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A recently re-discovered variant of the Backus-Gilbert algorithm for spectral reconstruction en-

ables the controlled determination of smeared spectral densities from lattice field theory correlation

functions. A particular advantage of this approach is the a priori specification of the kernel with

which the underlying spectral density is smeared, allowing for variation of its peak position,

smearing width, and functional form. If the unsmeared spectral density is sufficiently smooth

in the neighborhood of a particular energy, it can be obtained from an extrapolation to zero

smearing-kernel width at fixed peak position. A natural application for this approach is scattering

processes summed over all hadronic final states. As a proof-of-principle test, an inclusive rate

is computed in the two-dimensional O(3) sigma model from a two-point correlation function of

conserved currents. The results at finite and zero smearing radius are in good agreement with

the known analytic form up to energies at which 40-particle states contribute, and are sensitive to

the 4-particle contribution to the inclusive rate. The straight-forward adaptation to compute the

'-ratio in lattice QCD from two-point functions of the electromagnetic current is briefly discussed.
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1. Introduction

Lattice QCD simulations proceed by computing =-point euclidean correlation functions of

(quasi-) local interpolating operators. Single-hadron states and finite-volume few-hadron states are

isolated from correlation functions in the asymptotic large euclidean time limit. However, some

hadronic phenomena are best studied by other means. As an example, this work considers inclusive

rates defined as a sum over all hadronic final states produced by an external current. At large

center-of-mass energies, a finite-volume approach to such a process is impractical since it requires

the isolation of all individual finite-volume levels with arbitrarily many particles. Such processes

are a cornerstone of QCD and connect the low-energy hadronic and high-energy perturbative

regimes [1], serving as a manifestation of ‘quark-hadron duality’ [2] whereby perturbative QCD in

terms of quarks and gluons becomes increasingly effective at computing inclusive rates summed

over final states consisting entirely of hadrons.

For concreteness, consider the QCD part of the process 4+4− → hadrons

d(B) =
'(B)

12c2
, '(B) =

f [4+4− → hadrons] (B)

4cUem(B)2/(3B)
, (1)

d`a (:) =
1

2c

ˆ

34G 4−8: ·G 〈Ω| 9̂em
` (G) 9̂em

a (0) |Ω〉 = (6`a:
2 − :`:a) d(:

2), (2)

where 9̂em
` is the quark-level electromagnetic current. The desired inclusive rate is given by the

spectral density d(B), which is also present in the analogous infinite-volume Euclidean correlator

� (C) =

ˆ

33
x 〈Ω| 9̂em

I (x) 4−�̂ C 9̂em
I (0)† |Ω〉 =

ˆ ∞

0

3ll2d(l2) 4−lC . (3)

The direct determination of d(B) in lattice QCD is not straightforward, however. First, the inversion

of integral equations like Eq. 3 using � (C) evaluated at a finite number of discrete times with

statistical errors is notoriously ill-posed. Furthermore, the finite volume introduces additional

complication. Even if the inverse problem were solved successfully and the finite-volume euclidean

correlator�! (C) used to determine its spectral density d! (B), it differs qualitatively from its infinite-

volume counterpart d(B). While d! (B) is a sum over Dirac X-functions for each finite-volume state,

d(B) is smooth apart from non-analyticities due to the opening of thresholds. In no way does d! (B)

‘approach’ d(B) as ! → ∞.

The bridge between finite and infinite volume is made more effectively using the smeared

spectral density

dn (�) =

ˆ ∞

0

3l Xn (� − l) d(l) , (4)

where limn→0 Xn (G) = X(G), X(G) is the Dirac-delta function, and
´ ∞

−∞ 3G Xn (G) = 1. This solves

(in principle) both of the difficulties mentioned above: the inverse problem can be made arbitrarily

mild by increasing in the smearing width n and d!,n (�) approaches its infinite-volume counterpart

in a well-defined manner. The goal is now to take the ordered double limit [3]

d(�) = lim
n→0+

lim
!→∞

d!,n (�), (5)
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the asymptotic corrections to which are discussed in Sec. 21.

Although spectral reconstruction has a long history in lattice QCD, particularly at finite temper-

ature [4], the treatment of the inverse problem in Eq. 3 demands special care. In order to define the

result of the spectral reconstruction procedure, precise knowledge of the smearing kernel in Eq. 4

is required. As detailed in Sec. 2, the Backus-Gilbert approach [5, 6] is suitable in this respect2.

Since the estimator for the smeared spectral density d̂n (�) is simply a linear combination of the

input correlator data d̂n (�) =
∑

C 6C (n, �)� (C), the resultant smearing kernel is given by the same

linear combination of decaying exponentials in Eq. 3

d̂n (�) =

ˆ

3l X̂n (�, l) d(l), X̂n (�, l) =
∑

C

6C (n, �)l
24−lC . (6)

Explicit knowledge of X̂n (�, l) is a minimum requirement for a well-defined spectral reconstruction

procedure.

Naively the Backus-Gilbert approach provides knowledge of the kernel in Eq. 6 only a posteriori

for a given choice of coefficients. However, the coefficients themselves can be chosen to approximate

a particular smearing kernel specified a priori [9]. This important innovation is employed here

and was applied to lattice field theory for the first time in Ref. [10]. In order to understand this

reconstruction algorithm, and in particular demonstrate control over the systematic errors, a test in a

controlled context is warranted. Such a test has been performed in Ref. [11] for the two-dimensional

O(3) sigma model together with attempts at saturating the ordered double limit of Eq. 5.

The remainder of this work is organized as follows. The spectral reconstruction method is

presented in Sec. 2 in the context of the O(3) model test mentioned above. Prospects for adapting

the method to current correlators in lattice QCD is discussed in Sec. 3 and Sec. 4 concludes.

2. O(3) model test

This section reviews a spectral reconstruction test which was recently published in Ref. [11].

It employs the spectral reconstruction procedure of Ref. [10] in the two-dimensional O(3) sigma

model. Consider the standard lattice discretization

([f] =
V

2

∑

G∈Λ

02
∑

`

m̂`f(G) · m̂`f(G) = V
∑

G∈Λ

∑

`

[1 − f(G) · f(G + 0 ˆ̀)] , (7)

where f(G) ∈ R3, |f(G) | = 1, and m̂` 5 (G) =
1
0
[ 5 (G + 0 ˆ̀) − 5 (G)]. This model has a conserved

current

90` (G) = Vn012f1 (G)m̂`f
2 (G) (8)

at finite lattice spacing, and possesses a dynamically-generated mass gap <. The total zero spatial

momentum euclidean current-current correlation function analogous to Eq. 3 (but without the factor

1Finite lattice spacing effects must also be removed by taking the continuum limit, which is here performed at fixed

n and � .

2Another spectral reconstruction algorithm for which the smearing kernel is formally known a posteriori is the

Chebyshev polynomial approach of Ref. [7]. Ref. [8] compares that approach to the one employed here.
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Figure 2: Left: indicative illustration of the trade-off between statistical and systematic errors for a particular

choice of � and n on a single ensemble. Each point corresponds to a different _ and the horizontal band

indicates the chosen reconstruction (with _ = _c = 0.20) for which statistical errors dominate systematic ones.

Right: for this same setup and _ = _c, the reconstructed kernel X̂
g
n (�, l), together with the desired kernel

X
g
n (� − l) shown as a solid line. All reconstructions employ the correlator timeslices C = 10, . . . , 1600.

statistical errors. By contrast, large _ results in small statistical errors but a reconstructed smearing

kernel which does not resemble the desired one. The choice of the parameter _ is performed

automatically and results in an approximate balance of these two criteria. The effect of varying

_ is illustrated in Fig. 2 together with the reconstructed kernel X̂
g
n (�, l) for a sample setup. The

trade-off between statistical and systematic errors is familiar to lattice field theorists and the left

panel of Fig. 2 resembles the identification of a plateau in effective mass plots.

The procedure described above is performed for a variety of � and n , and for all four smearing

kernels. Next, finite volume effects must be assessed and the continuum limit taken independently

for each � , n , and kernel. Finite-volume effects are assessed at a single lattice spacing by simulating

two additional ensembles with doubled spatial and temporal extents, respectively. The differences

Δ!,) between the spectral reconstruction on the doubled lattices divided by the statistical error are

shown in Fig. 3, which show (at most) moderately significant hints for finite-! effects at energies

near the two-particle production threshold.

With the finite-volume effects demonstrably controlled for the (� , n) values and the kernels in

question, the continuum limit can be investigated. Cutoff effects for ‘on-shell’ quantities in the two-

dimensional O(3) sigma model have a long history, due to their apparently linear behaviour which

is caused by large logarithmic corrections [14]. Unfortunately, the analysis there is incomplete

for the ‘off-shell’ smeared spectral density considered here. In order to explore the influence of

logarithmic cutoff effects, the fit forms

&(0) = &(0) + �02VA , A = 0, 3, 6 (13)

are explored to extrapolate the smeared spectral densities to the continuum limit. A comparison

of the extrapolation forms is shown in Fig. 4. The continuum limits are generally mild and well-

constrained by the data, although the slope becomes steeper for increasing � .

Given the assessment of systematic errors due to spectral reconstruction, finite ! and ) effects,

and finite lattice spacing, it is time to confront the computations of dx
n (�) with the exact spectral

density d(l) (comprised of the two-, four-, and six-particle contributions) smeared with the exact

5
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x Fx
:
, even : Fx

:
, odd : Fx

1
Fx

2
Fx

3
Fx

4

g
:!

(−2):/2(:/2)!
0 0 −1 0 3

c0 1 1 1 1 1 1

c1 (1 − :) (1 − :) 0 −1 −2 −3

c2
1

3
(: − 3) (: − 1)

1

3
(: − 3) (: − 1) 0 −1/3 0 1

Table 1: The kernel-dependent coefficients Fx
:

appearing in the small-n expansion of Eq. (14). For the c1

and c2 kernels, Fc1
3

and Fc2
5

(respectively) are the non-zero coefficients with lowest odd order.

where the contribution at the :th order in n is the product of a kernel-independent factor

0: (�) =





(−1):/2

:!

(
3
3�

) :
d(�) , : even

lim[→0+
(−1) (:−1)/2

2c

´ ∞

−∞ dl
d(�+l)+d(�−l)

(l+8[):+1 , : odd

. (15)

which depends on the unsmeared spectral density, and a kernel-independent piece F
(x)

:
which is

however independent of d(l). The F
(x)

:
for the kernels used here are given for all orders in Tab. 1.

The c0 kernel is however not practically useful in such extrapolations due to the O(n) term.

A representative constrained extrapolation, in which all kernels (apart from c0) are used to fit

for d(�) and the 0: (�) up to a certain order, is shown in Fig. 6. A final estimate for d(�) is chosen

with a statistical error larger than the variation between different extrapolation orders and ranges.

Repeating this procedure for all values of � yields the final results for the spectral density d(�)

shown in Fig. 10. Not only do the numerical results agree with the exact spectral density including

two-, four-, and six-particle contributions, but differ significantly from the two-particle contribution

alone, indicating the sensitivity to four-particle states. Furthermore, the largest energy of � = 40<

is statistically consistent with the two-loop perturbative result, demonstrating that d(�) has been

computed up to the onset of the perturbative regime.

3. Prospects for QCD

It is in principle straightforward to adopt the analysis of the O(3) sigma model in Sec. 2 to the

lattice QCD computation of current spectral densities. However, while it is difficult to compare

the density of finite-volume states in one and three spatial dimensions, the O(3) model setup with

<! ≈ 30 may be difficult to achieve in QCD. Fortunately, the masterfield paradigm [15–17] offers

the possibility of large lattice volumes by accumulating statistics from widely-separated space-time

regions rather than widely-separated Markov chain elements.

Work in this direction has been detailed at this conference in talks by M. Cè and P. Fritzsch.

This section describes preliminary work toward the spectral reconstruction of the isovector vector
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disconnected Wick contractions, incurring additional computational cost and statistical variance.

Consider then the simpler case of the isovector-vector correlator. Phenomenologically this spectral

density can be accessed directly from hadronic decays of the tau lepton [18]. A state-of-the-art

phenomenological determination of the isovector-vector spectral density is performed in Ref. [19].

The spectral reconstruction approach of Sec. 2 is adopted nearly identically here, apart from

some key differences. First, the basis functions provided by the correlator data in Sec. 2 are

1C (l) = e−lC + e−l () −C) , but those employed in this analysis from Eq. 3 are 1C (l) = l2 e−lC .

The flexibility of the formalism of Sec. 2 to handle these different basis functions is an advantage

over the Chebyshev approach of Ref. [7]. Also, for these large lattices the finite temporal extent

can be demonstrably ignored. For a first test of the approach in QCD, only the gaussian smearing

kernel from Eq. 9 is considered. All correlator timeslices from Cmin = 0 to Cmax = 350 are used in

the reconstruction, and all arithmetic operations are performed with 400 bits of computer precision

using the Arb library [20].

Another innovation for this analysis compared to Sec. 2 is the procedure for choosing the _ at

which statistical errors dominate the systematic errors. As suggested by the left panel in Fig. 2, the

procedure in Sec. 2 which balances the two functionals �[6]/�[0] and �[6] from Eq. 11 is perhaps

over-conservative and somewhat arbitrary. The alternative approach employed here makes use of

one of the possible constraints introduced in Ref. [11]. By the addition of a lagrange multiplier, it is

possible to enforce constraints on the reconstructed smearing kernel X̂
g
n (�, l). Ref. [11] describes

how to impose the coincidence of the reconstructed and desired kernels at a particular point

X̂
g
n (�, l

∗) = X
g
n (� − l∗). (16)

Although Ref. [11] only considers l = � , the generalization to arbitrary l∗, even outside the

interval [�0,∞), is straightforward.

Using this ‘equal value’ constraint on the reconstructed kernel, it is possible to estimate how

small �[6]/�[0] must be for the statistical errors to dominate. An ‘ensemble’ of reconstructions

are performed with different values ofl∗, in addition to the unconstrained one. The systematic error

estimate is then obtained from the variation of d̂
g
n (�) among this ensemble at similar �[6]/�[0].

The point at which this variation is smaller than the statistical error on the unconstrained result is

taken as the optimal reconstruction. Of course this procedure depends on the ensemble of constraint

points {l∗} which are considered. However, it is sensitive the unsmeared spectral density d(l), in

contrast to the approach of Ref. [11]. If additional values of l∗ are added for which d(l∗) has little

support, these will likely differ little from the unconstrained case, apart from possible variations in

X̂
g
n (�, l) away from l∗ induced by the constraint at l∗. An illustration of this procedure is given

in Fig. 8.

After applying the procedure discussed above for a variety of n and � for the gaussian kernel

on each of the ! = 9 fm and 18 fm ensembles, finite volume effects can be examined. This is done

in Fig. 9, using E1(B) = 2c2d(B) for a variety of energies at two different values of the smearing

width n . While there are possibly hints of finite-volume effects at the one-to-few sigma level at both

n , these effects are generally under control. Additional volumes will however elucidate the situation

in the future.

We finally turn to a comparison of the reconstructed isovector vector spectral density with

experiment [21]. For this a preliminary value of the vector current renormalization factor /+ is

10
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Figure 8: Illustration of the method for choosing the optimal tradeoff parameter _ described in the text for the

gaussian reconstruction on the ! = 18 fm ensemble with n = 0.5<c and � = 2.5<c . Left: different values of

_ for the unconstrained reconstruction and reconstructed kernels constrained to agree with X
g
n (� −l∗) at the

various values of l∗ indicated in the legend. The horizontal band indicates the chosen estimate for which the

statistical error on the unconstrained reconstruction covers the spread given by the ensemble of constraints.

For comparison, the method for balancing statistical and systematic errors of Sec. 2 (and Ref. [11]) chooses

the unconstrained point with �[6]/�[0] ≈ 0.0016. Right: the reconstructed smearing kernel compared

to the desired gaussian (solid line) for each member of the constraint ensemble near the chosen value of

�[6]/�[0] indicated by the horizontal band in the left plot. The residual variation between the different

constraints is evidently smaller than the statistical error on the constrained reconstruction, although perhaps

additional values of l∗ near l∗ − � ≈ 2n should be added in the future.
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Figure 9: Finite volume effects in the reconstructed vector isovector spectral density on the two masterfield

ensembles described in the text. Gaussian smearing is used for a variety of energies at smearing width

n = 0.5<c , shown on the left, and n = <c , shown on the right. These effects are generally small apart from

some mild discrepancies near B = 0.4 GeV2 for n = 0.5<c and B = 0.75GeV2 for n = <c . Additional smaller

lattice volumes could further examine these potential finite volume effects.
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Figure 10: Comparison of the lattice QCD results for the isovector vector spectral density on the larger

!/0 = 192 master field ensemble discussed in the text (shown on the left), with experimental results for

hadronic g-decays on the right. Statistical errors due to the scale setting and the renormalization of the vector

current are not yet taken into account.

employed, which was presented at this conference by J. Kuhlmann. The statistical error on /+

is ignored in these preliminary results, as is the error on the lattice scale, which is crudely set

by assuming <c = 265 MeV. The results are summarized in Fig. 10, and broadly resemble the

experimental plot, with a narrow peak likely due to the d(770) vector resonance followed by a slow

rise due to four-particle states. Particularly interesting is the mild indication of this rise in the lattice

QCD data, which (like in the O(3) model) show the effects of four-pion states. It should be noted

that the current state-of-the-art for the finite-volume approach to lattice QCD scattering amplitudes

is the numerical computation of (exclusive rather than inclusive) three-pion scattering amplitudes3.

4. Conclusions

Alternative techniques are required to compute phenomena arising from many hadronic states.

The spectral reconstruction of smeared spectral densities from euclidean correlator data not only

bridges the gap between finite and infinite volume, but also helps to regulate the ill-posed nature

of the problem. The application discussed here is the computation of inclusive rates summed over

all final states produced by an external current. In the two-dimensional O(3) model, after taking

the continuum limit, the algorithm presented in Sec. 2 (first proposed for lattice field theory in

Ref. [10]) results in smeared spectral densities consistent with known analytic results. Spectral

reconstruction algorithms based on the Backus-Gilbert approach [5, 6] enable a precise definition

of the smeared spectral density that has been computed, while the modification of Ref. [9] further

allows the a priori specification of a desired smearing kernel. The simple linear ansatz on which

these approaches are based enables the direct expression for the smearing kernel given in Eq. 6.

Smeared spectral densities are useful not only for inclusive decay rates. An incomplete list

of recent applications of the Backus-Gilbert approach includes the nucleon hadronic tensor [24],

3For a review of the current status of computations of three-particle scattering amplitudes using the finite-volume

approach, see the presentation by F. Romero-López and the recent reviews in Refs. [22, 23].
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the determination of PDFs from Ioffe time data [25], and the photon emissivity of the quark-

gluon plasma [26]. These applications do not employ the algorithmic variant enabling a priori

specification of the smearing kernel, but could perhaps benefit from it in the future. This a priori

specification of the kernel enabled in Refs. [9, 10] is also present in the Chebyshev approach of

Ref. [7], but the stabilizing effect of the functional �[6] in Eq. 11 is naively not present. The work

of Ref. [8] is a first step towards comparing the two approaches.

The advantages of the a priori approach are leveraged in the two-dimensional O(3) model to

perform joint constrained n → 0 extrapolations with several different kernels. The presence of the

narrow d(770) peak in the isovector vector spectral density in QCD discussed in Sec. 3 complicates

such an extrapolation and more work is required toward an implementation. A similar approach has

been employed to compute inclusive decay rates in Refs. [27, 28], and taken up by additional groups

in Refs. [8, 29, 30]. Work towards computing the '-ratio was reported in this conference [31], as

well as a similar analyses of the total hadronic tau decay rate [32, 33], albeit with a wider gaussian

smearing radius than employed here. The interplay between the spatial extent and the smallest

achievable smearing width requires further study. Furthermore, the a priori approach of Ref. [7]

led to the direct computation of the Borel transform of a current-current correlator required for

the Shifman-Vainshtein-Zakharov sum rule in Ref. [34], possibly opening the door for additional

interaction between lattice QCD and QCD sum rules. Another interesting application is pursued in

Ref. [35] in which fits to smeared spectral densities are considered as an alternative to ‘standard’

spectroscopy. Additional applications could appear in the future. The a priori approach in principle

enables the computation of exclusive scattering amplitudes using Refs. [36, 37], while the formalism

for inclusive rates was developed already in Refs. [3, 38].
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