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Abstract:

The cross section of the charged current process e

�

p! �

e

+ hadrons is measured

at HERA for transverse momenta of the hadron system larger than 25GeV. The

size of the cross section exhibits the W propagator.
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1 Introduction

The weak charged current was extensively investigated during the accelerator neutrino physics

era [1]. In the early sixties the driving idea was the search for the massive intermediate vector

boson (W

�

) thought to be responsible for weak interactions. The linear increase of the total

neutrino cross section with energy should be damped due to the W propagator. From the

compatibility with linearity, lower limits on the W mass could be derived. Initial values of a few

GeV were gradually increased to about 20GeV as higher energy proton synchrotrons allowed the

construction of higher energy neutrino beams. Following the discovery of weak neutral currents,

electromagnetic and weak phenomena could be uni�ed in a single electroweak framework. In it,

the W mass is related to the electroweak mixing parameter sin

2

�

W

via �=G, the known ratio

of the �ne structure and the Fermi constants. The W mass could thus be predicted. From the

early measurements of sin

2

�

W

it became obvious that M

W

would not be accessible in neutrino

experiments (see �g. 1).

The ep-collider HERA extends the investigation of weak interactions by exploring, for the �rst

time, the reaction e

�

p! �

e

+hadrons in a high energy kinematic region in which theW propaga-

tor plays a prominent role. The reaction is the inverse of neutrino-nucleon scattering, where the

electron energy corresponds to an equivalent 50TeV beam energy in a �xed target experiment.

The W propagator enters in the di�erential cross section with the term 1=(1 + Q

2

=M

2

W

)

2

. The

measurement of the total cross section at HERA implies an integration over Q

2

ranging up to

about 10

5

GeV

2

. Consequently, < Q

2

> is now comparable to M

2

W

= (80GeV)

2

causing a sub-

stantial deviation from the linear behaviour observed at low energies. The luminosity collected

by the H1 experiment during 1993 provides a su�ciently large charged current event sample to

exhibit the W propagator e�ect.

2 Method

Charged current events at large values of the 4-momentum transfer squared, Q

2

, provide a

clear signature, namely an unbalanced high transverse momentum hadron system due to the

undetected �nal state neutrino. This discriminates e�ciently against other processes, such as

neutral current and 
p events, which are approximately balanced. From the momenta of the �nal

state hadrons, two observables can be computed [2], the scalar (S) and vector (V ) transverse

momentum sums:

S �

X

i

j~p

?

i

j

V � j

X

i

~p

?

i

j :

S and V are closely related to the total transverse energy and the missing transverse energy in

each event. They are straightforward to compute, requiring only the calorimeter cell energies

3
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Figure 1: The energy dependence of the �N cross section. The crosses represent the low energy

neutrino data (see ref. [1], p. 213) while the full circle refers to the result of this analysis which, for

the purpose of comparison, has been converted to a �N cross section. The experiment at HERA

corresponds to an equivalent �xed target energy of about 50TeV. The full line represents the

predicted cross section including the W propagator. The dashed line is the linear extrapolation

from low energies.
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and positions and the event vertex position. Charged current events are characterized by large

values of S and V . Note that by de�nition S � V . The main selection criterion for charged

current candidates is based on the observable V . The choice of the cut V> 25GeV appears

to be a reasonable compromise between background rejection and statistics. The large value

of V implies Q

2

> 625 GeV

2

and thus emphasizes the importance of the W propagator term.

Furthermore, events in the kinematic region de�ned by V > 25GeV do not su�er from large

radiative e�ects.

Neutral current events constitute an ideal control sample. Once the scattered electron is

discarded, their topology is similar to charged current events. The available statistics for events

then satisfying V > 25GeV is about 10 times larger than for the charged current sample owing

to the contribution of the photon propagator.

3 Experimental Conditions

This analysis is based on data taken in 1993. The beam energies were 26.7GeV for electrons

and 820GeV for protons. HERA was operated with 94 electron and 90 proton bunches �lled out

of the 220 possible bunches separated by 96ns. 84 bunches were in collision. 10 electron and

6 proton bunches had no collision partner. The length of the interaction region is determined

by the proton bunch length and extends over a region of width � = 10 cm along the beam line.

Each event is associated with a particular bunch number.

A detailed description of the H1 detector and its performance can be found in [3]. Only

those aspects with relevance for the measurement of the total charged current cross section are

discussed below.

The energy of the hadronic �nal state is measured in the highly segmented liquid argon

(LAr) calorimeter [4], which covers a polar angular range between 4

�

and 153

�

with respect

to the proton beam direction. It consists of an electromagnetic section with lead absorber

and a hadronic section with stainless steel absorber. The total depth of the electromagnetic

part varies between 20 and 30 radiation lengths, whereas the total depth of both calorimeters

combined varies between 4.5 and 8 interaction lengths. The calibration of the LAr calorimeter

segments has been obtained from test beam measurements using electrons and pions [3, 4, 5].

The energy calibration for the electromagnetic section is known to an overall accuracy of 3% as

determined from a comparison of the measured track momentum of electrons and positrons with

the corresponding energy deposition in the calorimetric cells in the H1 detector. The hadronic

energy is calibrated to 5% as determined from studies of the transverse momentum balance in

deep inelastic scattering events. Charged particles are measured in the central jet drift chamber

(CJC) of polar angular acceptance 15

o

� 165

o

and are used to determine an event vertex. The

time of occurrence of each event is determined from tracks which cross the CJC sense wire planes

and produce a prompt signal with a precision of 1.5 ns.

The hardware trigger for charged current events ("CC trigger") consists of two conditions:

- The vector sum of transverse momenta, evaluated at the �rst trigger level using a coarsely

segmented calorimeter trigger readout, has to exceed a threshold set just above the noise

and well below the physics requirement of 25GeV.

- The time of the event has to be given by a fast track trigger, which requires hits in at least

3 out of 4 proportional chamber layers. This trigger restricts the vertex coordinate along

the beam direction to about �40 cm.

5



This trigger is well adapted to the topology of CC events. Note that the two independent

conditions can also be ful�lled by an accidental superposition of two unrelated events.

The luminosity is measured using the rate of small angle Bremsstrahlung [3]. The electron

and the photon are detected in crystal calorimeters positioned at 33m and 103m, respectively,

from the interaction point along the direction of the incident e beam direction.

4 The Event Sample

The main selection criterion for charged current candidates requires a cut in the momentum

imbalance:

V > 25GeV:

In addition, the following selection criteria are imposed:

� The CC trigger is ful�lled.

� A vertex is reconstructed.

� The event passes the halo and cosmic muon �lters. Residual superimposed events are

removed in a visual scan.

14 events satisfy these criteria.

The background processes to be considered fall into two categories, beam related processes

and those induced by incoming muons.

Background from incoming Muons

Incoming muons from cosmic rays or beam halo may induce large and localized showers in the

LAr calorimeter, which are not momentum balanced with respect to the interaction point. The

pattern created by such muons is detected in the muon detector surrounding the experiment and

in the LAr calorimeter, which is sensitive to the small energy deposits of minimum ionizing par-

ticles. Due to the vertex requirement this background is considerably suppressed. Nevertheless,

it may enter the event sample in two ways, namely (a) the muon induced shower emits charged

particles which accidentally ful�ll the vertex requirement, or (b) a muon is superimposed over

a beam induced interaction (beam gas or 
p) which satis�es the vertex requirement.

The cosmic muon �lters which are applied search for patterns compatible with penetrating

muons. Their performance can be monitored by inspecting the time of the event (t

event

). For

cosmic events, the time of passage is not correlated with the time of the beam interaction (t

ia

)

which is seen in �g. 2 as a 
at background appearing also in empty bunches. After applying the

cosmic muon �lter the remaining background from pure cosmic muons is negligible (�g. 2b).

The automatic recognition of this background has to be elaborate when an interaction of a

cosmic ray muon coincides with a beam induced interaction. The shower in the calorimeter may

develop several bunch crossings before or after the occurrence of the vertex de�ning charged

particle, because the length of the LAr calorimeter signals is typically 1�sec, which is long

compared to the bunch crossing interval of 96 ns. In this case the time of the "superimposed"

event is correlated with the nominal interaction time (t

ia

). This is seen in �g. 2c where the

events that have been rejected by the cosmic muon �lter show a peak at the nominal interaction

time. As expected, this behaviour is not seen in empty bunches.

6
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Figure 2: The time of the selected events: (a) before (b) after applying the cosmic �lters. The

rejected events (c) exhibit both a 
at structure from genuine cosmic rays and a small peak at

0 produced by accidental coincidences between such rays and beam interactions (superimposed

events). The shaded histogram indicates the time of the events for those empty bunches where

the trigger was kept active.
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Halo muons produced upstream may traverse the detector parallel to the beam line. They

may generate electromagnetic showers while the track of the penetrating muon continues over

the entire longitudinal range of the calorimeter at constant distance from the beam line. The

signature of the halo muons is unique. The pattern of their energy deposition in the calorimeter

has been searched for, and these events have been excluded from the sample. The signal of a

large scintillator array placed upstream of the detector was used to verify the high e�ciency of

the search algorithm.

To remove residual background from superimposed events a visual scan has been performed.

One halo and four cosmic muon events of this type were clearly identi�ed and removed, giving

the �nal sample of 14 events. The �ve background events had escaped the previous automatic

rejection in which a conservative approach was adopted in order to retain full e�ciency for CC

events.

Beam related Background

Due to the large momentum imbalance required (V > 25GeV) the contamination from 
p, NC

and beam gas events is strongly suppressed. Indeed all these beam induced background processes

are balanced in momentum (V � 0), while S may assume large values. These events can simulate

a CC candidate only in the case of an extreme 
uctuation of the energy measurement due to

either resolution or loss of particles. To the latter case belong in particular NC events with a

high p

?

electron lost in the beam pipe. As these events originate from a kinematic region with

very high Q

2

they contribute a negligible amount. In the region V > 25 GeV less than 0.1 events

are expected from all these sources combined.

The 14 CC candidates are shown in the V -S plane in �g. 3, where the signal region is

represented by the area V > 25GeV. The events show the correlation between V and S expected

for CC events.

A gradual decrease of the V cut would lead to a small increase of the number of CC events

accompanied by the appearance of the tails of the beam related background processes. To verify

this behaviour, the analysis has been extended to a region with a substantially relaxed V cut of

10GeV, where the detection e�ciency for CC events is signi�cantly reduced. Additional events

enter predominantly at large values of S, which is indicative of the background. Indeed some of

the background events identify themselves unambiguously by the presence of an isolated electron

in either the small angle tagging system or the main calorimeter respectively.

In summary, the 14 CC candidates do not show any de�ciencies { in particular no indication of

a NC event with a badly detected electron { and are considered to be genuine CC events. A

typical event is shown in �g. 4.

5 E�ciencies and Systematics

The e�ciencies of the various selection steps are summarized in Table 1. The CC trigger and

vertex e�ciencies have been determined using a NC reference sample obtained by discarding

the electron and requiring for the hadron system the same criteria as for CC candidates. This

procedure works well and has been veri�ed by a Monte Carlo simulation. The other two entries

in Table 1 were evaluated using a sample of Monte Carlo [6] generated CC events.
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Figure 3: Selected events in the V -S plane for V > 10GeV. The signal region is de�ned by

V > 25GeV.

(a) (b)

Figure 4: A typical CC event: (a) side view of the H1 tracking system with the reconstructed

tracks and the surrounding calorimeter with its energy depositions, (b) energy 
ow as measured

in the calorimeter as a function of pseudorapidity (�) and azimuthal angle (').
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Note that the calculated e�ciency for the V cut includes the e�ects from migration of events

due to resolution, particles escaping detection. The resulting 0:97 is the sum of a gain of 3%

and a loss of 6%. The requirement of a reconstructed vertex does not cause any ine�ciency for

hadron jets within the polar angular range which is well covered by the CJC. Those outside the

angular acceptance of the CJC have a reduced probability to emit a charged particle into the

jet chamber leading to an overall e�ciency 0:84� 0:07.

selection step e�ciency

V cut 0:97� 0:04

CC trigger 0:92� 0:04

vertex 0:84� 0:07

cosmic muon and halo �lter 0:98� 0:02

Total e�ciency (�) 0:73� 0:08

Table 1: E�ciencies for the CC selection

6 Result and Conclusion

The fully corrected charged current cross section for neutrino transverse momenta p

?

> 25GeV

is calculated as � = N=L�. The data sample used for the event selection corresponds to an

integrated luminosity of L = 348 � 17 nb

�1

. The systematic error of the luminosity measure-

ment arises predominantly from the uncertainty in the acceptance, while its statistical error is

negligible. Using the above number of N=14 charged current events and the corrections given

in Table 1 one obtains :

�(p

?

> 25GeV) = 55� 15� 6 pb;

where the �rst error is statistical, the second error includes all known systematic e�ects added

in quadrature

1

.

This experimental value can be compared with the theoretical expectation of 40.9 pb for

p

?

> 25GeV. The calculation [7] takes into account electroweak and QCD corrections. The

prediction requires knowledge of the proton structure functions, the parametrisation [8] of which

is not critical, since the transverse momentum cut at 25GeV restricts the integration domain

to values in x

Bjorken

> 0:03 where the structure functions are well known from low energy

lepton-nucleon scattering [9]. The Q

2

-evolution is obtained from the Altarelli-Parisi equations

which are assumed here to be valid up to the HERA energy. The uncertainty in the energy

calibration is included in the systematic error of the measured cross section. If the calorimeter

calibration were to be increased by 5 %, the increase in the lower limit of the integration would

result in a decrease of the theoretical prediction by 1.8 pb.

Fig. 5 shows the sensitivity of the predicted cross section to the propagator mass due to

presence of the term 1=(1 + Q

2

=M

2

prop

)

2

. The value of the propagator mass inferred from this

measurement agrees well with the known resonance mass of 80.22GeV [9] and excludes the

asymptotic case (dashed line in �g. 5). With the high energy provided by the ep-collider HERA,

the e�ect of the W propagator in deep inelastic charged current interactions is visible for the

�rst time.

1

For illustration, the measured cross section has been converted into an equivalent �N cross section to be

shown in �g. 1. The conversion factor includes the extrapolation of p

?

to zero based on the parametrisation [8]

and a reinterpretation as a �N cross section which takes into account the relevant 
avour contributions. The

extrapolation necessarily reduces the sensitivity to the propagator (cf. �g. 5).
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Figure 5: The CC cross section predicted as function of the propagator mass M

prop

(thin solid

line). The dashed line indicates the asymptotic case M

prop

=1. The shaded region represents

the 1� band of the measured cross section.
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