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using dimensional reduction on Calabi-Yau threefolds, and translating the FL result for

dipoles into a purely geometric bound. We discuss axionic black holes evolution, and aFL

constraints on Euclidean wormholes, showing that the gravitational arguments leading to

the FL bound for U(1) charged particles cannot be directly applied to axions. Moreover, we

discuss phenomenological implications of the aFL bound, including constraints on string

inflation models and the axion-photon coupling via kinetic mixing.
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1 Introduction

Pseudo-scalar fields, called axions, were introduced into Physics beyond the Standard

Model of particle physics as part of the Peccei-Quinn mechanism solving the strong CP-

problem of QCD [1–3]. Since axions are derivatively coupled, they enjoy a perturbatively

exact shift symmetry. Axion potentials thus arise only from non-perturbative quantum ef-

fects like instantons (breaking the shift symmetry to a discrete subgroup), or if their shift

symmetry gets softly and spontaneously broken. As these axion potentials remain largely

protected from uncontrolled perturbative quantum corrections, axions have become candi-

dates for driving slow-roll inflation [4], comprising (a part of) cold dark matter [5–9], and

more recently for ultralight ‘fuzzy’ dark matter [10, 11].

The phenomenological appeal of axions motivates searching for their UV completions

into quantum gravity, and most concretely, string theory as our so far best understood

candidate theory of quantum gravity. UV models of axion physics are built on recent

progress in constructing flux compactifications of string theory, which stabilize the moduli

deformation scalar fields of the extra dimensions [12, 13]. These models are successful in

e.g. discovering mechanisms to generate large-field high-scale inflaton potentials from axion

monodromy [14, 15], or providing candidate axions able to explain sizable fractions of the

observed dark matter content as fuzzy dark matter [16]. However, the effective field theory

(EFT) parameters that such string models (string vacua) need in order to provide viable

axion physics often lead to backreaction. This is triggered by the other low-lying states of

a given string model due to a lack of parametric scale separation.
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This backreaction is not always harmful to the viability of a model, but it often ap-

pears in connection with the observation that many string vacua seem to satisfy certain

constraints on their EFT properties. For instance, there appears to be a limit to the ability

to send the charge of light charge carriers of gauge fields to zero for all massive charged

states (called the ‘Weak Gravity Conjecture’ — WGC [17]), and exact global symmetries

seem to be absent [18]. Such constraints, if proven to be exact consequences of e.g. string

theory, would be useful in separating the space of possible low-energy EFT models into

those with the chance for UV completion in string theory (the so-called ‘string landscape’)

and their complement (the ‘swampland’) [19].

The goal of the swampland program then is to constrain effective theories at low

energy by demanding that they UV-complete into a consistent theory of quantum gravity.

In this context, the electric WGC has become one of the pillars of the swampland program

due to support from string theory and AdS/CFT arguments [20, 21], and its potential

phenomenological reach. In 4d in its crudest form it states that for electrically charged

black holes to be able to decay consistently, our theory must have a state with mass m and

charge q under a U(1) gauge field with coupling g such that m <
√

2gqMP , with MP the

4d Planck scale.

In [22, 23], it was discovered that for charged black holes in quasi-de Sitter space with

Hubble parameter H, to decay consistently one expects an additional constraint called the

Festina Lente (FL) bound. This bound states that all charged particles must obey

m2 >
√

6gqMP H . (1.1)

In the years since its conception, the WGC has been extensively studied and extended

in various directions (see [21] for a recent review). In particular, it has been argued that

the WGC does not just apply to gauge fields with a two-form field strength, but also

to axions [17, 24]. For the case of one axion, the WGC would constrain the axion decay

constant f and the action S of at least one instanton charged under the axion as Sf . MP .

It is then natural to ask whether the FL bound can similarly be extended to axions.

The goal of this paper is twofold. First, in section 2, we will argue that an extension of the

FL bound to axions is consistent under dimensional reduction. We provide an argument

based on a purely geometrical equivalence, starting from the original FL bound for particles.

Our claim is that all instantons with action S coupled to an axion with decay constant f

must obey

Sf &
√

MP H ∼ V 1/4 , (1.2)

with V the vacuum energy density.1 We call this bound the axionic FL (aFL) bound. We

then attempt to find a direct argument for this bound considering the consistency of axioni-

cally charged objects. However, we are unable to find such a direct, physical argument from

either axionically charged black holes (section 2.3) or Euclidean wormholes (section 2.4).

1It seems like the vacuum energy scale V 1/4 might serve as an IR cut-off scale in de Sitter space more

broadly. For instance, [25] has suggested that the mass scale of strings might potentially be bounded from

below by V 1/4.
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Second, in section 3, we consider the phenomenological implications of the aFL bound.

This is especially interesting for the early-universe cosmology, as during inflation the Hub-

ble parameter H would have been much larger than it is today.2 We discuss how the

combination of the WGC for axions and the aFL bound constrains the amplitude of pe-

riodic instanton corrections to stringy axion monodromy inflation and thus in turn the

signal strength of oscillatory contributions to the CMB power spectrum and resonant non-

Gaussianity. Moreover, since the WGC and aFL bounds for axions imply constraints on

geometric quantities of the extra dimensions of string compactifications, we use them to

constrain the parameter space of models of Kähler moduli (‘blow-up’) inflation [27]. Fi-

nally, we derive a bound for the axion-photon coupling to the Standard Model which a

generic string axion might acquire from kinetic mixing. We conclude with a discussion of

our results in section 4.

2 Derivation of the FL bound for axions

The general statement for the WGC for p-forms with gauge coupling ep;d in d dimensions

in the absence of a dilaton background reads [24]

p(d − p − 2)

d − 2
T 2

p ≤ e2
p;d q2Md−2

P ;d , (2.1)

where Tp is the tension of the charged (p − 1)-brane with integer charge q, and MP ;d is the

Planck mass in d-dimensions. Such relation is degenerate for 0-forms (axions), hence it does

not directly apply. In order to get the same statement for axions, one should rely on an

indirect computation, as has been done in the literature so far [21]. In this work, following

the argument proposed in [28], we present another derivation of the bound on Sf for axions

by relating the quantity Sf to the charge-to-mass ratio of a particle to which (2.1) applies.

A similar computation was carried out in [29] using T-duality. As we will show, we do

not need the use of T-duality,3 as we will express the needed relation in terms of purely

geometrical quantities which are independent of the underlying theory used.

2Some implications of the original particle FL bound for inflation have been discussed in [22, 23]. The

impact of the particle FL bound on the Higgs vacuum structure and inflation was discussed in [26].
3It is crucial that we do not rely on T-duality as a Hubble constant / positive vacuum energy enters

into our bound. Were we to attempt a derivation using T-duality in type II string theory we would run

into the issue that type IIA has no known de Sitter vacua that are in the controlled IIA regime. Type IIB

may have de Sitter vacua, but this is an area of active discussion. Starting from there, we would have to

start from a Euclidean de Sitter solution in Euclidean IIB and T-dualize one of the external Euclidean

spacetime directions to dualize between an instanton and a particle. In flat space one can compactify

one of the external directions to a circle of arbitrary radius and still solve the EOMs, making T-duality

straightforward. However for our Euclidean de Sitter which is a four-sphere, there is only one radius of the

four-sphere which solves the EOMs and we cannot just shrink either one direction or the entire four-sphere

to a stringy size in order to T-dualize.
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Using the same logic, we are able to extend the FL bound to axions. In 4d, the FL

bound for a particle with mass m and U(1) gauge coupling e reads [22]4

eM2
P

m2
.

Mp

H
, (2.2)

where the ‘∼’ accounts for an O(1) constant.

Unfortunately, this bound does not geometrize nicely. However, the gauge theory must

be at weak coupling e < 1. This then implies the weaker bound

e2M2
P

m2
.

Mp

H
, (2.3)

which as we shall see does geometrize in a clean way. The bound (2.3) can also be directly

derived from ensuring black holes in de Sitter behave consistently under FL for dipoles

rather than charged particles [23]. Let us explain how this works in some more detail.

The bound which we will dualize to axions is the dipole version of the FL bound.

While the production of electric (magnetic) dipoles clearly cannot discharge an electrically

(magnetically) charged black hole, such dipoles locally screen the electric field. A dipole

with moment µ in a theory with gauge coupling e gains an energy −µE (−µB) when

favorably aligned in an external electric field. One then expects an instability against rapid

production of dipoles for a particle of mass m when −µE > m. Filling in the field strength

for the maximally charged Nariai black hole, one obtains

µ .
m

eMP H
. (2.4)

The dipole moment µ is set by eL, with L the length scale of the dipole. As we are

dealing with fundamental particles, we take this to be the Compton length of the particle

L = 1/m. From this, then (2.3) follows. The same result can be derived analogously for

magnetic dipoles.

One may wonder how to think of the interactions of dipoles in terms of QFT diagram-

matics. This is reviewed for neutrinos in e.g. [32, 33]. In a diagram, the neutrino can split

into a W-boson plus a lepton which form a loop and recombine back into a neutrino at

the other end of the loop. The charge particles in the loop can now couple to the photon.

This provides at loop level an effective vertex coupling the neutrino to the photon. One

can now consider neutrino-photon interactions using this effective vertex, describing the

dipole interactions of the neutrino, including the production of neutrinos by an external

photon field. If one wants to think in terms of a picture without intermediate particles, the

interaction coupling a Dirac spinor dipole ν to a photon takes the form νΛµνAµ [32, 33],

where the 4 × 4 spinor matrix Λµ can be decomposed into form factors. This term is of the

form µM σµνqν for magnetic dipoles and µEσµνγ5qν for electric dipoles, with qν the pho-

ton momentum. One can then consider diagrams with external photon sources producing

dipoles through these couplings.

4This bound follows from the demanding that the largest allowed black holes in de Sitter space charged

under a U(1) gauge field evaporate back to empty de Sitter space, rather than evolving into a big crunch

singularity. These black holes are known as charged Nariai black holes [30, 31] and can roughly be thought

of as black holes whose horizon radius becomes as large as the cosmological horizon radius.
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2.1 Dimensional reduction argument

With these preliminaries out of the way, let us now turn to the dualization of our bounds.

In what follows, we first derive a geometric relation for a charged particle by wrapping a

Dp-brane on a p-cycle. Then, we show that we can get the same geometric quantity from

a Dp − 1-brane wrapping the same cycle, hence producing an axion in the non-compact

space. Therefore, following [28], a bound for the particle carries through to the axion via

the purely geometric relation.

We start with a theory in 10d with Dp-branes wrapped on a p-cycle Σp of the Calabi-

Yau (CY) threefold X, namely

1

4κ2
10

∫

M4×X
e

3−p
2

φFp+2 ∧ ⋆(E)Fp+2 + µp

∫

Dp on Σp
Cp+1 . (2.5)

Upon compactification on the CY, this action leads to the Maxwell theory for a charged

particle in 4d from the reduction of the Cp+1 gauge potential, as we show in what follows.

First, we introduce a symplectic basis of harmonic p-forms ωi of the p-th cohomology of

X. Such basis satisfies
∫

X
ωi ∧ ⋆ωj = Kij , (2.6)

where Kij is the metric on the space of p-forms and is proportional to the Kähler metric.

Hence, we can expand the (p + 2)-form flux and the (p + 1)-form potential in terms of the

symplectic basis as Fp+2 = F i
2 ∧ ωi and Cp+1 = Ai

1 ∧ ωi. The 4d action is then obtained by

integrating on X. By defining the integral charges as

qΣp

i =

∫

Σp
ωi , (2.7)

we can write our 4d theory as

M2
P e

3−p
2

φ

4VX

∫

M4

KijF i
2 ∧ ⋆F j

2 + µp

∫

Ai
1qΣp

i , (2.8)

VX being the CY volume in Einstein frame. Since only a certain linear combination of

gauge fields is sourced by the particle with charge qΣp

i , we can define the field A1 and its

field strength F2 = dA1 as A1 = Ai
1KijqΣp

j and F2 = F i
2KijqΣp

j . The 4d action then reads

M2
P |qΣp |2 e

3−p
2

φ

4VX

∫

M4

F2 ∧ ⋆F2 + µp |qΣp |2
∫

A1 , (2.9)

where we introduced the notation |qΣ|2 = KijqΣ
i qΣ

j . In order to extract the 4d gauge

coupling, we should normalize the gauge potential such that the final action reads

S4 ⊃ 1

2e2

∫

M4

F2 ∧ ⋆F2 +

∫

0−brane
A1 . (2.10)

Therefore, the gauge coupling should be given by

1

e2
=

e
3−p

2
φM2

P

2µ2
pVX |qΣp |2 . (2.11)
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The particle descending from the brane wrapped on Σp has mass squared given by

m2 = µ2
p e

p−3

2
φ V 2

Σp , (2.12)

where VΣp is the volume of the p-cycle. Finally, the ratio of the mass of the particle and

the gauge coupling reads
e2M2

P

m2
=

2VX |qΣp |2
V 2

Σp

. (2.13)

By imposing the WGC relation (2.1) as well as the FL bound (2.3) for a particle in 4d, we

have that
1

2
≤ e2M2

P

m2
.

MP

H
. (2.14)

Note that in order to have a particle in 4d we should wrap Dp-branes on p-cycles, where

p = 2, 3, 4 since we are working with CY manifolds. This means in turn that we are

implicitly working in type IIA, where D2- and D4-branes are present, or in type IIB with

D3-branes wrapped on 3-cycles.

Our goal now is to derive a geometric relation similar to the one displayed in eq. (2.13)

but for 0-forms. Hence, we slightly change our starting setup, and we consider the very

same cycle Σp wrapped this time by D(p − 1)-branes, i.e.

1

4κ2
10

∫

M4×X
e

4−p
2

φFp+1 ∧ ⋆Fp+1 + µp−1

∫

D(p−1) on Σp
Cp . (2.15)

Indeed, upon compactification on the CY X, we get the action of an axion in 4d. As before,

we can expand the (p + 1)-field strength and the p-form gauge potential in terms of the

basis as Fp+1 = F i
1 ∧ωi and Cp = θi ∧ωi, where the θi are our 0-forms. Using the definition

of integral charges in (2.7) and compactifying on X, we get in 4d

M2
P e

4−p
2

φ

4VX

∫

M4

KijF i
1 ∧ ⋆F j

1 + µp−1 qΣp

i θi . (2.16)

In order to consider again the right linear combination of fields, we further redefine the

field θ and its field strength F1 = dθ as θ = θiKijqΣp

j and F1 = F i
1KijqΣp

j . The 4d action

then reads
M2

P |qΣp |2 e
4−p

2
φ

4VX

∫

M4

F1 ∧ ⋆F1 + µp−1 |qΣp |2θ . (2.17)

After redefining the axionic field such that the final action is canonically normalized, we

have that

S4 ⊃ f2

2

∫

M4

F1 ∧ ⋆F1 + θ , (2.18)

where the kinetic term of the axion is multiplied by the decay constant f , which we defined

to be

f2 =
e

4−p
2

φM2
P

2µ2
p−1VX |qΣp |2 . (2.19)

For an axion, the mass is replaced by the instanton action S coming from the wrapped

D(p − 1)-brane as

S2 = µ2
(p−1) e

p−4

2
φ V 2

Σp . (2.20)

– 6 –
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Finally, we arrive at the expression for Sf in terms of purely geometric quantities, namely

MP

Sf
=

√
2VX |qΣp |

VΣp
. (2.21)

Note that the r.h.s. is the same geometric ratio that we found previously for a particle (cf.

eq. (2.13)). For p = 2, 4, this computation is valid in type IIB, while for p = 3 we are

working in type IIA.

The main point of our computation is the following: the bound (2.14) is actually a

bound on geometrical quantities and does not contain any information on the starting 10d

theory, namely
1

2
≤ 2VX |qΣp |2

V 2
Σp

.
MP

H
. (2.22)

Therefore, as long as the cycle is the same, we are entitled to apply these bounds on the

axion as well, as we managed to express the quantity Sf in the same language as the

particle. This finally leads to the relation

1√
2

≤ MP

Sf
.

√

MP

H
, (2.23)

where the lower bound is the usual WGC bound for an axion coming from dimensional

reduction, while the upper bound is the new FL bound for axions.

Note again that our derivation does not rely on T-duality, but only on the fact that

both the relation for the particle and the one for the axion can be expressed in terms of

the same quantities of the CY manifold.

2.2 Convex shell — WGC and aFL

Having found the bound for a single axion from dimensional reduction, it would be inter-

esting to extend it to a setup where multiple axions are present, as was put forward for

the WGC [34]. Therefore, we consider a theory with N canonically-normalized axion fields

φi, i = 1, . . . , N , such that their kinetic terms are given in the canonical form. Then, the

potential takes the form

V ∼
∑

a

Aae−Sa cos

(

∑

i

φi

fai

)

, (2.24)

where the index a runs over the number of instantons contributing to the action. The

analogue of the charge-to-mass ratio vectors is [34]

za = (za)i ui =
MP

faiSa
ui , (2.25)

where the ui form an orthonormal basis of the vector space. The WGC translates into

the requirement that the convex hull spanned by the vectors za should contain the N -

dimensional unit ball, i.e.

||za|| ≡ √
za · za > 1 . (2.26)

– 7 –
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The generalization to multi-U(1)s of the FL bound puts an upper bound on every

vector. Consider a U(1)N gauge theory. We denote the gauge fields with i = 1, .., N . Let

the theory have M species of charged particles with masses ma, a = 1, .., M and coupling

eai ≡ (ea)i to the i-th U(1). The multi-U(1) version of the (dipole version of the) FL bound

states [23]5

m2
a ≫

∑

i

||ea||2 HMP . (2.27)

By defining the charge-to-mass ratio vector of the a-th particle as za =(za)iu
i ≡
(

eiaMP
ma

)

u
i,

we can rewrite (2.27) as:

||za|| <

√

MP

H
. (2.28)

Hence, from (2.23), we get a window of allowed values for every vector norm, namely

1 < ||za|| <

√

MP

H
. (2.29)

From the derivation of the previous section, this holds also for a theory with many axions,

where za is now given by (2.25). Note that the relation in (2.29) means that not only the

vectors should stay outside the extremal region constrained by the WGC, but also they

should lie inside the bound originating from all the za of the theory.

The danger then exists that if the allowed window inside the shell is very thin, the

WGC convex hull will be unable to satisfy the aFL bound (see figure 1). In particular,

in presence of N axions and considering the ‘largest’ elementary axionic charge, i.e. an

instanton given by a vector z
largest
a such that z

largest
a · ui = MP /(faSa) ∀i = 1 . . . N , we

have that ||zlargest
a || =

√
NMP /(faSa). We then find that generically we must have

N

f2
a S2

a

<
1

MP H
, (2.30)

which produces a bound on the number of allowed axions. For this bound to be very

constraining, we need to have a mild hierarchy between H and MP . Since z
largest
a must

obey the WGC, faSa < MP , it then follows that

N <
MP

H
, (2.31)

independently of the specific fa and Sa of the largest elementary axionic charge. However,

depending on the value of fa and Sa, (2.30) may be a significantly stronger constraint

than (2.31).

5This is the simplest version where the U(1)N gauge fields are not mixed. More generally, if the kinetic

term for the gauge fields is Lkin = 1

4
uijF i

µνF j µν , the bound is m2

a ≫ qiaqja(u−1)ij HMP for a particle with

charge qia under the i-th U(1).

– 8 –
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aFL

WGC

z1

z2

z1

z2

Figure 1. Convex shell: allowed axionic states should lay inside the red area, between the inner

(WGC) and the outer (aFL) circle. On the left, the charge vectors satisfy both conjectures, while

on the right we have a violation of the aFL bound. Indeed, charge vectors need to be big enough for

all extremal dyonic black holes (inner circle) to decay, so that the black dotted line lies outside the

circle. If we also impose aFL and in a situation where the outer shell is very thin, having very big

charge vectors could violate the aFL bound. In the right-hand side plot, the basis charge vectors

barely satisfy aFL while the (1, 1) charge vector violates it.

2.3 Axionic black holes, frustrated strings and (no) big crunch

Let us consider a black hole with non-vanishing b =
∫

B2 charge, where the integral is over

any non-trivial 2-sphere homotopic to the horizon. Such axionic black hole is described by a

Schwarzschild solution [35] and the axionic charge b carries no energy since the field strength

H3 = dB2 vanishes. Hence, if the black hole has fixed mass, it can carry arbitrary axionic

charge. We want to consider now what happens if the axionic black hole starts to shrink

via Hawking evaporation. Indeed, the black hole evaporates maintaining a constant axionic

charge. However, if the evaporation goes through all the way down to flat space, also the

sphere encircled by the Wilson line has shrunk to zero size. Clearly, this is a contradiction,

and we need a way to discharge the black hole before it is completely evaporated away.

To do so, we consider light strings ‘lassoing’ the black hole [36], which couple to the

field b and generate an effective potential for the axion.6 Calling the string tension σ, as

long as the radius r of the black hole is larger than 1/
√

σ, the strings are irrelevant and

Hawking evaporation proceeds as usual. Once r = rb ∼ 1/
√

σ, the coupling of the strings

to b becomes sizable and in turn generates a potential for b driving the axion dynamically

to zero. This b-gradient thus forms a strong field strength H3 in the near-horizon region of

the black hole, which can decay by nucleating strings charged under B2 in analogy to the

Schwinger decay of a Maxwell electric field. In other words, when the black hole reaches a

critical radius rb ∼ 1/
√

σ, the building up near-horizon field strength H3 starts to decay into

strings until it completely disappears. This process is expected to be almost instantaneous.

6This can also be seen as an argument coming from requiring the absence of global symmetries in a

theory of quantum gravity [18].
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The outcome of this discharging process is that we have a massive production of strings,

which do not have much time to propagate and their effect is limited to a ball of radius rb.

However, if rb is very close to the Nariai black hole horizon size, we need to check if this

string cloud provoke a big crunch singularity, as seen in [22].

In order to understand the effects of string production, we should consider the equation

of state of these light cosmic strings emitted by the axionic black hole. As we assume that

they get instantaneously and massively produced, we approximate their behavior by a

frustrated string network, with equation of state p = −ρ/3 [37]. Then, we can follow the

steps of [22] and study how adiabatic black hole discharging via string production would

affect the fate of a Hubble patch. Let us assume that the string network can be represented

as a uniform fluid and consider the FRW open slicing parametrization where the spacetime

is represented as (R2 × S2):

ds2 =
1

r
(dt2 − a(t)2dX2) + r2dΩ2 , (2.32)

where r is the black hole radius. The energy conservation equation related to the frustrated

string fluid is given by

ρ̇ = ρ

(

2
ṙ

r
+

2

3

ȧ

a

)

implying ρ(t) =
ρ0

r2a2/3(t)
. (2.33)

The Friedmann equations for the scale factors a and s ≡ r2 are

s̈ = − 1√
s

(

1 − 3s − ρ0

a2/3

)

,

ä

a
=

1

2 s3/2
(1 + 3s) .

(2.34)

Integrating the first equation and also approximating ρ0/a2/3 ∼ ρ0 as we are mainly inter-

ested in the very beginning of the evolution (and we can fix a(0) = 1), we find

1

2
(ṡ)2 + V (s) = 0 where V (s) = 2

√
s(1 − s − ρ0) = 0 . (2.35)

We see that the maximum of V (s) is located at s = (1 − ρ0)/3 < 1/3. As the size of

the 2-sphere for a neutral Nariai black hole is s = 1/3, we see that V (s) will drive the

remnant of the Nariai branch away from the singularity (we are assuming that the black

hole evaporates instantaneously into strings) so no big crunch is expected to happen.

We can therefore conclude that the de Sitter black hole arguments leading to the FL

conjecture for U(1) charged particles do not seem to have an obvious analog for axions.

For this reason, no ‘pure’ aFL can be constructed and the only FL constraints affecting

axionic fields descend from dimensional reduction and duality, just as this is the case for

the axionic WGC.

2.4 Euclidean wormholes

In de Sitter space we expect the Hubble scale to give an IR cut-off for wormholes. Following

along the lines of the analysis for Euclidean AdS wormholes [38, 39], one can see that in
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Euclidean de Sitter space with de Sitter length ldS one can find a wormhole geometry

ds2 =

(

1 − τ2

l2dS

+
c

12
τ−4

)−1

dτ2 + τ2dω2 , (2.36)

where τ is the radial direction and dω2 the metric on a three-sphere. This geometry has a

smooth wormhole throat when c < 0. We consider this regime and set c = −|c|. We now

see that

(

1 − τ2

l2
dS

− |c|
12τ−4

)

has two physically relevant zeroes, one where the wormhole

throat sits and one due to the maximal size of de Sitter. The two zeroes coincide when

|c| =
16

9
l4dS . (2.37)

So when |c| > 16
9 l4dS the wormhole is ‘too big to fit’ and we obtain an upper bound on

wormhole size. This is a more geometrically precise version of the statement that the

wormhole neck, the radius r0 ∼ c1/4 where the wormhole is at its narrowest, should fit

inside a Hubble patch,

r0 < 1/H . (2.38)

The preceding provides a purely geometrical IR cut-off for wormholes in de Sitter space. For

Giddings-Strominger axion wormholes [40], r0 depends on f . Therefore, aFL will provide

an alternative IR cut-off for axion wormholes. We will derive this cut-off using the flat-

space expressions for the Euclidean wormhole geometries as an approximation. We will see

a posteriori that this approximation is justified.

With the notation of [41], control on semiclassical gravity requires the neck radius to

be large enough, i.e.

r0 =

√

1

2
√

6π2fMP

>
1

MP
. (2.39)

We now cast eq. (2.23) as a constraint on f as

S√
2MP

≤ 1

f
≤ S√

MP H
, (2.40)

and substitute r0 for f via eq. (2.39) to obtain

√
S

2(31/4)πMP
≤ r0 ≤

√
S

23/431/4πM
3/4
P H1/4

. (2.41)

We see that, barring a very large S, this provides an IR-cutoff for r0 at a far shorter

length scale than eq. (2.38). Then, aFL implies that the largest axionic wormholes allowed

in de Sitter space are sufficiently small that they can effectively be treated as flat space

wormholes, justifying our approximation as promised.

We saw that there exists a largest geometrically allowed wormhole in de Sitter, with

|c| given by eq. (2.37). One can think of this as the wormhole analogue of the Nariai black

hole. As the particle version of FL is derived from considering the decay of charged Nariai

black holes, it is tempting to hope that one could derive aFL using this ‘Nariai wormhole’.

However, one is faced with several issues which we believe make this approach not viable.
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First, since aFL implies via eq. (2.41) an IR cut-off for wormholes at shorter length

scales than the ‘Nariai wormhole’, aFL implies that ‘Nariai wormholes’ cannot exist, and

it is unclear how considering the decay of such a wormhole could lead to aFL.

Second, conceptually, the wormhole is a Euclidean instantonic object. Given the lack

of a time direction it is unclear what we would mean by the wormhole decaying so rapidly

that there would be a crunch-like singularity.

Third, the objects that would discharge an axionically charged wormhole would be

strings, analogously to how charged particles discharged the charged Nariai black hole

through the Schwinger process. One may argue that for sufficiently light strings compared

to the H3-flux of the wormhole, their production is unsuppressed. However, as in section 2.3

the fundamental issue remains that the equation of state of frustrated string networks does

not drive one towards a big crunch.

One way in which one might be able to argue for aFL from wormholes is if one can

provide an independent argument why large wormholes, in the sense that

r0 >
√

S/23/431/4πM
3/4
P H1/4, are not allowed to exist tout court. However, we are not

aware of an independent argument for this.

3 Phenomenological implications

We can apply our findings to make phenomenological predictions on inflationary models

concerning axions as inflatons. Note that the very high quasi-cosmological constant during

high-scale inflation imposes an electromagnetic FL bound on the SM charged matter states

which all of them violate drastically. One possible way around this consists of assuming

a so-called portal coupling of the SM Higgs h to the SM-neutral inflaton φ [42]. This

coupling ghφφ2h2 with ghφ < 0 induces a very large EW symmetry breaking Higgs VEV

during inflation, thus providing an avenue to render the whole SM matter spectrum massive

enough to satisfy the FL bound. There will be bounds on the size of |ghφ| < 1 such that

this portal coupling does not affect the inflationary dynamics too strongly via radiative

corrections. We leave details and an analysis of the potentially interesting phenomenology

of this solution for the future.

In what follows, we focus on axion monodromy inflation [14, 15] and blow-up infla-

tion [27], and we derive implications coming from imposing the window required by the FL

bound and the WGC. Finally, we also show how the aFL bound implies a lower bound on

the kinetic mixing parameter for the axion-photon coupling.

3.1 Axion monodromy inflation

Monodromy in the axion potential is generated when non-perturbative effects such as

branes introduce non-periodic terms on top of the harmonic ones. The periodic part is

dominant for small vacuum expectation values of the inflation, while it gets exponentially

suppressed at large volume, and the monodromy term takes over on large field displace-

ments. We can consider the following inflationary potential

V (φ) = µ4−pφp + Λ4 cos

(

φ

f

)

where p ≤ 2 , (3.1)
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where the first terms represents the monodromy-induced potential with p ≤ 2 while the

second term comes from instanton corrections at a scale Λ4. The resonant non-Gaussianities

arising from this model are [43]:

f res
NL =

3
√

2π

8
b∗ω∗3/2 , (3.2)

where ∗ denotes evaluation at horizon exit, ω∗ =
√

2ǫ∗MP /f is the resonance frequency,

b∗ is a parameter measuring the instanton generated wiggles intensity in the inflationary

potential,

b∗ =
Λ4

p fµ4−p(φ∗)p−1
, (3.3)

and ǫ is the slow-roll parameter derived from the monodromy potential only. Indeed, to

match the experimental constraints on the power spectrum of density perturbation, the

oscillating part of the potential must be highly suppressed at the pivot scale. The mono-

tonicity of the potential and the consistency with observational constraints require b∗ ≪ 1

for p ≥ 1 but this condition is believed to hold in the more general case we consider. To

get the range of admissible values for f res
NL for each value of p, we remove a model degree

of freedom imposing COBE normalization (i.e. fixing the size of the curvature perturba-

tions) as
√

Ps(N∗) ≃ 1

10π

√

4

3

VΛ=0(φ∗)

ǫ∗M4
P

≃ 2 × 10−5 . (3.4)

Moreover, the wiggles in the potential cannot significantly affect the number of e-folding N

unless a massive parameter fine-tuning is performed; therefore, as experimental constraints

require 40 < N < 60, we fix N = 50 when Λ = 0, thus removing another degree of freedom

from the model. This way, we uniquely identify µ and the value of φ∗. We stress that our

results do not significantly change when choosing other N values within the allowed range.

Using the upper and lower bounds in (2.23), also imposing the relation Λ4 = e−S , we get

to the theoretically allowed window for b∗ and f res
NL, WGC and aFL providing the lower

and upper bound respectively. We plot these results in figure 2. Finally, requiring that the

lower bound on b∗ coming from WGC is not in contrast with the condition b∗ ≪ 1 sets a

lower bound on the instanton action S & 25. It can be easily checked that this relation is

almost insensitive to the value of p.

3.2 Constraints on string compactifications and blow-up inflation

Now, let us focus on the geometric relation coming from dimensional reduction (2.22).

Then, we see that only the following volume relations among internal cycles are allowed:

√

H

MP
.

VΣ√
VX |qΣ| =

VΣ
√

qΣ
i KijqΣ

j

. 2 , (3.5)

where Kij = VXKij is the inverse Käheler metric. It is easy to see that FL is pointing

towards a preference for low scales, as in high scale inflation models the window of allowed

values for Sf gets narrow. This window should be valid during all the stages of the EFT,
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which induces a bound on the tensor-to-scalar ratio, being r = 16ǫ. The typical overall

volumes considered in Kähler moduli inflation are VX ∼ 106 implying ǫ∗ < 3 · 10−6 and

r < 5 · 10−5.

3.3 Axion-photon coupling from kinetic mixing

In gauge theories containing more than one U(1), it is possible to have kinetic mixing

terms between different U(1) gauge fields [46–48]. The consequence of kinetic mixing is

that matter fields charged under some U(1) also acquire a charge under another U(1) which

is proportional to the kinetic mixing parameter. In the context of type II models, kinetic

mixing gets naturally generated in the effective Lagrangian by one-loop effects [49] when

massive modes coupled to different U(1)s are integrated out. In order to understand the

aFL conjecture induced bounds on the kinetic mixing parameter, we start by summarizing

how to derive gauge kinetic functions and their dependence on moduli fields. Applications

of the original FL bound on systems containing U(1) kinetic mixing between visible and

hidden sectors can be found in [50].

Let us consider the DBI action (with the B-field set to zero) for a D7-brane wrapping

a 4-cycle Σ4. Expanding the action in powers of the gauge field strength, we get

SDBI = −
∫

M4×Σ4

d8ξ e−φ√−g

(2π)7(α′)4

(

1 +
(2πα′)2

4
GµνGµν

)

. (3.9)

By using the definition of the Kähler modulus in Einstein frame, i.e.

Re(T ) =
e−φ

(2π)4(α′)2

∫

Σ4

√
gΣ4 ≡ τ , (3.10)

we get, upon dimensional reduction on Σ4,

S = − τ

4(2π)

∫

M4

G ∧ ⋆G . (3.11)

Hence, we get the 4d effective action

S = − 1

2g2
h

∫

M4

G ∧ ⋆G for g2
h =

4π

τ
, (3.12)

where ‘h’ stands for hidden, as we assume this theory lives in the hidden sector.

Consider an effective Lagrangian describing two U(1) gauge fields. The electromagnetic

field strength F is located in the visible (‘v’) sector, while the other field strength G lives

in the hidden (‘h’) sector. The visible sector axion plays the role of the QCD axion while

the hidden sector axion a is a closed string axion. Omitting the part for the QCD axion,

such a Lagrangian reads [49, 51, 52]

L ⊃ − 1

2g2
v

F ′ ∧ ⋆F ′ − 1

2g2
h

G′ ∧ ⋆G′ +
χ

gvgh

F ′ ∧ ⋆G′ − a′

8π2
G′ ∧ G′ . (3.13)

We should manipulate this Lagrangian in order to recover the canonically normalized form.

First, we redefine F = (
√

2/gv)F ′, G = (
√

2/gh)G′ and by requiring the canonical form for
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the axionic kinetic term we have a = a′f . By further substituting g2
h = 4π

τ (cf. (3.12)), and

using the relation τ = SN/2π coming from N branes wrapping the cycle with volume τ

generating the instanton acion S, eq. (3.13) becomes

L ⊃ −1

4
F ∧ ⋆F − 1

4
G ∧ ⋆G +

χ

2
F ∧ ⋆G − a

SfN
G ∧ G , (3.14)

where N is the number of branes wrapping the cycle. Now, we have to diagonalize the

gauge kinetic terms via G = Ĝ + χF , finally obtaining

L ⊃ − 1

4

(

1 − χ2
)

F ∧ ⋆F − 1

4
Ĝ ∧ ⋆Ĝ

− a

NSf

(

Ĝ ∧ Ĝ + χĜ ∧ F + χF ∧ Ĝ + χ2F ∧ F
)

.
(3.15)

In particular, we see that a acquires a coupling to the ordinary photon of the form

L ⊃ −g a F ∧ F , (3.16)

where we have defined the coupling g ≡ χ2/(NSf). Note that [g] = M−1, and in the

experimental literature is given in GeV−1. Now, we can apply the aFL bound to g, i.e.

1

Sf
.

1√
MP H

⇒ g .
1

N

χ2

√
MP H

, (3.17)

which can also be read as

χ2 & Ng
√

HMP . (3.18)

This result strongly depends on the starting setup, mainly on the geometry of the internal

manifold. Also, we disregarded the contribution of the QCD axion and applied the single-

axion version of the aFL bound for ease of exposure. A specific implementation would

require detailed information about S and f of the instantons charged under both U(1)s

and make this constraint stronger.

The only parameter in eq. (3.18) which is specific to our brane set-up is the number

of branes N , which since it is integer obeys N ≥ 1. Much as we were only able to derive

aFL from particle FL for branes wrapping cycles in a CY three-fold but then conjectured

that aFL should hold generically in any consistent theory of quantum gravity, we will now

conjecture that in any consistent theory of quantum gravity the mixing angle between the

axion and the photon should obey

χ2 > O(1)g
√

HMP ∼ gV 1/4 , (3.19)

with some unknown O(1) factor. Given a specific model coming from string compactifica-

tion one may attempt a derivation analogous to the derivation of eq. (3.18) to obtain a

specific bound whose coefficient depends on the geometric data and may be much larger

than O(1).

Hence, from eq. (3.18) we are able to relate the value of the coupling with the mixing

angle. The quantity g is constrained by experiments to be g < 10−10 GeV−1 [53] (see
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also [54]). In order to estimate our bound, we use g ∼ 10−11 GeV−1 together with the Hubble

constant valued nowadays H0 ∼ 10−33 eV and N = 1. By plugging these values in (3.18),

we derive a lower bound on the mixing angle χ & 10−12. We point out that recently [55, 56]

proposed a value for the mixing angle from the cosmic birefringence detected by Planck [57]

which sits inside our bound.

Seen from another perspective, this bound is in tension with some proposals of kinetic

mixing from model building [58]. Note that smaller values for g relax this tension, while

N > 1 increases the lower bound for χ. To estimate the consequences of having smaller χ,

we can use a lower value from the most recent predictions, i.e. χ < 10−16, which in turn

from the aFL bound implies g . 10−20 GeV−1 (keeping N = 1).

4 Discussion

In this work, we provide an extension of the FL bound to fundamental axions, i.e. those

axions obtained via dimensional reduction of p-form gauge potentials of 10d type II string

theories. The original FL bound itself states a bound on the charge-to-mass ratio of particles

charged under an electromagnetic-type U(1) gauge theory in de Sitter space-time. This

bound originates from the fact that Schwinger pair production in the electric field of an

extremal charged Schwarzschild-de Sitter black hole of maximal size, an extremal charged

Nariai black hole, would induce a space-time crunch if the FL bound on the charge-to-mass

ratio were violated.

Our argument establishing an axionic Festina Lente (aFL) bound relies first on ex-

pressing the (dipole version of the) FL bound as a bound on the ratio of the internal

volume and the volume of the cycle supporting the gauge potential. Once this relation is

established, we show that it translates into the product of the decay constant f and the

instanton action S derived from the same cycle but wrapped by a different brane. This

allows us to conjecture that a fundamental axion in a consistent 4d EFT in a quasi-dS

background should satisfy

Sf &
√

MP H ∼ V 1/4 . (4.1)

Together with the axionic version of the WGC, it provides a window of allowed parameters,

as we show in figure 1 in the case of multiple axions.

Let us note in passing that eq. (4.1) is bounding from below the values of the decay

constant. Given that S > 1 for consistency, our bound is also stating that the limit f → 0

for a fundamental axion is not allowed in the EFT. As pointed out in [59, 60], for a

fundamental axion the point where the decay constant shrinks to zero corresponds to an

infinite volume limit, where the effective description breaks down and hence cannot be

reached in a consistent EFT. Hence, the aFL bound corroborates this statement, providing

a reason why such limits should not occur.

By construction, the bound applies in situations of quasi-dS spacetime, thus providing

interesting applications and consequences nowadays and during the inflationary epoch.

For the latter case, we studied the consequences of aFL on axion monodromy and blow-up

inflation. When both aFL and the WGC are taken into account, the parameter space for the
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amplitude and the frequency of periodic instanton corrections get constrained. We find that

the interplay between WGC and FL bounds constraints the range of allowed oscillatory

contributions to the CMB power spectrum and resonant non-Gaussianities. Instead, for

blow-up inflation the model constraints arise from the volumes ratio underlying WGC

and FL conjectures. We show that, for standard parameter values needed for this model

to work, the inflationary observables are out of reach of current experiments. Finally, we

apply the aFL bound to axion-photon coupling and find that the mixing angle is bounded

from below, ruling out a large portion of the parameter space currently used for model

building. Furthermore, recently proposed values for the mixing angle derived from CMB

constraints agree with our bound.

Given that the original FL bound [22, 23] was derived from charged black holes nearly

as big as the dS horizon, we tried to study similar situations for the case of axion charges

and their dual H3 field strengths. However, we saw that it is not possible to give a direct

derivation of aFL from the evaporation and subsequent discharge of axionically charged

black holes [35]. The crucial issue is that the string networks produced as the axionic

black hole discharges have equation of state w = −1/3, which does not result in spacetime

crunching and becoming singular. On the contrary, they help the accelerated expansion.7

Similarly, we were unable to directly derive aFL by considering axionically charged eu-

clidean wormholes.

It would be interesting to study whether experimental constraints on the current ac-

celerated expansion could put bounds on the amount of strings emitted or on the time

the black hole has to discharge, thus maybe allowing for a different and complementary

argument for our aFL bound. We leave these interesting questions for future work.
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