIS), e p — e~ X. The scattering cross-section directly probes
the structure of the proton, which can be summarized by the so-called structure functions,
Fy(zp, Q%), where Q? is the momentum transfered into the strongly-interacting or hadronic
sector, and xp in the collinear factorization regime has the interpretation of the momentum
fraction of a parton within the proton, projected along the direction of the proton. As xp — 0,
we naturally probe the forward scattering region, as we describe in detail later on.

A goal of this work is to setup a formalism involving factorization of small-z; momentum
regions with gauge-invariant objects with manifest power-counting, to lay ground work for
resummation at higher orders and for other processes than inclusive DIS. This can be natu-
rally achieved in the effective theory framework, which we demonstrate by deriving a small-z

' A leading contender for this saturated state in nuclei is given by the color-glass-condensate [6-8].



factorization theorem for the W# hadronic tensor in DIS using Glauber SCET,

W (q, P) = /dd_QkLS‘“’(q, kbﬁ,e) C(lﬂ,P,%,e). (1.1)

Here S* is a soft function and C' a collinear function and renormalization group evolution in
v sums small-x logarithms. The soft function S*” is analogous to the dipole function defined
in the B-JIMWLK framework. Likewise, the collinear function plays a role similar to impact
factors in the small-x literature and incorporates higher order corrections related to the initial
hadronic state. This result is valid at next-to-leading-logarithmic (NLL) order, and enables
the computation of DIS coefficient functions at this order. This also enables the universality
of functions to be made manifest with matrix elements of definite operators that appear in
multiple processes. While our formulation shares the goals of earlier small-x; resummation
approaches, it differs in some key ways. In the approach of Refs. [14-25] different off-shell
cross sections for each individual quark/gluon channel and structure functions were required.
In contrast, in eq. (1.1) a single gauge invariant soft function S*” replaces these offshell cross
sections and captures the process dependence. In addition, our collinear function is defined by
an operator matrix element with hadron states and is universal across processes from the start,
depending only on the properties and momentum of the hadron being probed. In particular,
the factorization for Drell-Yan will involve the same collinear function with proton matrix
elements as in DIS, and have a different process-dependent soft function. The simplicity of
this universality can be contrasted with other approaches, such as Ref. [34], where maintaining
process independence while incorporating higher order corrections related to the initial state
is more challenging.

In section 2 we review the small-z DIS kinematics, structure function decomposition,
and Glauber SCET Lagrangian, and discuss the structure of small-z logarithms in DIS and
previous methods used to resum them. In section 3 we determine the soft and collinear modes,
power counting, and operators needed for our EFT description of small-z DIS. In section 4
we derive the small-z factorization theorem for WH" in eq. (1.1). In section 5 we carry out
fixed order calculations of the soft and collinear functions. Our leading order calculations of
SH for the Fy and Fp, structure functions, directly verifies that this function provides a proper
replacement of the off-shell cross sections used in earlier approaches. Our next-to-leading order
(NLO) calculation of C enables us to directly verify that it satisfies the d-dimensional BFKL
equation. In section 6 we use our setup to reproduce the known LL resummation of the hard
coefficient functions in the twist expansion, which enables us to highlight differences in the
intermediate steps. In section 7 we conclude and briefly mention the additional ingredients
needed to extend the small-z; resummation of coefficient function and anomalous dimension
to NLL with our framework.

2 Small-z Logarithms in DIS

For simplicity, here we consider the case of DIS with unpolarized proton struck with a vir-
tual photon. In section 2.1 we review the DIS variables and kinematics, and in section 2.2
the Lorentz decomposition of the cross section in terms of structure functions. In section 2.3
we review the set of terms in the perturbative expansion of hard-collinear twist-2 coefficient
functions and anomalous dimensions that are enhanced in the small-z; region. Finally in sec-



tion 2.4 we briefly describe the small-z, and DGLAP resummation achieved for both anomalous

dimensions and coefficient functions at LL accuracy by Catani and Hautmann in Ref. [14].

2.1 Kinematics

We define the Lorentz vector momentum variables: P. and P/ as the initial and final electron
momenta, P as the initial proton momentum, Py as the total momentum of the hadronic final
state and g as the momentum of the virtual photon. Thus total momentum conservation is
P.+ P = P! + Py, and the Mandelstam variables are s = (P, + P)? and t = ¢*> = (P. — P!)%.
The standard DIS kinematic variables Q?, xp, and y are then:

@ _Pq
TP YT PP ms
where 0 < 2 <1 and 0 < y < 1. Equivalently, we may trade y for the center of mass energy

Q=—¢>0, m (2.1)

s, if Q% and wy, are fixed. For simplicity we work with a massless electron, and drop the proton
mass m% < Q?, which yields

Q*=—-2P,-q. (2.2)

For our power counting and factorization analysis it is convenient to work with the center of

mass frame of the e”-proton collision. The choice of this frame makes it easier to demonstrate

how the small-z; limit is related to a forward scattering process. Here we have
Pe#:Pe+n7“:\/§n7“’ pu:p*ﬂ:\/gﬁ, (2.3)

2 2 2 2

where n = (1,0,0,1) and 7 = (1,0,0,—1) are light-like vectors along the electron and proton

beam axes, respectively, and we drop both the electron and proton masses. We define plus and

minus light-cone components for any vector p* by

n# _nH*
pr=pt g+ 5+ (2.4)
with pt =n-pand p~ = f-p. Here p‘i refers to the two components of p* that are orthogonal

to both n* and n*. The momentum squared is given by
P’ =pTp” +p1 =ptp it (2.5)
where the minus sign results from the metric signature for the transverse coordinates. Using

egs. (2.1) and (2.2) and expressing the light-like vectors n# and 7# in terms of the electron
and proton momentum in eq. (2.3) we have

L_2Pq_ @ __2Pq @

5 oms T T 20
such that
q" x?\jgﬁ; - 32”; +4q = y\/g%u - wby\/g%u +4q . (2.7)
Furthermore, using Q? = —¢?, we have
7t =Q'(1-vy). (2.8)
The invariant mass of the hadronic final state is given by P% = (¢ + P)?, yielding
PY = Q1 — m)/m. (2.9)



2.2 DIS Structure Functions

For QCD with ny flavors of massless quarks, the DIS cross section can be written as

do _ 2y
Q4

The leptonic tensor, assuming only photon exchange for unpolarized scattering and a massless

Ly (Fe, )WH (P, q) . (2.10)

electron, is given by
LW =2(PtPY + PYP} — g"P.- Pl), (2.11)

and the hadronic tensor has the definition
1
W = — > (P|J*(0)| X)(X[J*(0)|P)(2m)*6*(P + ¢ — Px)

Am
X

“E / Atz (P (0)e™ T X)X |7 (0) | P) (2m)*
X
1 4 izq) p| iz P it () e—iz P v
WZ/d 2e#(P|e*F JH(0)e | X)(X[J7(0)|P)
X

- i / d*2e=(P|J# (2).77(0)| P) (2.12)

We have eliminated the sum over the final state, using the translational invariance of the theory
to remove the momentum conserving delta function. The resulting sum over a complete set
of states is now the identity. The position space operator J* refers to the strongly interacting
contribution to the electromagnetic current with which we are probing the proton’s structure.
The variable X refers to the hadronic final state, where we sum inclusively over all possible
configurations. The leptonic tensor is easily computed at tree-level. For unpolarized e~ p scat-
tering, the hadronic tensor W can be decomposed in terms of structure functions Fh(x, Q?)
and F(z,Q?) via [35, 36],

7 F
W — ( _ g4 L )Fl - (q“ n 2be/*) (q” n 2be”) 230:(]2 : (2.13)
where
FL('TbaQ?) = FZ(wbaQQ) —2$F1(33b,Q2). (214)

We can restrict to these two terms, since we are only considering vector probes of QCD, and
not axial vector, and exploit the P-C-T symmetries of QCD.

The inclusive factorization theorem for the DIS structure functions expresses them as
a convolution between partonic cross sections HQ(H) and Hgi) (also referred to as inclusive
coefficient functions), and parton distribution functions f/, for a parton  in the proton p,

*FQ (23, Q%) = Z/x Q M)fn/p(f 1) +O(AQCD/Q2)

;FL T, Q Z/x 7Q M)fn/p(f 1) +O(AQCD/Q ) (2.15)



The DGLAP evolution in p sums logarithms between the scale @ in HQ(HIZ and the scale Aqcp
intrinsic to the parton distrbution functions f,/,. In writing Eq. (2.15), we have adopted
the standard conventions of Refs. [37, 38]. Note that writing the integral for the factorization
theorem in terms of the ratios x;/¢ in Hé'% and d¢/¢, yields the factors of 1/x;, on the left
hand side. Following standard terminology, we will often call the factorization with PDFs
as the twist expansion [39-43], most often defined by the naive scaling dimension minus spin
for operators in the OPE. One can construct projectors from the external momenta of the
problem to isolate the appropriate structure function one is interested in. These are given in

Refs. [37, 38]:

1 2\ 2 q2 nv

;bFZ(xbaQ )_ 2—26<(3 26)(q‘P)2P,uPV+guV)W )

1 2¢°

—F = -2 _P,P,W". 2.1

However, for calculations at leading power in the forward scattering limit, we will find that a
projector based on the electron’s initial momentum is more natural for Fs:
(P-q)°

~ Y p p, )W, 2.17
(Pe . q)g M ) ( )

iFQ(JSb, Q%) =— 2% a)

Lo s(Pe-qP-q—sq2/4>(

PP, —

In terms of the light-cone coordinates given in section 2.1, in the e”-proton CM frame the
projectors are given by
2 2@2

1
7)(77#7_1,, — ’nfn”)WH x—bFL(mb,Q2) = ——nn,W" . (2.18)

1
7F Tp, Q2 = —
Zp 2( ) 2q7? (n-q)?

2.3 Small xp Logarithms in DIS

A primary goal of factorization in the forward scattering limit is to resum the perturbative
expansion of the structure functions. Typically, the structure functions are calculated in per-
turbation theory using dimensional regularization, since the functions themselves are infra-red
divergent. These infra-red divergences may be absorbed into the parton distribution functions
using the factorization formula of eq. (2.15). The standard definition of the Mellin moment of
the structure functions is given as:

Fy(N, Q%) = /01 d%xN(le(:c)) . (2.19)

Then when calculating the structure function in perturbation theory using leading twist-
contribution, the result takes the form in Mellin space:

2

FRN) = 3 A (N 0s(0) ) P (05(422), Vo) (2.20)
where
_ aS(u2) da
Lo (as(p?),N,e) =P ex / $(a, N . 2.21
(as(u?), Nse) p( i 5(67@7( ))M (2.21)



The finite remainder ﬁl(f) is the renormalized coefficient function of eq. (2.15) when using
the MS scheme for the PDFs. The subscript p = 2, L selects for the corresponding tensor
structure for each structure function, and the indicies «, k' denote the partonic states used for
the perturbative calculation. In particular, s labels the partonic state that we use to evaluate
the structure function of eq. (2.12). For physical applications one wants to calculate the
structure function using nucleon states, but within perturbation theory one has only access to
perturbative states of quarks and gluons. To extract the coefficient functions it suffices to use
initial quark and gluon states, since these coefficients are state independent. When using these
partonic states we label the perturbative calculation of each structure function with index x to
indicate the initial partonic state. From hereon we will only consider the singlet contribution
of quark and anti-quark as the non-singlet channels are power suppressed for small-z. Thus
k, k' = q, g for each parton flavor, where ¢ refers to the quark/anti-quark contribution to the
singlet parton density. The beta-function in dimensional regularization is

Ble, as) = p*— as = —eas + B(as) , (2.22)

and v*(a,n) in eq. (2.20) corresponds to the space-like DGLAP anomalous dimension matrix,
or the anomalous dimensions of twist-two local operators. These anomalous dimensions control
the logarithmic structure with respect to @2, the invariant mass of the photon probe of the nu-
cleon’s state. In eq. (2.20) the exponentiated anomalous dimension, I'./,, (with path-ordering
for the matrix products) factors out all IR divergences of the perturbative calculation, corre-
sponding precisely with the partonic PDFs. This occurs because in the MS scheme the bare
partonic PDF's are scaleless, so after UV renormalization they are purely determined by a series
of infrared 1/e poles, controlled by the UV anomalous dimension. After these IR divergences
are extracted from the perturbative calculation via egs. (2.20) and (2.21), we can then identify
the remaining piece in eq. (2.15) with the IR finite coefficient functions ETI(,H) in eq. (2.20). The
coefficient function and the anomalous dimensions have the perturbative expansion,

_ QQ 1 ng © . QQ a 2 Y

HI(7 ) (N, ~5, as(p?) ) = — Z egi 210 20k.q + Z h;e) (—2, N) as(1”) . (2.23)
H (i =1 H T

¢

¥ (Nas (i) = D7 O (%)
(=1

The first term in the expansion of ETISH) indicates that for p = 2 and the quark channel, we
have the leading contribution to the FQq structure function from direct coupling of photons
to quarks. For simplicity, below we will drop the average electromagnetic charge prefactor
appearing in eq. (2.23).

Now, under this Mellin convention, the logarithms of x; appear as poles located at N = 1:

L dx 1., B ')
/0 —xN<—ln£ 1(96)) = (—1)(2@- (2.24)

X x

In what follows, we will find it convenient to use the shifted Mellin variable:

n=N-1. (2.25)



This allows use to write the leading power logarithms of x; as poles at n = 0. Subleading
power terms then correspond to poles at n = —1, —2,.... These logarithms of x; are generated
both in the coefficient functions FI;,H) and the anomalous dimensions v®. As remarked above in
section 3.3, direct coupling of photons to collinear partons is power suppressed in the small-x
region. Hence, at leading non-trivial order in the x; — 0 limit?, we have the expansions for
the DIS electromagnetic structure functions:

Ign)<n,22§7a8(ﬂz)) _ @(ihﬁ)(@) (aif)>£+,..> +..., (2.26)

112

/=1
) aa(12) & o)\’
Yag (O‘S(:u )7 n) = = % Vag.t . + ...,

where 7,/ (s, 1) are elements of the anomalous dimension matrix v*(as, n). We have neglected
terms that are either logarithmically or power-suppressed suppressed as x; — 0. As we will see
below, in Mellin space, the above expansion of ETZ()K) in the small-z; limit at leading power only

begins at O(a?) due to the presence of an intermediate soft sector, and we find the behavior

(%)
hp,f
leading logarithmic (LL) series for the coefficient function and the anomalous dimensions 7,4

~ 2 1 In“"1(z), after the inverse Mellin transform is taken. Here we have indicated the

and 74,. In all cases we have a single logarithmic series: each power of o, brings with it
at most one additional logarithm. For the coefficient function and glue-to-quark anomalous
dimensions, we have adopted the convention of Ref. [14] (where the coefficient function is
formally considered to start at next-to-leading logarithmic order, describing the same terms
with different terminology than what we use here). This is due to the fact at fixed order, the
small-x;, singularity requires an emission of a gluon, but at leading order in the DIS fixed order
calculation, we can only probe quark intermediate states. As discussed below in section 6, other
terms in the anomalous dimension matrix, 7., for k = ¢, g, are straightforwardly related to the
above ones at LL. As detailed in Ref. [14], these quantities are relevant for the resummation
of the DIS process at the first non-trivial order that small-z; logs appear.

2.4 Resummation by Catani and Hautmann

The resummation of the glue-to-glue anomalous dimension at LL level was worked out long ago,
Ref. [44], and the extension of the resummation of the anomalous dimensions at higher orders
in the BFKL approximation has been investigated in Ref. [27]. Further, it has been argued
such resummations of the anomalous dimensions are not perturbatively small, necessitating a
resummation of the BFKL kernel itself, see Refs. [15-19] and [21-24] and [26]. Resummation
of the coefficient function and the gluon-to-quark anomalous dimension in the MS-scheme was
worked out in Ref. [14], and further investigated in Refs. [45, 46]. In general, the resummation
follows from demanding consistency between the BFKL resummation of the DIS cross-section,
and the factorization of the DIS structure functions in terms of parton distribution functions.

2More precisely, the n — 0 limit. However, for convenience, we will call this expansion the small-z, expansion
or small-z; limit even in Mellin space.



Here, we briefly review the BFKL and DGLAP resummation achieved by Catani and
Hautmann (CH) in Ref. [14] at LL accuracy. This allows us to review concepts and establish
notation which will be useful for later comparisons with the EFT based approach. Their
leading logarithmic factorization yields the following formula for the F, structure function for
the gluon channel:

2 ’ 2\ vgg(@sm) _
Fég) <n, 222> = hi (vge(crs,n)) R(cts, n) (%) Lyg(cs,n,€) (2.27)

As above, the IR divergences at leading power in small-x; are absorbed in the transition
function fgg such that the remaining quantities in the formula above are IR-finite. Here, the
function hr () describes the coupling of photon to the incoming proton and is defined in terms
of an O(ay) off-shell cross section 6, describing interaction of photons with space-like incoming
gluons, with a p = L projection:

©dkT (K17 4 (K
e =7 [T () (Growe=0). .

The anomalous scaling of the structure function in eq. (2.27) is governed by 744 in eq. (2.26).
CH achieved the resummation of (as/n)’ terms through a separate calculation involving an
IR-divergent gluon Green’s function .7-"550) (n,ky,as, pu,€), which at the lowest order equals
62=29) (k) and satisfies the BFKL equation in d — 2 = 2 — 2¢ )dimensions. The g subscript

on .7:9(0) indicates that this is the gluon channel relevant for F ég structure function. The re-

)

summation of Féq structure function for quark channel is achieved via the quark channel of
gluon Green’s function .7:(50) which is straightforwardly related to }.éo) (n, k1, as, i, €) in terms
of ratio of Casimirs Cp/Cy. Here € regulates IR divergences, and we will discuss this in more
detail later on. Accordingly, all the higher order terms in .7:9(0) are generated by the d — 2
dimensional BFKL equation. Furthermore, the resulting series in a/n is IR divergent and CH
showed that these IR divergences in .7-";0) can also be factored completely into f‘gg:

.7:9(0) (n, ki, as,u, e) = Wﬁ(n, ki,up,as;u, e)fgg(as,n, e,) . (2.29)
Note that factorization of 1/e poles in the structure function F ég) in T'y, is a consequence
of twist factorization. On the other hand, the fact that T'y, captures all the 1/e IR poles
in the gluon Green’s function ]__éo)’ and that the offshell cross section hrz () in eq. (2.28) is
collinear finite for e — 0 (for v # 0), are special properties of the leading small-z; logarithms.
In eq. (2.29) pup is the factorization scale for IR singularities. The term R is IR-finite and
describes the scheme dependence of IR factorization, and its € — 0 limit gives R(as,n) in

.. . . k2% \ vgg(s,n)
eq. (2.27) multiplied with the scaling factor (F)

. The prefactor 744 in eq. (2.29) is
required to reproduce the classical 1/n scaling of the Green’s function, the structure function,
and the coefficient function as shown in eq. (2.26). Further imposing consistency with DGLAP
and BFKL resummation of ]__g(o) enabled CH to obtain a closed form for ~,, via the implicit

equation,

aCy

1= " (g (nyas) . x(3) = 20(1) () = (1 =), (2.30)

and simultaneously solve for R(as,n) in eq. (2.27).



For the case of the F3 structure function, CH showed that in the limit n — 0, the coefficient
function satisfies the following relation at LL accuracy:

Yg(N, as).F_IQ(g) (n,Q*/p* =1, a5) + 2n 749 (s, n) = ha(v)R(n, as) (2.31)

where ha(7y) is defined analogously to eq. (2.28) as

*dki (ki\7 0 (k%
h2(7) - 7/0 H (@) WUQ <2,O£3,6 = 0) . (232)

The key difference for the p = 2 case in the approach of CH is that here, unlike the p = L
projection in eq. (2.28), the O(as) offshell kernel 6§ contains a 1/¢ IR pole that is unrelated to
the IR divergences associated with BFKL evolution seen in eq. (2.29). This pole is related to
the 7,4, anomalous dimension and consequently the derivative with respect to In Q? renders it
IR finite. However, this implies that unlike the ~,4, the resummation of small-z; logarithms in
the coefficient function Hz(g ) and vq¢ cannot be achieved via the gluon Green’s function alone
in eq. (2.29). To this end, CH defined a quark Green’s function,

. k2
G((Ig) (Tl, Qs 6) = /dkoJ- qu (QJ§7 As, WU, 6) fg(O) (n7 kJ.v As, W, 6) ) (233)

where the off-shell kernel qu captures the 1/e pole in 65. As a result, similar to eq. (2.29),
this formulation allowed CH to absorb the IR singularities in the quark Green’s function Ggg)
into fgg and f‘qg transition functions. Consistency with DGLAP resummation then enables

determination of v4, anomalous dimension, although not in a closed form as in eq. (2.30).

3 EFT Modes and power counting

We briefly review the setup of SCET with Glauber operators in section 3.1. In section 3.2 we
describe the necessary and sufficient conditions for constraining the DIS process to be in the
forward scattering regime and argue the necessity for an intermediate soft sector at leading
power in this regime. The key differences in the twist and small-z; expansions are discussed
in section 3.3.

3.1 Review of SCET and Glauber Operators

To perform resummation of small-z; logarithms we will exploit the tools of soft collinear
effective theory (SCET) with Glauber operators. SCET is a low energy effective theory with
energetic quarks and gluons that encodes the appropriate soft and collinear degrees of freedom
to adequately describe QCD in the infrared. The “infrared” region is defined by the appropriate
separation of scales for a given problem. In SCET the soft and collinear degrees of freedom are
distinguished by their momentum scaling chosen in appropriate light-cone coordinates. After
appropriate factorization steps, at leading power in SCET the soft and collinear fields only
have self-interactions, except for soft-collinear interactions mediated by Wilson lines in hard
scattering operators or interactions mediated by Glauber operators. Following the coordinate
decomposition in eq. (2.4), we define the soft and collinear fields to obey the scalings given by

soft: k# ~+/s(A, A\ A), n-collinear: pt ~+/5(A\%,1,)), fi-collinear: p~ ~ /s(1,A%, \).
(3.1)

— 10 —



Here )\ is a small power counting parameter that we will identify below as a combination of
kinematic variables of DIS, and s is the center-of-mass energy of the scattering process.? These
scalings imply that the “virtuality” or the off-shellness of the soft and collinear particles is
constrained to k2 ~ p,%ﬁ ~ sA\%. From the top-down perspective of matching QCD onto SCET,
any degrees of freedom with p? > sA\? are integrated out. As can be seen by simply adding
the momentum components, direct interactions between soft and collinear fields (that is, at a
single local vertex in a feynman diagram) render some propagators off-shell at leading power.
For example, summing k& +pl ~ v/s(), 1, A2), we have the off-shellness (ks +pp)? ~ s\ > sA\2.

As we discuss shortly, the small-z; regime corresponds to near forward scattering of the
electron and proton in the center-of-mass frame with an intermediate soft sector. Here the
hierarchy of scales results from wide separation in the rapidities (or light-cone momentum
along the n and n directions) of the three sectors involved, instead of large momentum transfer
as in a hard scattering. The Glauber Lagrangian of Ref. [33] provides the necessary formalism
for describing this regime. The interactions between soft and collinear modes are described by
non-local operators given by

O D) S ERTS) 3 plciE 52
ij NN iy Mg

where the sum extends over the collinear and soft sectors widely separated in rapidity in
directions n; and n; for partons i,j = ¢,g. The label momentum operator P* appears as a
result of having performed multipole expansion, and picks out large O(1) and O(A) momentum
components. We briefly review these operators in appendix A.

3.2 Power Counting for xp — 0

For our EFT analysis we will always assume that /s is the largest momentum scale, and
Aqcp is the smallest. The intrinsic bound quarks and gluons in the proton have transverse
momentum ~ Aqcp, so in the adopted e™-proton center of mass frame the proton constituents
have momenta with a collinear scaling

" AéCD Aqcp
o~ V(=R S0 (3.3)

Here p? ~ AaCD < s. DIS is often analyzed using the twist expansion, where all operators

with the lowest twist contribute equally to the OPE. The twist expansion is an expansion in
the power counting parameter

Aqcp
Q

For the usual X expansion, no scaling is assigned to s with respect to Q2 or to x;. The result at

N~ . (3.4)

leading twist is then neatly packaged into parton distribution functions yielding the formulas
given in eq. (2.15). For the derivation of these factorization formula from SCET, see [32]. To
start we will not enforce an expansion in \" < 1, but will make use of eq. (3.4) in our discussion
below.

3Traditionally in the SCET literature, the symbol Q is understood as the large momentum of the problem.
We forgo this, as in the small-z;, regime the @ in DIS will set the small momentum scale relative to y/s. The
large momentum scale of the collinear sectors is then +/s.
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To setup expansions for the small-z region we will need to determine the scaling for z
and Q?/s. Defining A < 1 as a small expansion parameter we let

zp~ A (3.5)

To determine the physical implications of possible choices for the scaling of Q?/s, it is best to
start from an assigned power counting for P)% /s. The two scalings we consider are

i) Forward scattering:

ﬁ:M:QjMNA — a;y:Q—Qw)\z Y~ A (3.6)

s s s p b s ’ ' '
ii) Hard P%:

Px _@tPP _@U-m) o _ a:y:Q:w y~ A (3.7)

s s s xp b s ’ ' '

It is tempting to say that both scalings lead to forward scattering, since Q2 is analogous to the
standard Mandelstam variable —t, and in both cases Q? < s. This would suffice for elastic
forward scattering, where specifying that the exchanged particle carries small invariant mass
is sufficient to specify the forward scattering regime. However, in DIS the process is inelastic,
and small Q? is a necessary but not sufficient condition. Since P)z( ~ s in the power counting
ii), the final state invariant mass is in the hard momentum region, and there is necessarily
always a hard scattering interaction at leading power. In contrast, with the power counting
in i) we have P)z( < s and there will be no hard scatting interaction at leading power. This
makes option i) the true scaling for the forward scattering limit.

In principle small-z resummation could be explored by adopting either scaling i) or ii), we
wish to exploit knowledge of the EFT description of forward scattering described in section 3.1,
and hence will adopt the scaling i) in eq. (3.6) for our analysis. With the choice of i) we can
rewrite the scaling for the proton constituents in eq. (3.3) as

pe =(pF Pz per) ~ V(XD 1, ). (3.8)

Consistency requires y ~ A for this case, but the DIS structure functions F27L($,Q2) are
independent of y, and the full dependence on this variable can be entirely captured in the cross
section prefactors. Using egs. (2.7) and (2.8) we can then determine that

qa=(¢"q",q1) ~ \/E(A, A2, /\) : (3.9)

This has the scaling of an fi-s Glauber mode in the language of Ref. [33].% Although we do
not expand the leptonic tensor when deriving the factorization result, it is important to know
the scaling of ¢ as it feeds momentum into W#" and hence effects the description of the modes
used in its factorization.

“In contrast with the choice ii) we would have had ¢ ~ +/s(1,A,v/A) for the virtual photon. Essentially,
the photon now has small invariant mass since it is collinear to the electron, not due to being in the forward
scattering region. Here p. ~ v/s(AXN'2,1,v/AN) and P% ~ (p. + q)? ~ s is in the hard region.
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Crucially, taking A < 1 this forces the leading contributions in the small-z limit to have
a soft-intermediate sector, as the Glauber photon cannot interact directly with the collinear
sector of the proton without throwing it off-shell. This is true irrespective of whether or not
take X' ~ 1 or N < 1 in eq. (3.8). We thus require modes that can simultaneously couple to
the ¢ in eq. (3.9) which has ¢ ~ ¢, ~ /s, and be on-shell so that they can cross a final
state cut. This requires that we introduce soft modes with momentum scaling

ps =05, 97,po1) ~ V3 (AAN). (3.10)

Note that this is also consistent with eq. (3.6) since any radiation in X is now either soft or
collinear and

P% ~ (pe +ps)? ~ popd ~ sA. (3.11)

Since the determination of the relevant modes for the A expansion does not depend on the \
expansion, our strategy will be to first consider the small-x forward scattering expansion with
A < 1, treating X ~ 1. For this first stage, instead of the scaling in eq. (3.8), we therefore
have collinear modes with the scaling

These collinear modes with p, | ~ /sA ~ @ are needed for the small-z resummation. Ounly
later will we then consider the twist expansion with \' < 1. For this second )\ expansion
we could in principle include additional EFT modes with invariant masses p? ~ AéCD. This
would not only include the proton constituent modes with momenta p. in eq. (3.3), but also
additional modes, since as we will see later on, the soft modes in eq. (3.10) also contribute
to the IR divergences present in the PDFs. This is due to the fact that regardless of how
we power count ), integration over the intermediate Glauber exchanges between the soft and
collinear sectors range over all scales below Q?, simultaneously forcing the soft and collinear
sectors to probe the infra-red. Rather than introducing these p? ~ A(QQCD modes explicitly,
we will instead simply match the results from our first EFT onto the standard leading twist
factorization formulae in eq. (2.15).

Finally, with the scaling in eq. (3.6) both projections in eq. (2.18) for Fp(xp, Q%) and
Fy(xp, Q%) give leading power contributions, in particular (n - ¢)?/q? = Q?/(sz2(1 —y)) ~ A\
and Q%/(n - q)* = 275/Q* ~ \V. Therefore the z*n#n” term can be dropped relative to n#n”

for F5, and we can define the leading power projectors:

(nq)? - = _
—— Ty My, p=2
L = jgﬁ . (3.13)
(n-q)2 nyny, p=1L

3.3 The Twist expansion and Power Suppressed Contributions as xp — 0

As emphasized, for the small-x;, forward scattering limit, we are free to make no assumption
about the relative scaling of A(QQCD over @? (the expansion in \’). One might be tempted to
therefore conclude that the effective theory we construct from the A\ expansion with eq. (3.6) is
valid eoipso at all twists. However, the true situation is more intricate: many of the diagrams
in the full theory that contribute at leading twist are power-suppressed in the small-x;, effective
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Figure 1. A direct interaction that does not involve a soft function at scale ¢, ~ @ and contributes
only to I and not to Fy. The intermediate collinear line will be off-shell (hard-collinear).

theory, and thus dropped in our leading power analysis of the small-z;, limit.? This will play a
role in our analysis of the leading logarithmic resummation of the space-like DGLAP anomalous
dimension ~? in section 6. We will see that in order to fully reconstruct the leading twist
anomalous dimensions, we must match our small-x; power expansion to the twist expansion,
thereby including terms that are necessary for the renormalization of the operators in the twist
expansion, but are themselves power-suppressed at small-xy.

In figure 1 we show an example of a tree-level diagram that contributes at leading twist
and also at leading order in o for the coefficient function HQ(K) in eq. (2.15). However, it does
not appear in the same manner as the leading power terms in our small-x; forward scattering
expansion shown in eq. (2.26) with the scaling defined by eq. (3.6). This is because when a
Glauber photon, with scaling as in eq. (3.9), couples directly to the collinear sector, we end
up with off-shell hard-collinear propagator with p% . ~ sA. This off-shell line is integrated out
into a matching coefficient proportional to H(z) o (1 — z), and hence yields a result that
does not have a simple power counting in a strict z ~ x expansion. This can also be seen
in moment space where [ dz2"§(1 — z) = 1 different from eq. (2.24), where terms suppressed
by ~ A relative to leading power appear as poles at n = k in the Mellin space. This can
be contrasted with the soft-sector mediated interactions, which perturbatively generate terms
with the scaling ~ (Inz)*/z.

4 Factorization

The factorization is derived in two steps. First we must formally match the full QCD electro-
magnetic current J#(z) onto the current operator composed from soft fields. This is trivial to
do, since the soft current operator in SCET has the exact same form as for full QCD, and the
multipole expansion can be simply implemented by dropping the - ¢ ~ A? photon momentum
component, which is subleading, cf. eq. (3.9).

Next we must expand to the first non-trivial order in the Glauber lagrangian which medi-
ates interactions between the soft and the proton-collinear sector. As discussed in appendix A,

5We also expect the converse to be true: the effective theory for small-z; factorization will generate diagrams
that are suppressed in the leading twist limit but are leading power at small-x,. As we will see below, whether
or not these contributions are seen in a calculation depends on the regularization procedure for IR divergences,
as well as the boundary conditions for BFKL evolution.
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the Glauber soft-collinear action can be written in the form:

d. Li(z—y)q )
87rasZ/dd /dd / 4% eqiow“( )OI A(y). (4.1)
1

7_]7

At this point we have already introduced dimensional regularization. This is necessary since
even at tree level where the soft and collinear functions are both IR finite, the convolution
in the factorization formula in eq. (1.1) generates logarithmic IR divergences (we elaborate
further on this below). As will be seen from explicit calculation in section 5.2, the collinear
function is infrared-divergent beyond tree level, with a subset of the infrared divergences tied to
the rapidity logarithms generated by the BFKL equation, a fact noted in Ref. [14]. Additional
IR divergences are generated when integrating over the momentum of the Glauber gluons in
the convolution between soft and collinear sectors. Conversely, from rapidity renormalization
group consistency, this implies that the soft sector will also contain IR divergences at higher
orders. Thus we are forced to introduce an IR regulator throughout the factorization. Since
dimensional regularization affords the most convenient scheme for handling IR divergences, we
will work throughout in d = 4—2¢ dimensions. Additionally, by choosing to work in dimensional
regularization we necessarily set all the power divergences, and hence contributions from higher
twist operators to zero.

In eq. (4.1), we have written the operators completely in position space, and have combined
all label sums with residual integrals, so labels are “continuous.” This enables us to simplify the
derivation of the collinear function. Note that by momentum conservation and the requirement
to respect the soft and collinear sector’s power counting, both 72-¢’ and ¢, are to be interpreted
as O(y/s\) quantities in the power counting, while n - ¢’ is O(y/sA?). Then the matrix element
in eq. (2.12) to the lowest non-trivial order in the Glauber action for unpolarized target, as
pictured in figure 2, is given by

d4 (zL-qL—yrL-qr)
4 Y /d /dde/ ar. ¢ (4.2)
T

ir,Jr,AL qLL
4¢ e—i(TRIR—YR IR)
30 fatun faten G h
ir,JRAR RL

X (8mas)? / ddz e 9(P|T{J"(2) O (1) O (yr) YT{JY (0)OFy (2 ) OV (yR) } | P)

+ .

We have neglected both power corrections in x; and also higher order insertions of the Glauber
action, which suffices for the NLL analysis that we perform here. We now begin our initial
factorization by rewriting eq. (4.2) as

Y Si P, 4.3
477/(277)(1 ‘IEL / (2m)d ﬂ2 5(¢,q1,9r) CaB(P,qr.qr) + - - -, (4.3)

where we have defined

SV5(a,qn, qr) = (8as)? Z/ddz eiq'z/ddydeyR el 9Ly taryR) (4.4)
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X (0| T{J*(2) O™ (yr) YT {J” (0) 0T (yr) }H0) |
Can(P,qr.qr) / d'ey / Al LR R (PO} | (21)O) ()| P)

Note that we wrote a generic injection of all the components of ¢q; and gr into the collinear
function to make notation compact, and kept track of the color index associated to each Glauber
operator with the momentum injected. Now we can use translation invariance to eliminate the
qr dependence in the collinear function. We write O%A(xR) = eiP'wRO%A(O)e_iP'xR, then we
shift z; — = + xR to get

AB

@C(R qaL) (4.5)

Cap(P.qr,qr) = (2m)%qE, 6@ (qL —~ QR>

)= P Z /ddx ¢4 (PO (2)0I4(0)| P) . (4.6)
i,,A4

Note that even though there appears to be a power suppressed contribution of Glauber gluon
momentum to the large component of collinear momentum P, we could not expand the function
Cas(P,qr,qr) in g1, and ggr in eq. (4.4), because as seen in eq. (4.5) the ¢r r dependence
appears as an overall delta function 6(d)(qL — ggr) which is in fact homogeneous in the power-
counting. This reflects the fact that the Glauber Langrangian of Ref. [33] cannot be expanded
further in the multipole expansion. Expanding too soon in intermediate steps would lead to
an uncontrolled volume factor 6¢(0). Plugging in eq. (4.5) into eq. (4.3), we have

e = L[S0 s e+ @7)
= i (271') q,9 > q cee .
(8mag)? elza—id"-(yL—yr)
S (0.1) = (a2 [atsatypatyn

i,5,A

X (O T{J" ()05 A (yr)YT{J* (0)02" A (yr)}0)

Having extracted the momentum conservation ¢ function from the collinear sector which was
homogeneous in the power counting, we now can expand the momentum convolution between
the soft and the collinear sectors. The momentum ¢’ has the Glauber gluon scaling:

d=(d",d",d\) ~Vs(A\N). (4.8)

In contrast with eq. (3.9), the momentum p has the scaling of n-s Glauber exchange. Since
in the soft function the ¢’* component is subleading, and within the collinear function the
¢'~ component is subleading, we may set these to zero in these functions. Then applying the

projectors from eq. (3.13), we achieve the following factorization for the structure functions:

1 2y _ d=24 4 v /

;pr($b,Q ) - /d S ( q_l 7QJ_7QJ_7 >C<ﬁ P7QJ_76> +. ) (49)
where

Y€)= d” ¢ [ iy T iAo

(4.10)
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Figure 2. Factorization at lowest order in the Glauber exchange.
vn-q B (2mep?)*—4 (871'(1 dn-¢ d izg d
Sp<€7L N IRYIRE: >: 672 (N2—1 / /d ze / Yyrd?yr
efi%qi(n'yL*n-yR)*iq/L(yLL*yRL)
X =12
qr
Pyap(O1T{J* () 0% A (yr) Y T{I*(0)0F 4 (yr)}[0) - (4.11)

Here the v indicates the presence of a rapidity regulator, and S < Z,q1,4) € > and C <#, q e>
are rapidity renormalized soft and collinear functions. We 1ndlcate the extra steps involved
in this renormalization by the subscript v on the matrix elements. Due to boost invariance
(RPI-III), the dependence on n - ¢ and 7 - P appears only due to rapidity divergences, which
in the regulated functions results in the combinations shown in the first arguments of S, and
C. We have explicitly included the (L,uz)(‘i’d) that comes from the integration over the two
Glauber lines into the soft function, as we associate the corresponding «, factors to the soft
function. The coupling is expressed in the MS scheme with ¢ given by

i 112

L= —. .
= (4.12)
Next, the v in the prefactors in the collinear and soft functions in eqs. (4.10) and (4.11)
are convenient to reproduce the expected classical small-z scaling and we will see this below
explicitly in section 6.1. With these definitions, the soft and collinear functions have the

(classical) mass dimensions:
[S*] =4—d, [C] =-2. (4.13)

At this point, we can derive another form of the factorization theorem from how the collinear
function must scale in dimensional regularization. The motivation for this form is from the fact
that the integration on the product of the soft and collinear contributions in eq. (4.9) is itself
infra-red divergent. Thus we cannot set d = 4, and naively perform the integration against the
rapidity renormalized soft and collinear functions. We can however make these infra-red diver-
gences explicit in the soft function, by writing out a more explicit form of the collinear function
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Figure 3. Forward scattering regime in Drell-Yan. The collinear region in the directions n and 7 is
described by the same collinear function C studied in this work. The green cut propagators result in
soft quarks and a soft photon in the final state.

as a loop expansion in dimensional regularization. Since rapidity integrals and transverse mo-
mentum integrals factorize from each other, the all-orders form of the collinear function in

dimensional regularization can be written as:°

C(ﬁ. L€ > Z */20(6 <ﬁy (Mz)’€> <5_’22>&' (4.14)

1L

Note that while we have assumed that we have inserted the counterterms to appropriately
renormalize the coupling, we have not expanded in e. Thus eq. (4.14) is UV finite but IR
divergent, and the coefficients C¥) do not have a specific scaling form in o due to its renor-
malization. However, when we solve the BFKL equation, we will be able to derive the leading
logarithmic expression for C'(¥ (#, as(p?), e) and find that C9 ~ of.

We are now in a position to derive specific forms of the factorization useful for the resum-
mation of the form factors. We can define a “Mellin-transformed” soft function, with respect

to the transverse momentum, to trade the integration for a summation:

@) =3 (1) e (o) )5Vt uts )

1
(4.15)
where we have defined
72 ~ % R d2 2e +12
L) s (M aite) = [ () s (P g
5 Q= U (M ),6 = > S, —»—aQLaq ; . (416)
<M2 N2 ’ gz \p2) P\ @2 -

The scaling in transverse momentum, corresponding to the prefactor we have extracted on
the left hand side of eq. (4.16), follows from dimensional analysis for the v-transform of the
definition in eq. (4.11). From eq. (4.13) we see that S, is dimensionless.

5This follows because dimensional regularization only changes the transverse dimensions, thus the scaling in
1%¢ must follow the scaling in the injected transverse momentum, up to corrections induced by the running cou-
pling constant. This is true for a correctly zero-bin subtracted [47] collinear function in SCETyr in a reasonable
rapidity regularization scheme.
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Finally, we note that the collinear function defined in eq. (4.10) is process independent and
universal. Thus, the same function also appears in other forward scattering processes. The
process dependence is described through the soft function. As an illustration, we consider the
Drell-Yan process. For the hadrons to undergo forward scattering the produced photon must
be soft. A leading order diagram is shown in figure 3. The intermediate soft sector is coupled
to the collinear sectors via Glauber exchanges. The n and n-collinear sectors involve precisely
the same collinear function we defined above.

5 Fixed Order Calculations

Having derived the factorization formula in eq. (4.9) and the operator definitions of the soft
and collinear functions in eqgs. (4.10) and (4.11) we turn to their fixed order computations.
In section 5.1 we compute the DIS soft function S*¥ at tree level in momentum and Mellin
space, and in section 5.2 we compute the collinear function to next-to-leading order (NLO).
These calculations will provide the basic ingredients we require for performing LL small-z
resummation of the coefficient function and the anomalous dimensions in section 6. While
the LO result of the collinear function already suffices for LL small-x; resummation, our NLO
computation will provide us with a cross check of the form of the BFKL equation governing
the rapidity logarithms. We will make use of the rapidity regulator of Refs. [48, 49].

5.1 Soft Function at LO

We now illustrate the structure of the momentum flow within the soft function by calculating
its lowest order contribution. We first rewrite the expression in eq. (4.11) by inserting complete
sets of soft states, shifting the argument of J#(z) and performing the z integral:

2(2 dn
Sp<m; anJ_aQLa )ZV MH )q? ZZ/ nd /dd deyR‘Sd)( o+ ") Pp po
1

x e ) ) O (%(0) O A () X)X IT{I(0) O3 Alym) 0) - (5.1)

Here ¢’* is the momentum transferred to the n-collinear sector and ¢*, the incoming photon
momentum, and we recall the projector P, ,, to the correct structure function (p = 2,L) in
eq. (3.13). Setting the subleading components of the incoming photon and Glauber momenta
to zero, we have

n-q

—
n-q ~
= 5 nt + q/f, q" = Tn“ + 4 . (5.2)

Thus, the final state soft particles carry the remaining momentum P)‘és =gt —qg'*

At the lowest order, the final state is X5 = ¢g. The two LO diagrams are shown in figure 4.
We let kf and k7 be the momenta of the quark and anti-quark crossing the cut, and k7, and
kr be the virtual momenta of the quark propagator on either side. Then we have,

(5.3)

kr
d

Sp(n- g as,dh,6) = & (4,2 e N L = e

X ((zﬂ)?’da(d)(q — k4 k)6 D (= — kg — k)0 (¢ + ky — kr)box* (ky, kf, ki, k)
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Figure 4. Box and crossed-box diagrams for the tree level soft function. ¢* is the incoming photon
momentum and ¢’* the Glauber momentum exchanged with the n-collinear sector (not shown). Two
more diagrams are obtained by interchanging quark and anti-quark lines and k¢, k5 momenta.

+ 2?95 (g — kg + k)0 D (—q' — kp — k)8 D (q + kg — kr)box*® (kg kg, ki, kr)

2(2m)™6 (g — kg + k1) (=g’ = k7 = k1)0 (g’ + kg — k)e-box (ky, k7. ki kr))

where

df;
) -2m6(k*)O (k7). (5.4)

The delta functions result from the explicit vertices in the time-ordered products in the

[d7k]; =

eq. (4.11). We sum over the two ways the fermion lines can circulate, such that the box
and cross-box diagrams given by

e[k K mtk 0]
box®? (kg ki, kr, kr) = npTp—3 10T 5.5
ox™(ky by ke, kr) = ngTr (k2 + ie) (k2 —ie) (5:5)

sk itk py K k]
box®? (ks ki, kr, kr) = npTp—a— 2T : 5.6
cbox™(hy. kp, ke ki) = nsTr =g g (5:6)

After integrating over the momenta of the left and right propagators we get:
vn-gq / _ (27“1“ dn - q dk‘ L 5(d) / L L
Sp (72 y41,491,€) = _,,2 paﬁ d f d f]+ (q—q LY f)
1

x <boxa5(k‘f,k:f, kp—a,d +kp) + (f & f) = 2cbox (ky, ks by —q, q’+kf)>. (5.7)

Next, the phase space integral in eq. (5.7) can be simplified as

JEL [tk [fathgl@m 5O -~ ke~ iy (5:5)

s

1t dw d?=20,
- n-q/o (@m)w(l —w) / (2m)®2"

where ¢# is momentum of one of the outgoing fermion, and we have defined w =n-{¢/n - q.

Further, the computation of the ~-transformed dimensionless soft function defined in

eq. (4.16) makes the final result even simpler. Our explicit results for Sy and Sy, are:

~ /U q 1 (2me)2% vn-qy mesc (m(y — 2€)) csc (w(y — €)
S2< 5 s O[S(iuz)’ €> = 5 A1—2¢ agnfTF< =2 > ( 5 ) (3 )
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X (2 = 10€ + 4€* + 8€® + (3 + be — 12€%) + (=3 + 4e)) ,

~ (VN -q (271)%€ vn - q
SL<T7’)/7O[S(M2)7€> = _WagnfTF( 6‘72 )
1

y T2 (y — 2€)(y — 26 — 1) esc (m(y — 2€)) esc (m(y —¢€))
F(1—eT(3 —v+eT(3+v—2¢) '

Once we have calculated the resummed collinear function, we will plug these expressions into

(5.9)

eq. (4.15) in section 6.1 to find the LL small-z; resummed structure functions.

We pause to note that at finite photon and Glauber momenta, and likewise for finite ~,
the above tree-level results are IR finite. However, the integration over transverse momentum
of the exchanged Glauber ranges down to zero in the convolution with the collinear function
in eq. (4.15), generating an IR divergence. In the 7-transformed soft finction, we can see the
IR divergence explicitly by expanding at v = —fe — 0 following eq. (4.15), such that:

. . 202n T
tim 55 (Y e, 0 (%), ) = ZHE <1+z+0w0, (5.10)

0 qt 3r (U+1)(0+2)\ e

2
. & [vn-q 9 20T 1 1 0
1 5( —le, ,): _ 24 0)).
EE}% L q_lz_ € Oés(,u ) € 3 (g—f—l) € + (6 )
This property of the soft function implies that not only it captures the process dependence, it
also contributes to the PDF despite being a vacuum matrix element.

These results can be compared with the IR finite offshell cross sections hg 1,(7) of Ref. [14]
introduced above in egs. (2.28) and (2.32). To obtain analogous terms from our setup we keep

~ finite and set € = 0, finding

- . . h
SQ(LQQf.%a&E:O) - (VT}»Qq)aS 2(;/) bl (511>
a7 qy Y

51t = 0) = (L), 20).

ay ay y
As discussed in section 2.4, the offshell cross sections 67 and 63 that define hy, 2(7) in egs. (2.28)
and (2.32) exhibit different IR divergences. Since in the approach of Ref. [14], the IR diver-
gences are captured separately by the auxiliary quark and gluon Green’s functions given in
egs. (2.29) and (2.33), the additional factors of 7 in the denominator in eq. (5.11) render the
ha,r,(7y) functions in the numerators IR finite. This difference in the relative powers of v for
p = 2 and L can also be directly compared to the difference in the ¢ — 0 behavior of these
two functions in eq. (5.10). In contrast to Ref. [14], the full ¢ dependence of Sy and Sy, is
important for us to perform small-z; resummation of anomalous dimensions and coefficient
functions, and it reduces the number of independent ingredients that must be calculated to
obtain final results.

Finally, we noted above that the offshell cross sections 67 and 6§ are O(a;). Since the
leading power behavior in small-z;, limit is seen only starting from O(a?2), we will see below that
ha,1,(7y) are in fact related to power suppressed contributions to the corresponding coefficient
functions that are required for consistency of the small-z; resummed structure function with
twist factorization. We continue the discussion of this in section 6 where we carry out the twist
expansion.
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5.2 Collinear Function at NLO

We now discuss the computation of the collinear function at one-loop accuracy defined in
eq. (4.10). In perturbation theory we replace the incoming proton states by partonic states
k(p) carrying momentum p where k = ¢,g. For simplicity, in this section we replace the
incoming Glauber momentum ¢* — ¢* below and continue to work in d = 4 — 2¢ dimensions.
Performing the x* integration and inserting complete sets of collinear states yields

v . dn-q
Cn(ﬁ_P,qf, €)= WZNHqLZZ / (5.12)

J=4,9

X Z(Qﬂ)dé(P_ — i -px)8(n-q—n-px)69 (g —px1)

% (k(p)|077 (0)| X)(X|07(0) | (p)) -

Written this way, we see that the incoming collinear quark or gluon with momentum p* =
P~nt/2 = (0,P,0,) is struck by an off-shell gluon with momentum ¢* = (n-¢,0,q,). The
normalization 2N, implies average over spins and colors of the initial partonic state with

N,=N.=Cs, Ny=N2-1=2C4sCF. (5.13)

Also note that the n - ¢ momentum of the Glauber gluon is not resolved and integrated over.
The ), denotes the phase space integral over the on-shell final-state particles in the state X
and is given by

-5 o= |1

At tree-level we only have a single collinear parton in the final state, and the phase space

L (2m)O(n - Ei)é(ﬁf)] : (5.14)

integral simplifies as

dPS; (2m)46@ (¢ + P —px) = — g=—%. 5.15
/ o 12m) g+ P —px) = 5, meg=— (5.15)
The tree level matrix element simply yields CrC42(7n - P)? such that
P Cp v n-P Cy
C<0)( v ~2> _n C(O)( ~2) _ LA 5.16
q ’FL-P7qL v ﬂ_qlg_a g ’FL-P’qL v W@f ( )

For the two particle phase space at O(ay), for the quark initial state we choose k* as the
quark momentum and ¢* as the gluon momentum. For the gluon initial state, these momenta
refer to the two outgoing gluons or two outgoing quarks. We define the momentum fraction
z = (¢~ /P~. Momentum conservation constrains k* as follows

n-k=n-q—-n-t, n-k=0-2P, ki=q —¥{.

The phase space integral for two outgoing partons simplifies as

dn - q dsd( p v oy 1 bdz d>=%0)
/ o P82 Q)0 + P! =) = o o 2(1—2) ) (2m)2-2¢” (5.17)

where the n - ¢ momentum is constrained as

(G —01)? ?
q= . 5.18
"0 _n-P  a-P (5.18)
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Figure 5. Graphs for incoming quark struck by an off-shell Glauber gluon. The two-parton final state
cuts yield the real radiation graphs and the one-parton cuts the one-loop virtual corrections. The top
row gives the C% terms. Graphs in bottom row involve OgA operator insertions. Graphs obtained by
taking conjugate are not shown.

5.2.1 Initial quark

The real emission graphs for incoming quark are obtained by the cuts across the diagrams
shown in figure 5 that yield two partons in the final state. The collinear function is obtained

by squaring the amplitude with the result being

(1),real v 22\ _ i dn-q d s{d) o (1),real
Cy <ﬁ'PaQJ_> W/ 5 dPS2 (2m)%6 (¢+ P —px) Ci "™ (p,q, 6, k), (5.19)

where the integrand is given by

2 2\e 2
{(1),real _ - | g (LM ) 7 C’F < CFCA 1 —z (1 — Z) 1
o= qu(Z)(( * I oy '

2 k-0 p) 2 k-t k-p )(k - p)
(5.20)
Here the pre-factor is the quark splitting function:
v \1/14 (1= 2)?
PI(z) = (ﬁ . P) ( e ) +Om). (5.21)

As we will show below, only the second term in the CrCjy piece in eq. (5.20) survives after
including the virtual graph contributions, and leads to a rapidity divergent contribution. This
term arises solely due the last, non-planar graph in figure 5(i) that involves one Of} 7 and one
Of}g operator insertion.

Next, we express the dot products in terms of the transverse momenta

(0L — 2q.)* 2 P ((L —q1)*

k(= op= L _ ML AL
==y T P=5a -2

(5.22)
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Figure 6. The virtual graphs for initial n-collinear quark struck by an off-shell Glauber gluon.

such that

7 1 2—2¢ 2
(1),real v 22\ _ % el P / - / d EJ_ 5 P
Cy <—ﬁ : Paﬂ) 2 (™) — e Pyy(2) 2n) % CFEE(ZL ey (5.23)

ol (2 gm) ()
2 [0 - 2q.)? [f (0L —q.)? EE(FL—QZP

To simplify this further, we define the integral

2 e 2—2¢ =2
e e I e
Am (2m)> 2 02 (0 4+ 7.)2

- <F_L>7EF(—6)66“/E LA —el(1 +¢)

L (2m)T'(1 — 2¢)
= % E —log <§>] + O(e). (5.24)

We will also make use of the relations

<u267E>5/d226@_’17]_'([2_4—77]_)_1 9

Ll — ZL[r?, 5.25
A (27—1-)2726 EE(EJ_ —|—’FJ_)2 9 [ J_] ( )

2,YEN € 2—2¢ 77 -
<M4€ ) /d 2g @2 (L i”ﬁ = —lfe[rf], (5.26)
u (2m)2 72 020 + 7)) 2

Thus, we have

o v 20, - P -, L
C{gl),xea(ﬁp_,qf) — ﬁTL [qﬂ/o dz P} (2) (5.27)

X [(C’% — —CF2CA>Z*2€ + —CF2CA ((1—2)"%*+1)

We now turn to the virtual graphs obtained by taking one-particle final state cuts in
figure 5, and shown in figure 6. The vertex correction graph involving the Of} ? (including the
pre-factors in eq. (5.12) and the one-particle phase space in eq. (5.15)) is given by

Av:<0%—CFCA> 1 ﬁ'P/ " (z -1+ 200 -4

21@92(“2”6 v ) ol 00— 02 +10)[(p—( + q)° +10]
(5.28)
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The denominators are given by

2 0
L ! ] (5.29)

2 . _
:p[._ bt
0 +i0 =z nEZP_

2 i0 }

(p—0)2%+i0 = (~1)(1 — 2)P _[”‘“p—(l_z)_1—z

> 2 \2 i
(p—€+q)2+10:(—1)(1—2’)P—{n'€—“'Q+(Jgi(ll}i) _132}'

Hence, we have non-zero contribution for 0 < z < 1. Closing the contour below we get

Av:as@% CFCA 7 P/ /dd 20, [0, - (Zi —f(ﬁ)_a_z)(jf]
2 7qu_ 27r)d—2 EE(EL —2q1)?
CrCay 1 L1+ (1—2)7
_ 2 FYAN L p 122
= —ay(Ct - =5 )mﬁ L[] /0 de (5.30)

The graphs in figure 6 involving Wilson line emission give scaleless contributions. The last
graph involving mixing with the O;? 9 operator gives

D= YL [ S (5 i) () (D) it s

p—L+q)?

(5.31)

(0L —qu)-£L ﬁ”ﬁ”}

( 2e 6‘71 g' )fEAC |:n gg ’ﬁ“(fj_ _QJ_>V _ —uglj_ 4 )

This time we close the contour above and find

Dy = 20, (CrCA) R P [y M G2y [ Qo) (e

b 2 TFQL zH’i P- (27)d=2 (gl _ (]1)2(51 — 241 )2
_ CrCay 1 9 v \—1+n (1 [1 +(1- z)z]

- _O‘S< 2 >71'(fi1€ (77 (ﬁ . p) /0 dz SNl — )2 (5.32)

The final result for the virtual contributions to the collinear function is twice the sum of A,
and D,. Thus, for an inclusive measurement we see that the C% pieces cancel completely.
Combining with the result for real radiation graphs in eq. (5.27) we have

1 a-P !
LI [qL]/O dz Pj.(2)

W (Y 2=
¢ (57 pratie) =aCrCa o

asCy v 3

e Cém(ﬁ‘P,q*f)( 2m) 1. [7 ]<1—|—]og<Py>+4>. (5.33)

5.2.2 Initial gluon

The real-emission graphs for an incoming gluon are shown in figure 7. Squaring the amplitude

and summing over outgoing helicities and colors we find

rea v o 1 dn - q € real
g l(ﬁ P’ it) = 5 | T dPS2 (2m) 6% (¢ + PY — p) i Ci T (p. g, 0, K).
(5.34)
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Figure 7. The real radiation graphs for initial n-collinear gluon struck by an off-shell Glauber gluon.
The collinear function is obtained by squaring the amplitude and summing over the final state gluons
colors and helicities.

We have included a factor of 1/2 for the symmetric final state. The integrand is given by

’I’LfTR k"E—FZk"p—F(l—Z)f'p
<P579(Z)+2a4p"‘7(z)>< (0 K)(k-p)(C D) > (5:35)

gzuzﬁC’i
2

Cél),real —7.P

with the splitting functions being”

1+ 2* 1—2)4 v 1 1
P = + +2( ) (ﬁp)n(ZW + iz z)1+77> +0(n), (5.36)
Pa(z) =1 2%. (5.37)

Including the phase space and integrating over the perp-momenta we find

C2h.P 1 niTh
C<1)7rea1< v ~2> = LAl g2 /d (P” + - LEp. ) 142 %+ (1 —2) %),
g nop it gt v [qJ‘] 0 “ 99(2) 204 a7(?) ( “ (1-2) )

(5.38)

Next we evaluate the virtual graphs shown in figure 8. Of these graphs, only the vertex
correction graphs yield a non-trivial result such that

o LO%27-P 1 T B B
Cél)wutual( v (72> :_a CATLV IE[(IE]/OdZ <Pgng(z)_|_nf RP—(Z))(Z 2e_|_(1_z) 25)‘

P Tq? 204 "
(5.39)
Thus the result for the collinear function for an incoming gluon is given by
2 = 1
1 7N _asCin-P o niTr
C‘g )<,’7L ) P’QL’€> - ﬂ'(jlz_ v Ie [qj_] /0\ dz <P;79(Z) + QCA qu(z)> (540)

= 2w (s ) amnla?) (5 +ios (32) + - S (- 3=g) )

"The diagrams containing the intermediate quark-antiquark states also have a contribution proportional to

Cr. These are scaleless in both the real and virtual terms, and cancel anyways in the sum. For compactness of
presentation, we drop such terms.
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Figure 8. The virtual graphs for initial n-collinear gluon struck by an off-shell Glauber gluon.

5.2.3 BFKL Equation

The rapidity log in the one-loop results in eqs. (5.33) and (5.40) is generated by the BFKL
equation. In Ref. [33] the one-loop result soft function for forward pp — pp scattering was
derived and was shown to satisfy BFKL equation. This implies that by RG consistency of
the effective theory, the collinear function must satisfy the same BFKL equation but with a
relative factor of —1/2. The BFKL equation in 2 — 2¢ dimensions for our collinear function
then reads

V%C(%,QL,E> :—C<#,QL,€> (5.41)

s d2f2ek C<ﬁ—, _)J_, €> -2
_9? CALE,qu/ J'{ = - —= 1 C’(_V ,(_U_,E) .
T nn-P

(@L —k1)? 2k2(7L — k)2

Here the first term results from the classical scaling of the coefficient function ~ 1/v, and the
second term involving the BFKL kernel describes the anomalous scaling.

This renormalization group equation for C' could have been derived directly at the level of
our O(ay) calculation of the collinear function in section 5.2. As a cross check we can confirm
that after subtracting the rapidity divergence, the coefficient of the associated logarithm in
the rapidity renormalized collinear function agrees with the logarithm generated by the BFKL
equation. Simply plugging in the tree-level result of eq. (5.16) into the right hand side of
eq. (5.41) gives:

Con(z5a0.€) = 00 (5,01 (1 ~ 24 o)1 g2 n( P)) +0(?).  (542)
where I, [(j’f] is given by eq. (5.24). The LL subscript signifies that this result at O(ay) does
not include terms not predicted by BFKL. We find that it matches the rapidity logarithm
found in the calculation of the collinear functions of Eqs. (5.33) and (5.40), verifying that the
collinear sector obeys the expected BFKL equation at this order. In the next section we will
perform resummation of small-z; logarithms at LL, which only requires the tree level result of
the collinear function.

,27,



6 BFKL and DGLAP Resummation

Our strategy is to first perform small-z;, resummation of the structure function and then

identify the resummed coefficient function and anomalous dimensions by performing the twist
-2

expansion. We first start from eq. (4.9) setting v = vg = Z—j} = x,P~, which trivializes all

rapidity logs in the soft function, such that

1, _
CF @) = [405,(Lan i) Culandl ). (6.1)

Naively we might imagine that the PDF, being a collinear object at a smaller invariant mass,
would be entirely contained in the C, function which involves the proton matrix element,
whereas the vacuum matrix element S}, would only account for finite process dependent pieces.
However, as we saw above, the convolution between the soft and collinear functions generates
IR divergences, and both have IR divergences at higher orders in loop-expansion, with some
of them tied to BFKL evolution in 2 — 2¢ transverse dimensions. (We have seen explicit
additional IR divergence in the collinear function through our NLO calculation, though for the
soft function, it may be the case that all IR divergences are tied to the convolution/BFKL
logarithms.) Thus only after combining the two are we allowed to perform the twist expansion
and identify the 1/e poles that are captured by the PDF. This is because the collinear and
soft functions are at the same virtuality ~ @2, and while at finite ¢’ the tree level soft and
collinear functions are IR finite, as ¢/, — 0 the integral in eq. (6.1) enters the nonperturbative
region ¢', ~ Aqcp, inducing IR divergences, as seen from eq. (5.10).

6.1 Small-z resummation in the EFT

We now discuss the resummation of the collinear function at leading logarithmic accuracy
using the BFKL equation stated above. The resummation is best performed in Mellin space,
where we Mellin-transform with respect to z;. Taking the Mellin moment of eq. (6.1),

Fr(N, Q%) = / 424, S, (L a1, 4, ) Cu(N, ). (6.2)

Likewise, having set ¥ = x P~ the Mellin transform of the BFKL equation in eq. (5.41) gives

1

d _ _

/ dz :CN_l(x£CH(x,qj_,e)) =—-C(N,q|,e) —ast’K @, C,.;(N, qj_,e) , (6.3)
0

where we have defined the BFKL kernel acting on a function f(q,) as

2—2€. 72
(Ko f]a) = | flzﬂ)l’fzi{(ff ) f(qn}, (6.4

qL—k1)? kG- k)2

and

_ asCa

Next, using integration by parts the left hand side of eq. (6.3) becomes

1 _ d _ 1
/0 dz 2N l(ﬂcdxCﬁ(x,ql,e)) = —NCk(N, Ql) + [xNC,{(l‘,q/L)}O
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= —NCu(N,q\,e)+CO(1,¢,). (6.6)

Since Cy(z,q|) ~ %af; In“~Y) 2, the boundary condition at x = 0 vanishes for N — 11 due to
the prefactor ¥ — 0. For 2 = 1 all the logarithmic terms vanish and at leading log accuracy
we are left with the tree-level result stated above in eq. (5.16):

CO=1,¢,) ==, 6.7
where ¢, = Cp,C4. Hence, combining egs. (6.3) and (6.6) we have
= , Ck A ,
Cr(N.q\e) = - K®1 Ci(N,q\,€), (6.8)

(N —-Dmq?  (N-1)

For a more compact presentation, below we will shift our Mellin moment variable ton = N —1,
as in section 2.3, writing Cx(N, ¢ ) = Cx(n,q ). As noted in Ref. [14], the BFKL kernel K
is no longer scale invariant in d = 4 — 2¢ dimensions, and hence it is not straightforward to
solve for Cy(n,q|) by looking for eigen-functions of K. As mentioned above in section 2.4,
in Ref. [14] a similar equation was setup for their gluon Green’s function ]5550) (with different
boundary conditions) and solved by setting up equations that iteratively relate results at each
order in ag. Following the same approach, we now derive the LL solution of our collinear
function. We first note that the BFKL kernel acts on power law test functions as

) L (RENT  em 1 (EIN\TC
wougg(3) ~riram(is) 00 9
with
L ()1 —7) F1+e)l'(1—¢)
I(v;€) :F(E)F<1+6)[F(e+7)r(1+e—y) T T 120 ] (6.10)

Hence, iteratively solving eq. (6.8) starting from the tree level result with v = 0, we find

eE (jf —e\ ¢
CrrnL(n, ¢, €) = ——5 Zce+1 <n F(l—e)( 2) ; (6.11)

[ A H
where the coefficients c(€) are given by
ci(e) =1, cor1(€) = co(e)I(—Le; —e) 0>1. (6.12)

From the above LL result for the collinear function we can derive the small-x;, resummed
strucutre function using eq. (4.15) for finite €, such that

7;:LL(” Q%) = ( ) deZ—H (n F<€67E )(/q:z)€>€7 (6.13)

where the coeflicients are given by

dpos1(€) = cop1(€)Sp(1, —Le, ag, €) . (6.14)

Having obtained the LL-resummed solution of the structure function, our next task is to
isolate the IR-divergent terms and obtain results for the LL-resummed results for the coefficient
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function and anomalous dimensions. Before we perform this calculation in detail, we first
illustrate how the leading poles of the form (as / e)g exponentiate in practice. For simplicity,
let us set p? = (ﬁ in eq. (6.13) and consider the F} structure function. The coefficients ¢, in
eq. (6.12) for e — 0 behave as:

coe) = %(_1)6(1 +0). (6.15)

e
Combining the leading behavior of Sy, from eq. (5.10), we have:

()t = PR [ (25 o]

Hence, we find from eq. (6.13) (recalling the definition of & in eq. (6.5)):

_ 2a5nTr 20T | o= 1 /=1 as\¢
Fg st f — sivf — (——S> 1 @
Lo+ 37 ; il ) 1+00)
205n /T, la g Lras)?
=2l o (22 (14 0(2) ) +o(H(2)). @)
3 EN n esn
We see that in order to exponentiate the leading poles we necessarily needed to add W,

which is in fact a power suppressed contribution to the leading power F vaL result. This
points to a key subtlety when matching to twist expansion: we must take into account some
of the power suppressed terms (in x,) when connecting the small-x;, resummed result with
the AéCD < @? factorization. Because of this we will have to be careful when separating IR
divergences from the LL small-x; resummed structure functions in eq. (6.13).

We pause to make some further remarks concerning power suppressed pieces in Mellin-
space. We have seen that in the xp-space, the EFT captures all the terms in the perturbative
expansion of the cross section that scale as 1/zIn*(x). In the Mellin-space, we have effectively
performed a Laurent expansion about n = 0 and all the polynomial pieces in n are localized
at 0(1 — x) in the z-space and expanded away. This is reflected in our result in eq. (6.13) that
manifestly scales as 1/n. In eq. (6.17), the additional O(«s) piece we added is given by Mellin
transform of the O(as) coefficient function fz(i)l(l, N) = B(L‘({)l(l, n) defined through eq. (2.23):

] - 2n¢Tr 6
R (2) = dnyTra(l —2),  hif)(n) = J:; 6+ 5n+n?’

(6.18)

and taking n — 0. However, we also notice that in the twist-expansion, the coefficient function
(0)
2,9
tree-level diagram of the “direct piece” shown in figure 1, and contributes to the d, 20,2 term

also contains §(1 — z) terms, for example hy ) (r) = 2n;6(1 — x) which corresponds to the
in eq. (2.23). While such terms contribute to O(n®) pieces in Mellin space, they have no
well-defined expansion about = 0. In other words, (1 — x) pieces cannot be captured in
the small-z;, EFT at any finite order in the power expansion. We denote such pieces as being

)

be relevant for the DGLAP resummation analysis discussed in the next section. For simplicity,

irregular in the small-x;, power counting. Nevertheless, as seen above for the Fég case, they will
we will continue to refer to these terms as power suppressed or higher power pieces.

We note that despite common features between our results and the approach of Ref. [14],
such as the use of the BFKL equation in d-dimensions, there are also some significant differ-
ences. Firstly, the result in eq. (6.13) is strictly leading power, and accordingly starts at O(a?),
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which is made manifest by the soft functions Sp which start at this order. When we carry out
the twist expansion, the exponentiation of infrared divergences will necessitate the addition of
formally power suppressed terms, and this power counting is not manifest in the derivation
of Ref. [14] discussed in section 2.4. Secondly, although the LL collinear functions Cy 11, and
C,LL in eq. (6.11) have a similar expansion to that of quark and gluon channels of the gluon
Green’s functions ]:é?q) in eq. (2.29), we have not needed to define an object analogous to their
quark Green’s function in eq. (2.33) in our EFT, which they used for resummation of the v,
anomalous dimension. As we will see in more detail below, in our approach the combination
of our soft and collinear functions is sufficient to achieve resummation for all the components
of the DGLAP anomalous dimension matrix. These same soft and collinear functions also au-
tomatically incorporate scheme dependence, such as the constants present in the MS scheme,
again without the need for additional computations such as for the R function in eq. (2.27).

6.2 DGLAP resummation

We are now in the position to obtain leading logarithmic results for the coefficient functions
and the PDF anomalous dimensions. In the twist expansion, using perturbation theory with
dimensional regularization, the bare structure function factorizes as

P00 = S (n % s<u2>)m(a5<u2>,n>+0(%§D), (619

where the m-space transition function for parton x — ' defined in eq. (2.21) captures the
infra-red divergences of the perturbative calculation. In the fixed coupling approximation we

have
_ 1 [rasw?) g
Lunlant)n) =Pesp (=1 [77 Lo (6.20)
€Jo o KK
and T/, satisfies
d - _
MngJ,QF”/”( Z’ym as(p )F ( (,uz),n) ) (6.21)

In writing eq. (6.19) we have not performed an expansion in the small-z; limit, and the

K)

which appear as poles at n = —1

coefficient function FIZ(; as well as the transition functions contain power suppressed terms
,—2,...1in the Mellin space, which become polynomial upon
Laurent expansion about n = 0. While we do not resum towers of these power suppressed
terms, their product with leading power terms in Mellin space remains leading power.? Hence,
we must continue to include all the power suppressed terms truncating to a fixed-order in
the s expansion that is necessary for a given logarithmic accuracy, when we wish to resum
logarithms of Q? over AQCD

To obtain leading power results in the small-x; limit we necessarily require intermediate
off-shell Glauber gluons between the incoming parton and the quark struck by the photon.

Thus we anticipate vgg ~ Ygq ~ (’)( (%)6) for £ > 1. This argument also implies that v,4 ~

8This can be easily seen by writing such product terms with partial fractions. For example m =1_ T

which upon inverse Mellin transform remains leading power.
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Ygq ~ (’)(as(%)kv for £ > 1. Then if we take the I, to have the same log counting as the
corresponding anomalous dimensions, we have

ry=1+0((%)). r=o((%)). (6.22)
Py — o(%(j‘;)“) , D=1+ o(%(jjy‘j |

where ¢ > 1. We have explicitly indicated the logarithmic counting of the transition functions
and we will self-consistently confirm this behavior in the small-z; expansion below. We do
so by demanding consistency between the twist factorization of infra-red divergences and the
small-z;, resummation. For [,/ with & # &’ we have made use of the fact that mixing makes
them start at O(as). The renormalization group equations are then given by

g\ ¢

d - _

/‘QdTLgFgg = Yggl'gg + O (as (;) ) ) (6.23)
d - — as\?

,LLQdiMZng = ’yggrgq —+ O <OCS (;) ) s
d — — Qg /-1

N2diugrqg = Yagl'gg + O <a§ (;) > )

d - _ ag\ -1
2 2
H du? Lyq = Ygq + Yggl'9q + O <as (f) > .

Recalling that ,uzd%gas = —eay, these equations have solutions:
_ 1 [ do s\t
Ty (n, as(42)) = exp ( - / g, a)) + O<a5(> > , (6.24)
€ Jo o n
_ _ l
Tyq(n, as(1?)) = cLyg(n, as(u?)) + const + (’)(as (%) > , (6.25)
= 1 as(u?) do — Qg /—1
Ty (1, s (12)) = _6/0 “(n, )Ty (. ) +O<a§(n) ) , (6.26)

€

Cyq (n, as(,uQ)) =1- 1/00‘8(“2) % hqg(a)igq(”v @) + 'qu(a)] + O(“? (?>Z1> . (6.27)

These results have two undetermined constants, ¢ and “const”. In the solution of T gq the

“const” term is independent of . Since from eq. (6.22) I'y, starts at O(a,) due to mixing,
“const” must be set to —c to cancel the O(1) piece in ¢4y, such that

Ly (n, as(p?)) = C(fgg (n, s (1)) — 1) ) Vgq = Vgg - (6.28)

Furthermore, in terms of f‘gg, the solution of I_‘qq is then given by

qu (”7 as(ﬂ2)) =1+ 1/0% %X(CVQQ(O‘) - 'qu(a)) -2 /Oas %X 'ng(a)fgg(”v ). (6.29)

€

We will make use of these relations below in deriving the resummed results for the coefficient

functions, and will at the same time determine c.
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6.2.1 DGLAP resummation of FF,

We first consider the case of p = L and k = g. As discussed near eq. (2.23), both ﬁéq) and Hég )
start at O(as), though this is a power suppressed contribution. Using the results of eq. (6.24)
and eq. (6.22), we find:

— — — 2 —
Fi(n) = F{(n.Q* =) = A (n. Z?Q = 1,0, )Ty (s, m) (6.30)

To proceed further, we express the anomalous dimension 74, and the coefficient function as a
power series in oy and e:

~ 2 o0 oo S
© <n % - 1,%) - % SR ¢ % - (%) S, (6.31)
K k=0 /=1 k=0
o) .C
Vog = Z’Ygg,e—l (awnA)f' (6.32)

(=1

Finally, in the small-z; power counting, we can write the structure function as:

Fi(n) = FZHP + FLQ,LL(”) ) (6.33)
A5 N k)
_ . o ok
Fg,HP:?ZE Lg-
k=—1

Here the subscript ‘HP’ denotes higher power terms in the small-z; power expansion that
are required for consistency with the twist expansion. As mentioned above, these terms also
include irregular §(1 — x) pieces. In the power suppressed part of the F’Lg structure function, we
only need to retain the O(c) term for leading logarithmic resummation, and we can take the
limit n — 0 as all poles in n have been removed. We have allowed for the possibility that this
term can be IR divergent. By sequentially comparing the coefficients of (avs/€), as(as/e)?, . ..
terms using egs. (6.13), (6.24), and (6.30), we can straightforwardly solve for the unknown

h(L{’;), le2 and 74401 terms, such that

Qg O\ 4
Ygg = Z + 2§3<F) + ... (6.34)
— () 20nsTp 1a, (34 )<d8)2 ( 40 7% 8 )(ds)i’»
HY = —2 —(1—--—= i s =42 2 Ss
L 3r < s \g —2)\5) Tlrg Ty )
— 2a5n 4T 1 2 7
Fin:7IJ_CF<1+36+<6—262)62—|—<12—7;—3(3)634-...).

For simplicity we have only shown the first few terms in the infinite series. In the second series

)

we have set e = 0 for simplicity, and the O(as) term of Hég) is found to be the same as F£7HP.

Our results for the resummation in both 7,4, and Hég ) agree with those of Ref. [14], including
higher order terms that are not shown. Interestingly, we see that consistency with the twist
expansion automatically constrains the power suppressed non-singular pieces in the structure
function and the coefficient function, although they are not determined “mechanically” within
the calculation of the Feynman diagrams and rapidity resummation of the EFT for small-z;.
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Furthermore, it is important to retain the higher order terms in € in Fégl)ﬂj in eq. (6.34) as they

determine the higher order terms in a;/n in the coefficient function f_Ijgg).
We next consider the quark channel for F(n, Q* = u?) structure function. As in eq. (6.30),
we can write:

Fg = FE,HP + Fg,LL . (6.35)

It is clear from the calculation of the collinear function at leading logarithmic accuracy, we
must have the relation:

Flur =G Fha (6.36)

To proceed further, we simply need the factorization structure for Fg:
Fi=HYT,, + BYT,,. (6.37)

A simple one loop calculation (e.g., Ref. [37]) shows HSZ) ~ O(an?), such that using eq. (6.22)

we can set 'y, = 1 at LL accuracy. Setting Ff = I:I]gg)f‘gg, we find the relation

1 = Cr ~ = C Cr = _
710 [(Héq) - (TZH?)) - (FZ,HP - Cng,HPﬂ - é(rgy - 1) —Tgq (6.38)
L

(=) T -1).

In the second line we plugged in our ansatz in eq. (6.28). The result for (I'yy — 1) on the right
hand side is a series of 1/€ poles and manifestly leading power, whereas the left hand side can
at most have next-to-leading power IR divergences. Hence, up to power corrections, the right
hand side must vanish. Thus,

Cr _ Cr =
C = 0714 y ng = a(rgg — ].) . (639)
Then from the left hand side of eq. (6.38) we find
—(pure-singlet) __ 5 = Cr( 2OésnfT’F
P = gl g = o (Hgg) D ) . (6.40)

This combination is the pure-singlet contribution to the coefficient function flqu). The result
in eq. (6.40) scales as O(a,(2)k). Since F{,p has no leading small-z;, pieces, it must be

equal to the O(a) power suppressed part of the FISI) coefficient function, and hence must be
finite, which is in line with our earlier assumption. Once again, our result for the resummed

coefficient f[épure_smglet) agrees with Ref. [14].

6.2.2 DGLAP resummation of F,

We now turn to the case of p = 2 and k = g. Here, unlike for p = L, first term in the a4
expansion gives FISI) = 2ny such that the fqg term can no longer be ignored relative to the

I'yg term in eq. (6.19). On the other hand, we can ignore the higher order corrections to ﬁQ(Q)
for LL resummation as they would result in terms O(az(%)k) Therefore we can write

FY = 2n Ty + HY'T,,. (6.41)
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We make use of eq. (6.26), and as before we must include O(as) power suppressed terms in
the FY structure function that are not directly predicted by the small-z;, effective theory. We
can do this by introducing a series of unknown coefficients through an e expansion,

o
FY = Fjyp + Fiyp,  Fgp=—") ¢ " (6.42)
k=-1

where the term F2g L, is the LL result in eq. (6.13) for p = 2. Hence, we have the following
unknown series:

H29<n, 222 = 1,as) = % i kh Ok % i ( ) Z khg’gk), (6.43)

k=0 (=1 k=0

(o ¢]

as\?

Yag = Z’qu,ﬂfl (?) )
/=1

U5 = g plb)
g s k ok
FQ,HP_? §:€f2,g‘

k=-1

As before, comparing the leading, next-to-leading and so on poles on both sides of eqgs. (6.41)
and (6.42) we find

aTr D Qg 14 ras\2 82 3
= 14—+ (= +2 ( ). 44
Tag 3T (+3n+9<n>+<81 CS) n)+ ) (6.44)
(9) _ sty Tr (43 ) (1234 13 )(ds)g
H - a_ 1 o _2 o1 o o - P
; asnsT, 2 1, 14
F;HP—;F(—6+1+<1+<2>6+(1_2<2+343)€2+...).

Again we show only the first few terms in the series for simplicity. We find that the O(ay)

piece of H. 2(9 )

is the finite part of Fg pp- Again, while consistency of the factorization of IR
divergences in the twist expansion allows us to calculate these O(ay) terms from the small-z;,
resummation, they are not directly calculated from the small-z, EFT. Only the terms involving
explicit (1/n)* factors are predicted by the EFT. Here we determined the resummed 7, and
(9)

We now turn to the computation of the Fy(n,Q?* = p?) structure function whose twist

Hég ) in the same manner used for Vg9 and H;”’ and they again agree with Ref. [14].

expansion reads

qu - HQ(q)qu + ]:[ég)f

99
_ _ Cr () = N
= A 4 20y (T — 1) + LA (Tyy — 1) + O(ai(o‘) ) : (6.45)
Cy n
where ¢ > 1. Here we have made use of the lowest order term FI§Q) = 2ny+.... Next, we note

that the leading small-z;, terms obey Casimir scaling from eq. (6.13), such that

Cr _
F] —FgHP+C (F§ — Fiyp) (6.46)
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[ +CF<_2nf

Cr /%d% ()T + HPT, — FY. ) |
2HP T o) c J, alw 99 99 2,HP

where in the last line we used eqgs. (6.41) and (6.26). Thus, comparing eqgs. (6.45) and (6.46)

and using the result for I'y, in terms of [y, in eq. (6.29) (with ¢ = %) we find

7@ _ | f 2ny [ da Crlg _ & 2ny [ da
Hy” = [quﬂP + 6/0 ‘o 'qu(a) + 07,4 Hy™ — FﬁHP T e | o 'ng(oz) : (6.47)
From eq. (6.44) we find that 1/e pole cancels between the last two terms in the second square
bracket. Since I:ISJ) on the left hand side is IR finite we conclude that the combination in
the first term must also be finite. This term in the first square brackets is power suppressed
in small-z; power counting. Thus, we see that the pure-singlet part of the Fléq) coefficient

function scaling as O(as(%)é) is given by

_ re-singlet [ n 2n . da
s s [ [

CF — — 2n da

= [Hég) — Fyp — Tf o qu(a)}
Cr (glo _ asnyTr

= P (gl SRR 4
Cy < 2 3T (6.48)

Similarly, we find that the u dependence of the pure-singlet coefficient must be described by

CF (0% TF
“Vpure-singlet = 07,4 ('qu - ;W) . (649)
Once again our resummed results in egs. (6.48) and (6.49) agree with Ref. [14].

6.2.3 Discussion

It is interesting to compare our approach to the derivation of the LL-resummed results above
with that used in Ref. [14]. As reviewed in section 2.4, for the analysis of F', Ref. [14] first
determined the DGLAP anomalous dimensions 44 and 744 from their gluon Green’s function.
The resummed coefficient functions HY were determined after combining the gluon Green’s
function with a separate calculation of an O(ay) off-shell cross section hr () in eq. (5.11), and
a MS scheme conversion factor R. In the analysis of v,,, Ref. [14] however needed to consider
a different, quark Green’s function which also necessarily included the purely collinear 1/e
pole, a higher power IR divergent term we saw in Fg gp in eq. (6.44). Finally, the approach
of Ref. [14] works only at LL accuracy and at higher logarithmic accuracy Green’s functions
alone (unless suitably generalized) cannot be used to yield resummed anomalous dimensions.

In contrast, by matching our small-x resummed EFT results at the scale ) directly onto
partonic PDF's (encoding physics at the scale Aqcp), we simultaneously determined both the
DGLAP anomalous dimensions v;; as well as the LL-resummed coefficient functions FI,S"), while
also tracking the appearance of leading power versus higher power pieces. We did not need to
define separate quark and gluon Green’s functions (or analogous objects) to address differences
in the treatment of leading twist factorization of Fy versus F7, structure functions, or calculate
a distinct function R to encode the MS scheme dependence.
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In our approach, such differences arise from the additional collinear divergences in F5,
found in the soft function’s double pole structure when v ~ € in eq. (4.16), leading to eq. (5.10).
We saw that the e-dependence of the soft function contributes to the calculation of the coef-
ficient function ngn) and the anomalous dimension v* (more specifically, the 744 component)
and also plays a role in fixing the scheme dependence. Though the small-z; EFT at leading
power does not mechanically capture all the terms necessary for the factorization of the infra-
red divergences in the twist expansion, we have found that at leading logarithmic accuracy,
we could determine the missing terms (F;HP) through consistency of the factorization pro-
cess. Alternatively, it is a simple matter to calculate the O(as) contributions to the structure
function, and take the Laurent expansion about n = 0 to find these terms.

It is worth noting that the consistency we find also implies the following intriguing relation,
which maps the small-z; soft function with the off-shell Glauber momentum to an effectively
on-shell collinear gluon coupled to soft quarks:

Jim = Jim OZF(;WE)SP(l’ Ve ase), (6.50)
where F;,]HP are define in egs. (6.30) and (6.42). This relation was also at play when we found
our soft function results for finite-y to be straightforwardly related to the power suppressed
offshell pieces of Ref. [14] in eq. (5.11).

7 Conclusion and Future Outlook

We have shown how to construct from the SCET framework with Glauber interactions the
resummation of the small-z; scattering cross-section in DIS at leading logarithmic accuracy,
reproducing the classic work by Catani and Hautmann in Ref. [14]. The key feature of our
calculation is that after the derivation of the factorized and individually gauge invariant soft and
collinear functions, the perturbative computation of these functions are made straightforwardly
from their operator definitions. In constrast, Ref. [14] made use of off-shell cross-sections to
interface the BFKL resummation to the electromagnetic probe current, and these cross-sections
can only be guaranteed to be gauge invariant to leading-order, making the extension to find
higher order resummed corrections challenging. Further, we have by-passed extracting the
DLGAP anomalous dimensions from the BFKL Green’s functions, finding this step unnecessary
in our setup. We have also carried out the NLO calculation of the collinear-function, which
served as a consistency check but only enters the resummation analysis at higher orders.
Given this result and the known two-loop BFKL equation, constructing the next-to-leading
order resummation for DIS coefficient functions requires only calculating the loop corrections
to the soft function, and considering possible contributions from multiple Glauber exchange.
This would help bring the BFKL approach to similar levels of accuracy being pursued in the
“B-JIMWLK?” formalism, for instance in Refs. [50-57].

Next, we note that calculations analogous to our one-loop collinear function were carried
out for “impact-factors” in Ref. [34]. We find that the results for quark and gluon collinear
functions in egs. (5.33) and (5.40) agree with the results for impact factors Ref. [34], up to
constant terms proportional to the two-loop cusp anomalous dimensions. This is similar to
other calculations with the SCET Glauber Lagrangian and its separation into soft and collinear
contributions [58]. Our expectation is that such constants are naturally associated to the soft
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sector of the effective theory, which allows our collinear functions to be process independent.
Furthermore, the calculation of impact factors in Ref. [34] required a careful subtraction of
the Green’s function pieces from the cross section, inducing factorization-scheme dependencies.
On the other hand, the computation of the factorized functions in our small-x; factorization
formula follow straightforwardly from their operator definitions which can be defined in a
definite scheme from the start. The computation from operator definitions at higher orders
will require care while treating zero-bin subtractions, however this will not induce any process
or factorization scheme dependence.

Lastly, it will be interesting to examine more differential observables, particularly those
also sensitive to Sudakov effects, like those found in end-point of the fragmentation spectrum or
transverse-momentum dependent parton distribution functions, to see how the effective theory
accomplishes the separation of small-z; logarithms for such terms.
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A Glauber Action In Position Space

Here we describe the steps leading to eq. (4.1) since we find it useful to make use of the Glauber
Lagrangian of SCET with more fields in position space, relative to the presentation in Ref [33].
The Glauber action S for soft-collinear interactions is given by

Sq = Z / Az OU(z),  OU(z)=8rase *POAE )77 OInA(E), (A1)

1L

where i,7 = ¢,g. In eq. (A.1) the coordinates #* = (z+,27,0,) are conjugate to O(\?)
residual momenta. The operator is composed of n-collinear fields for the incoming proton and
the intermediate soft fields (including Wilson lines made out of n - Ay fields), given by

ot =x, M ogt = 1B (PP, (A2)
O?iqu wm TA Viw On“gA *ng_i( fABC) (P + ,PT)BmC,u

where T4 corresponds to (anti-)fundamental representation for (anti-)quarks. Here, the label
momentum operator P* selects the O(1) and O(A\) momentum components such that

PP P 4 PE, PR, PEaPEaA (A3)
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We follow the standard convention where P (P*) gives a positive (negative) sign for conjugate
fields.

The operators in eq. (A.1) are defined with a sum over all possible label momenta of order
A in the power counting, where we can write:

7 d k L d pr g ; B
On'(E Z/ y / 2(2m)2° P [Orin, (Brs g )] (A4)

Ojn d2p’r Z:Ep O]n ~/ k A5
Z )26 [ s,n-ks,n-ks (pT7 Si)] ( )

We have also pulled out the Fourier transform over the residual momenta. The operators on the
right hand side have definite O()\) label-momentum and O(\?) residual-momentum injected
into them, and the phases shown here as well as the e~ in eq. (A.1), will induce momentum
conservation. We note that the collinear operator must have zero total large label momentum:

P-OA(z) =0. (A.6)

The soft operator it is tied to in the Glauber action cannot inject O(A?) momenta in the power
counting, as the soft sector has no O(A’) momenta. Thus in any graph that the collinear
operator is inserted, the same collinear momentum flowing into the collinear bilinear must flow
out on the other line it connects to. Thus the net large momentum label of the operator is
zero. We have therefore suppressed the O(\") label momentum which is always conserved by
Glauber operators. The collinear operator can only carry a momentum label of order A\, which
we denote as 7 - kg and kg, where the g subscript indicates that the momenta are injected
along the Glauber line.

Substituting these results into eq. (A.1), acting with the label operators, we can combine
the label sums with the integrals over the residual momenta to form a “continuous” label:

TR »

s e T

ikl

Where we have shown the recombination for both the soft and the collinear (sub)-label sums.
The final result is:

diks d*k, . i
SG:87ra5/d4x/ )i (%)946 (ks+kg)[OnA(k ) ——

grlOF k), (a8)

ks = (ﬁ ks, m - kmksj_) ~ \/g()\a )\7)‘) »

kg = (- kgym kg, kgr) ~/5(A\ A2 N).

Next we introduce position space representation of the operators, allowing us to perform the
integral over the position z, and the k, integral, and relabel k, — ¢':

so=sra. 3" [aty [tz [ath. / 954> b+ Jig) el iR OIA )]kQL[OJn ).

i,5,A
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4.1 iz —iy-q¢' .
= 8ra, Y / dty / 'z / dq c 7 o;;“(z)ognf“(y). (A.9)

i,5,A

Finally to transition this result to d dimensions, we work with a dimensionless coupling
as(p) and write the convolution in eq. (A.1) as

S = (LM 87Tas Z/ddx 04 (), (A.10)

such that both collinear and soft operators, OfZA and O;Z"A, have dimensions d — 1. The MS
factor ¢ was defined in eq. (4.12). We have dropped the coupling renormalization factor Z,
which is not needed for our calculations.
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