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The modern S-Matrix Bootstrap provides non-perturbative bounds on low-energy aspects of scattering 
amplitudes, leveraging the constraints of unitarity, analyticity and crossing. Typically, the solutions 
saturating such bounds also saturate the unitarity constraint as much as possible, meaning that they 
are almost exclusively elastic. This is expected to be unphysical in d > 2 because of Aks’ theorem. We 
explore this issue by adding inelasticity as an additional input, both using a primal approach in general 
dimensions which extends the usual ansatz, and establishing a dual formulation in the 2d case. We 
then measure the effects on the low-energy observables where we observe stronger bounds than in the 
standard setup.
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1. Introduction

Scattering amplitudes are some of the most studied observables 
in quantum field theory. They encode the probability amplitudes 
of transitions between asymptotic states with a definite number 
of particles. The simplest non-trivial amplitude in〈p1, p2|p3, p4〉out , 
corresponding to 2-2 scattering has been extensively studied for 
decades, notably through Feynman perturbation theory, which ex-
tracts the connected amplitude through the LSZ procedure which 
takes as input a four-point correlation function. Additionally, mod-
ern on-shell perturbative techniques formulate these amplitudes 
in terms of simpler objects and give illuminating insights on 
the structure of the answers [1]. However, these methods are 
of limited applicability and general methods to tackle the non-
perturbative case are lacking.

A glimmer of hope is provided by the S-matrix Bootstrap, which 
takes the 2-2 amplitude and imposes severe constraints on its 
form by imposing elementary properties that should hold non-
perturbatively: unitarity, analyticity and crossing symmetry [2–33]. 
To understand the space of possible scattering amplitudes, one 
shoots towards its boundaries, by maximizing along some finite-
dimensional observable space. Natural candidates are the residues 
or cubic couplings g associated to a bound-state of mass mb , such 
that T (s, t) ∼ g2/(s −m2

b
), or the low-energy expansion around the 

crossing symmetric point s = t = u = 4m2/3, where one defines 
the coefficients
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�ab = ∂a
s ∂

b
t T (4/3,4/3,4/3) , (1)

where we set m = 1 and considered neutral scalar particles for 
simplicity, as we will throughout our analysis. Maximizing or min-

imizing such observables gives a finite-dimensional slice of the 
infinite-dimensional space of scattering amplitudes, but also yields 
explicit amplitudes saturating the bounds. Typically, such solutions 
saturate the unitarity constraints [2]. For example, in 2d, where 
we can write the full S-matrix, including the disconnected con-
tribution as S(s) = 1 + iT (s)/(

√
s(s − 4)), one finds solutions that 

satisfy

|S(s)| ≈ 1, s ≥ 4 , (2)

saturating the unitarity condition |S(s)| ≤ 1 up to very high en-
ergies. This saturation is expected in the so-called elastic unitar-
ity region, where the only possible end-states are precisely the 
two-particle states one starts with. On the other hand, at large 
enough energies, new normal thresholds will emerge, for exam-
ple at s = (nm)2 , corresponding to the n-particle threshold or at 
4m2

b
corresponding to the continuum of two-bound state pairs. 

The fact that |S(s)| = 1 implies that the amplitude is purely elas-
tic, meaning that there is no particle production S2→X �=2 = 0. This 
is, of course, the key property of integrable field theories in 2 di-
mensions, which evidently saturate the corresponding bounds. A 
first study of the effects of particle production in 2 dimensional 
S-Matrices (which does not use the traditional S-matrix Bootstrap, 
but instead a fixed point method) was done in [20].

In contrast, in higher dimensions, Aks’ theorem ensures that 
non-trivial scattering implies non-vanishing particle production, al-
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Fig. 1. The absolute value of S0 for several Nmax . φ is the argument of the complex 
ρ variable defined below, such that s correspondingly increases from 4 to infinity.

beit only asymptotically at large energies [34]. A quantitative lower 
bound on this production was derived by Roy and Martin [35], 
stating that

σinel(s) �
const

s5/2
Exp

[

−
9
√
s

8
ln s

]

. (3)

On the other hand, solutions to the higher dimensional S-
Matrix bounds in practice also remain elastic up to very high en-
ergies, which is in tension (but not in sharp contradiction, since 
[34,35] make only asymptotic predictions) with the minimal par-
ticle production [3]. Decomposing onto partial amplitudes of well-

defined angular momentum ℓ, one observes

|Sℓ(s)| ≈ 1, s ≥ 4, (4)

as can be seen for example in Fig. 1, for the case of maximizing the 
“quartic coupling” �00 . Presumably, for the physics of inelasticity 
and particle production to be more easily captured by the boot-
strap, the constraints associated to higher-point amplitudes should 
be included. For example, by including 3-particle states, one can 
require that the matrix of inner products between all 2 and 3 
particle states is positive semi-definite. This would then impose 
non-trivial constraints between 4-, 5- and 6-point amplitudes. In 
practice however, technical control over higher-point amplitudes 
is very limited non-perturbatively and their analytic and crossing 
properties are an important open problem.

In this paper, we take a more pragmatic and exploratory ap-
proach. We consider the following question: Given some postu-
lated inelasticity profile, how much do the S-matrix bounds actu-
ally change? We will see that the answer is certainly non-zero and 
we will quantify it in several examples. Along the way, we will 
develop an ansatz that correctly captures the additional thresh-
olds and speculate on less standard maximization problems which 
might inherently capture particle production.

There are a few motivations to do this. First, in gravitational 
scattering there is a natural behavior for the inelastic part of 
the amplitude, stemming from black-hole production and subse-
quent Hawking radiation. Indeed, one expects the elastic part of 
the amplitude to be exponentially small at large s, as a conse-
quence of the Bekenstein-Hawking formula [33]. Secondly, in real-
istic particle-physics setups, as in pion scattering in QCD, one finds 
that the physical theories are often not so close to the bounds de-
rived by the S-matrix Bootstrap [7,15]. Information regarding the 
total cross-section, which of course captures the inelastic physics 
as well, could help bring QCD closer to the bound. Finally, in the 
simplest non-integrable QFT, 2d Ising field theory, recent advances 
in quantum spin chain simulations are on the brink of allowing 
us to study 2 → 3 scattering [37]. How such knowledge could 
strengthen the Bootstrap bounds and zoom in on a solution of the 
theory is an interesting question as well.

2. Primal in 2d

We begin from the standard Mandelstam-like ρ-ansatz for a 2-
dimensional S-matrix of 2 − 2 scattering of mass m particles with 
a bound state of mass mb [3]

S(s) =

[

− Jρ g2ρ

ρ(s) − ρ(m2
b
)

+ s ↔ t

]

+
Nmax
∑

a,b=0

c(ab) ρa
s ρ

b
t (5)

where

ρs =
√
4− s0 −

√
4− s

√
4− s0 +

√
4− s

, s =
s0(1 − ρs)

2 + 16ρs

(1+ ρs)2
. (6)

This ansatz uses an analytic extension which assumes only the 
normal thresholds in s > 4m2 and t > 4m2 simultaneously. Each 
ρ variable then maps the cut plane to a disk with the center at 
s0 which is henceforth set to 2. Imposing the relation s + t = 4m2

yields a crossing-symmetric S-matrix with the expected analytic 
properties in the single variable s, but we will often write t ≡
4m2 − s for convenience. To make it a full-fledged S-matrix, one 
imposes unitarity for physical scattering energies

|S(s)| ≤ 1 , s ≥ 4m2 . (7)

This statement follows from the elementary quantum mechanical 
principle of probability conservation
∑

X

|S2→X |2 = 1 , (8)

which of course bounds the absolute value of the 2 − 2 compo-

nent S(s) by 1. As mentioned above, integrable theories satisfy the 
above principle with a single term, the elastic component. Generic 
theories, e.g. φ4 theory, will admit for example a S2→4 component 
which will then ensure that the absolute value of S(s) is strictly 
less than 1. We parametrize this by an inelasticity profile β(s), 
thereby refining the bootstrap problem to

|S(s)|2 ≤ β(s), s ≥ 4m2; β(s) ≥ 0; (9)

and we require the profile to have the following structure (we 
henceforth set m2 = 1):

β(s) =

{

1, 4 ≤ s ≤ 16

profile(s) s > 16
(10)

We are hence trying to impose elastic unitarity, meaning we only 
allow particle production after the 4-particle threshold energy has 
been achieved. Of course, this choice is arbitrary and we can re-
place 16 by s∗ , a tunable threshold value, which could be a 3-
particle or 2-bound state threshold. We will study the effect of 
this parameter later on. We will see that complying with elastic 
unitarity |S(s)| = 1 for s < s∗ is challenging for the usual ansatz 
(5), and this will be one of the motivations to construct a more 
general parametrization.

We can now try to study standard maximization problems, for 
example, maximizing the cubic coupling to the bound state. The 
solution to this problem is given by the sine-Gordon breather S-
matrix, but by imposing a non-trivial profile, we will explore the 
interior of this bound. For an alternative way to explore this inte-
rior see Appendix A. In 2-dimensions, we are blessed with an ex-
plicit solution to the S-matrix which reconstructs the phase given 
its absolute value [2,20]. It is given by

S

Sel
= exp





∞
∫

4

ds′

2π i

√

st

s′t′

(

log(β(s′))

s − s′
+ s ↔ t

)



 (11)
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Fig. 2. Direct comparison between profile β(s) and the analytical results.

Fig. 3. S-matrix components for the inelastic profile β(s) with α = 0.5 and the ana-
lytical results in red dashes lines.

and will allow us to check our results. We will of course not have 
such a luxury in four dimensions. Let us consider then two simple 
profiles:

β(s) =

{

1, 4 ≤ s ≤ s∗

1− α, s > s∗
β(e) =

{

1, 4 ≤ s ≤ s∗

e−α
√
s−s∗ s > s∗

(12)

While these are to some extent arbitrary functions, we believe 
these toy models should be qualitatively useful to understand the 
effects of more realistic inelasticity profiles. The first, a step func-
tion, is universally applicable as one can approximate any profile 
by a sum of such terms. In fact, it should even work quantita-
tively well near threshold, since it captures the particle production 
predicted from form-factor perturbation theory [36]. The second 
profile, a sub-exponential decay (chosen to ensure convergence of 
(11)) emulates the black-hole production patterns, relevant for ex-
ample in the gravitational scattering processes studied in [22,33].

Using the standard maximization algorithms with the addi-
tional β profiles, we find the results of Fig. 2, which used Nmax = 5

and a grid of 100 points for unitarity.
Very clearly, the standard algorithm is under-performing. Look-

ing with more detail into the numerical solution, we find the 
S-matrix components of Fig. 3. It is easy to see that not only 
the threshold discontinuity is not correctly captured, but that it 
is also quite difficult to satisfy elastic unitarity and to saturate the 
inelasticity profile we imposed. Similar results are found for the 
other profile, and for other problems, for example extremization of 
S(s = 2) subject to the β(s) constraints.

To capture the effects of the additional threshold, we first intro-
duce a simple generalization of the ρ variables, which map the cut 
plane starting at the new threshold s∗ to the disk. They manifestly 
satisfy the original analyticity assumptions and are given by

Fig. 4. Direct comparison between the profile β(s) and the analytical results. The 
bound-state mass is fixed, m2

1 = 3, Nmax = 5 and N̄max = 2.

Fig. 5. S-matrix components for the inelastic profile β(s) using the new Ansatz of 
(14). In red are the components of the analytical solution. Here, the parameters 
used were m2

1 = 3, Nmax = 10 and N̄max = 10 and α = 0.6.

ρ̄s ≡
√
s∗ − s0 −

√
s∗ − s

√
s∗ − s0 +

√
s∗ − s

. (13)

It is then natural to extend the ansatz for the S-matrix to have the 
form

S improved(s) = S(s) +
N̄max
∑

a,b=0

d(ab) ρ̄a
s ρ̄

b
t , (14)

where we introduced an independent cutoff N̄max . As for the stan-
dard ρ variable, the ρ̄ satisfy the simple algebraic identity

ρ̄s + ρ̄t + 4ρ̄sρ̄t + ρ̄2
s ρ̄t + ρ̄sρ̄

2
t = 0 , (15)

which allows us to eliminate several of the coefficients in (14). In 
fact we will keep exactly the same a, b as we do for the coeffi-
cients in (5). It is easy to check that additional terms involving 
products of the different ρ ’s and similar variables parametrizing a 
discontinuity between 4 and s∗ are redundant, and don’t further 
modify the bounds [38]. We can now repeat the cubic coupling 
maximization, yielding Fig. 4. Not only do the milder discontinu-
ities get a significant enhancement, but also the sharper ones as 
α → 1 appear to be getting qualitatively reproduced. A look at the 
S-matrix extremizing the bounds, Fig. 5, also reveals that the ad-
ditional discontinuity is correctly captured, and elastic unitarity is 
satisfied until much closer to the threshold. In fact, we improve 
the convergence by at least an order of magnitude. It turns out 
that this ansatz will work remarkably well in four dimensions, but 
we first establish even more accurate results in two dimensions by 
resorting to the dual formalism [18,21,24].

3
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3. Dual in 2d

In terms of optimization language, the primal problem is

maximize
{T (s), g21}

g21 (16)

subject to the constraints

A(s) ≡ T (s) +
g21

s −m2
1

−
∞

∫

4m2

dz

π

Im T (z)

s − z
− (s ↔ t) = 0 (17)

and the new unitarity condition, which is given by

U(s) ≡ 2
√

s(s − 4) (1− β(s)) + 2 Im T (s)

−
1

2
√
s(s − 4)

|T (s)|2 ≥ 0 . (18)

To achieve a dual formulation, we closely follow [18] keeping 
track of the β(s) dependence and build the Lagrangian density 
L(T , ω, λ),

L(T ,ω, λ) = g21 +
∞

∫

4m2

dsω(s)A(s) + λ(s)U(s) , (19)

where λ and ω are Lagrange multipliers and λ ≥ 0. Using the 
weak duality principle and introducing the function W (s) satis-

fying ImW (s) = ω(s), which does not depend on the form of the 
unitarity condition, we arrive at the expression

L(T ,ω, λ) =
∞

∫

4m2

ds Im [W (s)T (s)] + λ(s)U(s) (20)

provided that ReW (m2
1) = −1/π . After solving the equations of 

motion for λ and T (s), we conclude that the correct dual opti-
mization problem is

min
{W }

D(W ) =
∞

∫

4m2

ds

ρ2
11(s)

[|W (s)|β(s) + ReW (s)] , (21)

where ρ−2
11 = 2

√
s(s − 4) subject to the condition that

W (m2
1) = −

1

π
, (22)

where β(s) are the profiles used above. Lastly, it is necessary to 
propose an ansatz to carry out the numerical extremization. The 
naive ρ(s) expansion can still be used

W (s) =
1

s(4m2 − s)

Nmax
∑

n=1

an(ρ(s)n − ρ(t)n) , (23)

where Nmax is again the numerical cutoff. The fact that the same 
Ansatz was used even though the S-matrix encodes additional 
thresholds is remarkable when compared to the primal formalism. 
This follows from the fact that the absolute value of the S-matrix is 
fixed in the dual procedure because of the strong duality principle. 
Namely

T (s) =
i

ρ2
11(s)

(

1+
W ∗(s)

|W (s)|
√

β(s)

)

, (24)

which has the correct absolute value regardless of W . Revisiting 
the cubic coupling maximization yields Fig. 6. Here we performed 

Fig. 6. Comparison between the analytical expression (11) and the data for β(s) with 
some tiny error bars.

Fig. 7. S-matrix components for the inelastic profile β(s) for the dual approach vs. 
the analytical components, red dashed curves. m2

1 = 3, Nmax = 40, α = 0.5 and s∗ =
16 were used.

a simple extrapolation in Nmax which agrees with the analytic re-
sult to one part in 10−4 and estimated some (very small) error 
bars. A look at S-Matrix components, Fig. 7, confirms the expec-
tations. The absolute value exactly matches the profile β(s), and 
the real and imaginary parts nicely follow the expected singular 
behavior.

4. Primal in 4d

The natural way to generalize the inelastic constraints discussed 
in 2 dimensions above, is to restrict the absolute values of the par-
tial amplitudes Sℓ = 1 + i

√
(s − 4)/s fℓ , where fℓ are the partial 

waves normalized as in [16]. We then impose

|Sℓ(s)|2 ≤ βℓ(s), s ≥ 4. (25)

A natural starting point would be choosing a profile compatible 
with the Roy-Martin production rate (3). This is of course only 
asymptotic, but imposing it from moderate energies, we found the 
effect to be negligible. This is to be expected since this lower 
bound is exponentially small. Instead, we will study step pro-
files, identical to the ones used in the previous sections. In prac-
tice, we will use non-trivial inelasticity profiles only for the low 
spin partial-waves and require standard unitarity for the remain-

ing ones. To use (25) in terms of semi-definite programming we 
rewrite it as a matrix inequality
(

1− Imaℓ

1+
√

βℓ(s)
Reaℓ

Reaℓ βℓ(s) − 1+
(

1+
√

βℓ(s)
)

Imaℓ

)

� 0 (26)

where aℓ =
√

(s − 4)/s fℓ . In 4d, we will stick to the simplest max-

imization problem, which can be studied even for a model without 
bound states: Maximization of the quartic coupling λ ≡ �00/32π . 
Motivated by the 2d explorations, we start from an ansatz

4



A. Antunes, M. S. Costa and J. Pereira Physics Letters B 846 (2023) 138225

Fig. 8. Result of maximizing the quartic coupling subject to (26), for profile β(s)
0 (s)

with α = 0.5 and s∗ = 16. The dashed lines correspond to the solution with unitar-
ity only.

Fig. 9. Result of maximizing the quartic coupling subject to (26), for profile β(s)
0 (s)

with α = 0.8 and s∗ = 16. We find a plateau λ ≈ 2.61 around N̄max ≈ 5.

T (s, t,u) = κ

(

1

ρs − 1
+ cross.

)

+
Nmax
∑

a,b,c=0

αabc ρ
a
s ρ

b
t ρ

c
u

+
N̄max
∑

a,b,c=0

βabc ρ̄
a
s ρ̄

b
t ρ̄

c
u (27)

where we use the ρ̄ variables discussed above, and add a pole 
at threshold, parametrized by κ , which is known to capture the 
physics of the extremal S-Matrix, in the standard case [3]. First, 
we consider a step profile for the spin zero partial wave β(s)

0 (s), 
with α = 0.5 and s∗ = 16. Even when we don’t use the new terms 
in the ansatz, i.e. when N̄max = 0, we find a substantial differ-
ence compared to the “elastic” case, as can be seen in Fig. 8: 
It seems that λ roughly achieves a plateau, which is clearly be-
low the original bounds, where no inelasticity was imposed. How-
ever, extending the ansatz shows that this difference is somewhat 
overestimated. Varying the parameter N̄max , with Nmax = 14, one 
produces Fig. 9, where we considered a somewhat sharper discon-
tinuity with α = 0.8. Clearly, the quartic coupling now plateaus at 
a slightly higher value, λmax ≈ 2.61, which is quickly achieved by 
adding merely a few ρ̄ terms. We can now also look at the partial 
amplitudes, and observe how the particle production is realized, as 
shown in Fig. 10. Plotting the spin zero amplitude S0 , we can ob-
serve the important effect of the more general ansatz. Not only is 
the transition smoother and less oscillatory but the constraints are 
more sharply saturated, and in particular elastic unitarity is satis-
fied remarkably well.

Having established the reliability of the new ansatz (27), we 
now give a more interesting application. For the profile β(s)

0 , we 
study how the maximum quartic coupling varies as we tune both 

Fig. 10. Spin zero partial amplitude maximizing the quartic coupling subject to (26), 
for profile β

(s)
0 (s), Nmax = 14, ℓmax = 14 and α = 0.8 with N̄max = 0 (top) and 

N̄max = 9 (bottom).

Fig. 11. Maximum quartic coupling λmax as a function of α and s∗ , for a profile β(s)
0 . 

The results have converged since changing ℓmax from 10 to 14 leaves the bounds 
unchanged. Here, Nmax = 10 and N̄max = 6.

the strength of the discontinuity α and the start of the inelastic 
threshold s∗ . The results are presented in Fig. 11 [39]. As expected, 
both making the discontinuity softer (decreasing α), and push-
ing the inelastic threshold further way (increasing s∗) make the 
bounds approach from below the value obtained imposing simply 
unitarity, λmax ≈ 2.66. We also note that for this profile it is pos-
sible to accurately replicate very sharp discontinuities, as we find 
stable results, even for α as small as 0.01.

As a final application of the methods we developed, we also 
consider the effect of inelasticity on the spin 2 partial wave f2 . 
Maximizing the quartic coupling λ with profile β(s)

2 with parame-
ters α = 0.8 and s∗ = 16 leads to a bigger decrease in the coupling 
than the corresponding spin 0 problem. However, convergence is 
worse and a rough plateau is only achieved for larger values of 
N̄max . Concretely, the maximum value of the coupling seems to 
drop considerably to about λmax ≈ 2.5. This is perhaps unsurpris-
ing as the contribution of a spin ℓ partial wave to the amplitude is 
weighted, in our normalization, by a factor of 2ℓ + 1 (the same 
factor appears below in the contribution to the total cross sec-
tion (28)), effectively enhancing the spin 2 contribution by a factor 

5
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Fig. 12. Comparison between the solution where only unitarity is imposed, Unitarity; 
the numerical solution with inelasticity imposed in S0 , Solution; the elastic part 
of the amplitude obtained from the optical theorem, Elastic; the imposed inelastic 
profile, Inelastic; and the sum of elastic and inelastic components Sum.

of 5. An interesting question for the future is to understand what 
happens in the physical cases where the inelasticity decays asymp-
totically with spin, as in the black-hole production case, or with 
Dragt behavior [40]. Such an understanding would require a reli-
able way to estimate the finite spin effects.

5. Total cross-section

Having obtained stronger bounds on the couplings and captured 
the extra threshold, we proceed to analyze the total cross-section 
σt , or equivalently the forward limit T (s, 0) of the resulting ampli-

tude. The relation between the two is simply

Im T (s,0) =
√

s(s − 4)σt =
∑

ℓ

16π(2ℓ + 1)Im fℓ , (28)

and of course, we can decompose the cross-section into its elastic 
and inelastic parts. Notably, we can use the optical theorem to ob-
tain the elastic part of the amplitude in the forward limit in terms 
of an integral of its square

Im T (s,0) ≥
1

64π

√

s − 4

s

1
∫

−1

dz |T (s, t(z))|2 , (29)

with z the cosine of the scattering angle. The inequality is satu-
rated in the elastic unitarity region, and after that there are in-
elastic terms further contributing. This can also be used as a check 
to the validity of the bounds obtained when imposing inelasticity. 
We plot the forward amplitude corresponding to maximizing the 
quartic coupling with α = 0.2 and s∗ = 16 in Fig. 12. We also com-
puted the integral in the optical theorem numerically, and deter-
mined the inelastic contribution to the total cross section through 
the sum over partial waves in (28). We find good agreement be-
tween the sum of the elastic and inelastic pieces and the resulting 
cross-section obtained directly through the maximization process, 
as shown in Fig. 12.

We find that the forward amplitude always exceeds its elastic 
counterpart denoted by the solid blue line, which is obtained by 
maximizing the quartic coupling imposing only unitarity. Indeed, 
this also suggests a natural way to parametrize the inelasticity: in-
puting a lower bound on the total cross-section, which is a simple 
generalization of imposing positivity in the forward limit. This con-
straint mixes information about all the partial waves, so it should 
lead to weaker bounds than imposing inelasticity for each partial 

Fig. 13. Comparison between the solution with only unitarity imposed, Unitarity; the 
solution with σt that follows from β(s)

0 (s) with α = 0.2, Solution; the elastic part of 
the amplitude from the optical theorem, Elastic; and the imposed cross-section total 
cross-sec.

wave as in (26). In practice, to fully control the inelasticity, one 
needs to include the quadratic elastic piece which leads to a con-
straint that is hard to use. On the other hand, one can impose
(

Im T (s,0) −
√
s(s − 4)σt 0

0 1

)

� 0 (30)

where σ is just treated as a fixed function of s. In practice, this 
just leads to saturation of this profile once the elastic cross-section 
exceeds this value, as shown in Fig. 13. We also point out that due 
to the nature of the ρ expansion, the forward limit of the ampli-
tude always decays at large s. It would be nice to study extensions 
which allow for Froissart-like behavior.

6. Discussion

In this paper, we explored how inequalities stronger than uni-
tarity, i.e. imposing an inelasticity profile, yields stronger bounds 
for the low-energy observables one studies with the S-matrix boot-
strap. To correctly capture the new thresholds, we introduced the 
ρ̄ variables, which drastically improve convergence and allowed 
for the satisfaction of elastic unitarity. As expected, we qualita-
tively found that the maximum coupling decreases as we increase 
the amount of inelasticity, which can be achieved by making the 
discontinuity sharper or by lowering the energy of the first in-
elastic threshold, as quantified in Fig. 11. We also found that the 
same amount of inelasticity imposed on a higher spin partial wave 
further decreases the maximum coupling, which is kinematically 
expected.

More quantitatively, we found that the minimal particle pro-
duction rate predicted by Roy and Martin [35] has a negligible 
effect on the quartic coupling bounds, but that step-like profiles 
which emulate the basic features of particle production [36] lead 
to modifications on the bound on quartic couplings of the order 
of a few percent. Furthermore, the introduction of the ρ̄ vari-
ables alters these values substantially, and their use seems crucial 
for precision studies (say once actual experimentally/theoretically 
motivated profiles are added to the problem). A flagship appli-
cation to consider is the study of supersymmetric gravity ampli-
tudes in higher spacetime dimensions [22,33]. In 10 dimensions, 
these authors found that the space of allowed couplings is al-
most completely spanned by the predictions of string theory as 
one varies the string coupling, but a difference of a few percent 
exists between the numerical minimum and the string theory pre-
diction. Adding an inelasticity profile (in that case derived from the 
Bekenstein-Hawking formula) combined with the methods of this 
paper might slightly modify the numerical minimum, as we found 
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Fig. 14. Plot of g1 vs. S(2) for m1 =
√
3. The blue curve represents the maximum 

value of S(2) while the orange represents the minimum.

in our toy models, perhaps conclusively showing saturation of the 
bound by string theory.

Finally, our analysis of the cross-section suggests that it could 
be possible to obtain inelastic S-matrices by maximizing the total 
cross-section. Of course, to maximize the total cross-section at a 
fixed value of the energy is not expected to be a physically well 
posed problem. The existence of resonances allows for sharp peaks 
in the cross-section, which are obviously physical and should not 
be excluded. A naive use of the maximization methods, leads to re-
sults that do not seem to converge as one increases Nmax , confirm-
ing the above expectation. Curiously, for fixed Nmax , and varying s, 
the values seem to roughly follow a Froissart-like trend. It would 
be interesting to understand how this would change for ansätze 
that allow for amplitudes that grow at infinity. On the other hand, 
suitable integrals of the cross section over energy should eliminate 
the problem mentioned above, and might prove to be an interest-
ing observable.
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Appendix A

In the main text, we used inelasticity as a way to probe the 
interior of the bootstrap bounds. Here, we study a simpler problem 
which also allows us to visit non-extremal theories with respect to 
maximizing the cubic coupling. We fix the cubic coupling to be 0 <
g1 < gmax , and then maximize and minimize the quartic coupling 
S(2). The result is Fig. 14. At the tip of maximum coupling, the 
solution is unique and is saturated by sine-Gordon. In the other 
extreme g1 = 0, the bound state decouples, and the maximum and 

minimum theories are just a free boson and fermion respectively. 
In between, there are non-trivial solutions, generated by products 
of CDD factors. One of the solutions can be seen as adding the T T̄
deformation in the vicinity of the sine-Gordon point.
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