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Laser-driven microresonators have enabled
chip-integrated light sources with unique prop-
erties, including the self-organized formation of
ultrashort soliton pulses and frequency combs
(microcombs). While poised to impact ma-
jor photonic applications, such as spectroscopy,
sensing and optical data processing, microcombs
still necessitate complex scientific equipment to
achieve and maintain suitable single-pulse opera-
tion. Here, to address this challenge, we demon-
strate microresonators with programmable syn-
thetic reflection providing an injection-feedback to
the driving laser. When designed appropriately,
the synthetic reflection enables robust access to
self-injection-locked microcombs operating exclu-
sively in the single-soliton regime and with low-
threshold power. These results provide a route to
easily-operable microcombs for portable sensors,
autonomous navigation, or extreme-bandwidth
data processing and represent a novel paradigm
that can be generalized to other integrated pho-
tonic systems.

Laser-driven microresonators provide access to non-
linear optical phenomena, already with low-power
continuous-wave excitation [1]. Leveraging efficient non-
linear frequency conversion, they have enabled novel
sources of coherent laser radiation across broad spectral
span [2, 3]. Soliton microcombs[4–6] are an important
representative of such sources, providing frequency comb
spectra of mutually coherent laser lines, based on self-
organized dissipative Kerr solitons (DKSs) in resonators
with anomalous dispersion [7]. Such DKS microcombs can
be integrated on photonic chips [8, 9] and have demon-
strated their disruptive potential in many emerging and
ground-breaking applications, e.g. high-throughput opti-
cal data transmission [10] reaching Pbit-per-second data
rates [11], ultrafast laser ranging [12, 13], precision as-
tronomy in support of exo-planet searches [14, 15], high-
acquisition rate dual-comb spectroscopy [16], ultra-low
noise microwave photonics [17, 18], photonic computing
and all-optical neural networks [19–21]. To leverage mi-
crocomb technology in out-of-lab applications, it is critical

to reliably access the DKS regime and ideally single-DKS
operation [22], ensuring well-defined temporal and spec-
tral characteristics. While routine in research laborato-
ries, achieving such a state outside such environments is
challenging.

A critical challenge lays in the initiation and sustained
operation of DKS, requiring the detuning ∆ω0 = ω0 − ωp

of the pump laser ωp (with respect to the pumped res-
onance ω0) to be controlled and stabilized. While this is
common to all resonant approaches, it is particularly chal-
lenging during DKS initiation, when thermo-optic effects
can cause a rapid (∼ µs) change in resonance frequency
[4]. To overcome this challenge, a number of methods
have been developed, involving rapid laser actuation [4,
8], auxiliary lasers [23] and/or auxiliary resonances [24,
25], laser modulation [26], additional nonlinearities [27–29]
or, pulsed driving [30]. Many of these methods are now
routinely used in research. However, they cannot easily be
transferred to out-of-the-lab scenarios, as they require sig-
nificant experimental skills and scientific instrumentation.
In contrast, self-injection locking (SIL) [31–33], has been
demonstrated as an approach that can intrinsically follow
the rapid changes in resonance frequency and elegantly
stabilize the laser detuning for stable DKS operation[17,
34–38]. Usually, SIL is based on Rayleigh backscatter-
ing from random fabrication imperfections or material de-
fects in the microresonator [39]. The backscattered wave
provides feedback (injection) to the driving diode laser
and effectively locks the laser frequency to the microres-
onator. However, backscattering random defects are nei-
ther wanted nor can they yield predictable sample charac-
teristics. Relying on random defects is also fundamentally
incompatible with the intense efforts towards improved
materials and fabrication techniques (targeting material
absorption limited performance with negligible scattering
similar to optical fiber technology). Already now, fabrica-
tion techniques have advanced to a level, where identifying
samples with accidental scattering suitable for SIL-based
DKS often requires careful and tedious screening.

In this work, we demonstrate SIL and robust access to
self-injection locked DKS microcombs without relying on
random resonator defects. Instead of random backscatter-
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MI) pump power, as detailed in the Supplemental Infor-
mation (SI). Below this threshold DKS cannot form inside
the resonator, without external stimuli (such as triggering
pulses [7]). The threshold power is different from that in
a conventional ring resonator and its derivation critically
requires consideration of the backward wave. For strong
forward-backward coupling (2γ/κ > 1), the following ap-
proximation is derived (cf. SI):

f2
th = 4

γ

κ
+

κ

γ
(1)

where f =
√

8ηω0cn2P/(κ2n2Veff) is the normalized
pump power, with the coupling coefficient η = 1/2 (criti-
cal coupling), ω0 the resonance frequency of the pumped
mode, c the speed of light, P the input pump power, n
the refractive index, n2 the nonlinear refractive index and
Veff the effective mode volume. The value of f2

th must not
exceed the available pump power f2. If the MI threshold
is reached at a detuning within the DKS existence range,
then the MI state may be only transient and DKS can
form spontaneously [41]. In both conventional and pump
mode-shifted resonators the DKS regime overlaps with the
MI regime and extends further towards larger detunings
ζ0.
Third, with regard to practical applications single-DKS

states, as opposed to states with multiple solitons, are
highly desirable owing to their smooth squared hyperbolic
secant spectral envelope and well-defined temporal out-
put. In their formation process, DKS are seeded by MI,
where the separation of the first pair of sidebands from the
pump laser in units of the resonator’s FSR determines the
number of generated DKS [4, 41, 47]. A conservative cri-
terion that guarantees single-DKS formation (i.e. modu-
lation instability sidebands separated from the pump laser
by 1 FSR) is derived in the SI:

γ

κ
>

f2

8
(2)

The presented considerations can inform the design of
a suitable PhCR for SIL-based DKS.
In preparation of the experiments, a range of critically

coupled resonators with varying corrugation amplitude
and a free-spectral range (FSR) of 300 GHz (radius 75 µm)
are fabricated in a commercial foundry process (Ligentec).
We characterize the fabricated resonators via frequency
comb-calibrated laser scans [50], permitting to retrieve the
coupling rates γ, the resonance widths κ, and the disper-
sion D2, over a broad spectral bandwidth. An example
is shown in Fig. 2a, where indeed the forward-backward
coupling is random and 2γ/κ ≪ 1 for most resonances. In
marked contrast, a single pre-defined resonance to which
the PhCR’s corrugation is matched, exhibits significant
forward-backward coupling. Fig. 2b shows the dependence
of γ and the Q-factor (Q = ω0/κ) on the corrugation am-
plitude. No noticeable degradation of the Q factor is ob-
served up to γ . 5 GHz, and critically coupled linewidth
are κ

2π
≈ 120 MHz; even for large coupling γ ≈ 45 GHz ,

the Q-factor is only halved. For the experiments, a semi-
conductor distributed feedback laser diode (DFB) is butt-
coupled to a waveguide on the photonic chip, permitting
an estimated on-chip pump power of P = 30 mW, cor-
responding to f2

≈ 9. From Eqs. 1 and 2, we obtain
an ideal 2γ/κ ∈ (2.26, 4.26), ensuring MI-based sponta-
neous comb initiation and deterministic generation of sin-
gle DKS. Based on these considerations we choose a PhCR
with a synthetic coupling for the pump mode at 1557 nm of
2γ/κ ≈ 4.2 ( γ

2π
≈ 250 MHz), within the ideal range. This

PhCR is critically coupled and exhibits anomalous group
velocity dispersion (D2 ≈ 8 MHz). As shown for those val-
ues in Fig. 1c, numeric simulation confirms that the DKS
existence and SIL ranges have significant overlap. We note
that another band of DKS existence may exist [49], how-
ever, it is inaccessible for spontaneous MI-assisted comb
initiation and not considered here. The DFB pump laser
diode is mounted on a piezo translation stage to adjust
the injection phase [33], an actuator which can readily be
achieved through on-chip heaters [38]; to reduce the de-
vice footprint and allow for more resonators on the chip,
we have omitted this feature. The transmitted light is
collected by a lensed-fiber for further analysis as shown in
Fig. 2f.

In a first experiment, we validate the basic SIL dynamics
below parametric threshold at a coupled pump power of
25 mW (f2 = 7.3). As long as the laser diode does not re-
ceive a resonant injection from the microresonator it is free
running. When the laser’s emission wavelength is tuned
(via its drive current) close to the lower-frequency pump
resonance, a strong resonant backward wave is generated,
providing frequency-selective optical feedback resulting in
SIL. The SIL regime manifests itself as a rectangular-
shaped dip in the transmission signal and, after optimiz-
ing the injection phase, extends over a wide range of elec-
trical drive current values. The optical spectrum of the
DFB laser in the SIL regime is shown in Fig. 2e, show-
ing a single-mode suppression ratio (SMSR) >60 dB. The
beatnote of the SIL laser with a table-top low-noise CW
laser is shown in Fig. 2d. In addition, we record the SIL-
laser phase noise (Fig. 2c), which is drastically lower than
that of the free-running DFB laser diode outside the SIL
regime.

In a second experiment, utilizing the same setup as
in Fig. 2f, we explore DKS-based microcomb generation
with the full available pump power (30 mW, f2

≈ 9).
Similar to the previous lower power SIL experiment, we
slowly (within ca. 10 s) tune the DFB’s electrical drive
current to scan the emission wavelength across the lower
frequency pump resonance, with increasing and then de-
creasing wavelength. During this scan we monitor the op-
tical spectrum in transmission. We note that the exact
tuning curve in the nonlinear SIL regime when increasing
(decreasing) the DFB pump current follows a nontrivial
behavior that may include non-monotonic sections [37];
the scan outside the SIL range is however monotonic in
frequency. Upon entering the SIL regime (again marked
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being microresonator FSR and second-order dispersion respec-
tively). The third term in each equation corresponds to the
cross-phase modulation by the respective counter-propagating
waves, while the fourth term represents the coupling between
forward and backward propagating waves. Instead of modeling
the SIL dynamics by including laser rate equations, we numer-
ically define the detuning. This approach cannot describe the
abrupt transition from the free-running laser to the SIL state,
it remains however valid for the specified detuning and can
qualitatively capture the features observed in the experiment.
Simulation parameters similar to those of the experimental sys-
tem are used.
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1 Coupled mode equations and pump mode hybridization

The normalized coupled mode equations (CMEs) for the pump in forward and backward directions read

∂ta0 = −(1 + iζ0)a0 + i|a0|2a0 + 2i|b0|2a0 + iβb0 + f (1)

∂tb0 = −(1 + iζ0)b0 + i|b0|2b0 + 2i|a0|2b0 + iβa0 (2)

where for convenience the normalized coupling rate β = 2γ/κ ≥ 0 has been introduced. Without loss of generality, f ≥ 0.

The coefficient matrix of the system of equations (without the pump)

M =

(

−(1 + iζ0) + i|a0|2 + 2i|b0|2 iβ
iβ −(1 + iζ0) + i|b0|2 + 2i|a0|2

)

(3)

has the following Eigenvalues

λ± = −



1 + iζ0 −
3

2
i(|a0|2 + |b0|2)± i

√

β2 +

(

1

2
(|a0|2 − |b0|2)

)2



 (4)

= −
(

1 + i(ζ0 − δζNL ±
√

β2 + δβ2
NL)

)

(5)

and is diagonalized in the following Eigenbasis of hybridized forward-backward modes






1

2
(|a0|2 − |b0|2)±

√

β2 +

(

1

2
(|a0|2 − |b0|2)

)2

; −β







(6)

=

{

δβNL ±
√

β2 + δβ2
NL; −β

}

(7)

where δβNL = 1

2
(|a0|2 − |b0|2) and δζNL = 3

2
(|a0|2 + |b0|2). The transformation matrices are:

T =

(

δβNL +
√

β2 + δβ2
NL δβNL −

√

β2 + δβ2
NL

−β −β

)

(8)

and

T−1 =







1

2
√

β2+δβ2

NL

δβNL−
√

β2+δβ2

NL

2β
√

β2+δβ2

NL

− 1

2
√

β2+δβ2

NL

−δβNL−
√

β2+δβ2

NL

2β
√

β2+δβ2

NL






(9)

so that
(

a0
b0

)

= T

(

a+
a−

)

(10)
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and

(

a+
a−

)

= T−1

(

a0
b0

)

(11)

where a± denote the (not specifically normalized) field amplitudes of the hybrid modes. The steady state equations for the
hybrid modes are

0 = −
(

1 + i(ζ0 − δζNL +
√

β2 + δβ2
NL)

)

a+ +
1

2
√

β2 + δβ2
NL

f (12)

0 = −
(

1 + i(ζ0 − δζNL −
√

β2 + δβ2
NL)

)

a− − 1

2
√

β2 + δβ2
NL

f (13)

In non-normalized units, the effective resonance frequencies of the hybridized modes are

ω±,eff = ω0 −
κ

2

(

δNL ±
√

β2 + δβ2
NL

)

(14)

2 Approximations for the forward pump mode under strong coupling

In what follows, it is assumed that

• the coupling is strong β > 1

• due to the strong coupling, the power levels in forward and backward directions are approximately equal |a0|2 = |b0|2. Note
that due to symmetry breaking [56] this is only valid up to a certain power level. We validated, by numeric integration of
the CMEs 1 and 2, that this approximation is valid.

• the detuning ζ0 is such that approximately only the lower frequency hybrid mode a− is driven, i.e. |a−| ≫ |a+|.

Under these assumptions,

a0 =

(

δβNL −
√

β2 + δβ2
NL

)

a− ≈ −βa− (15)

b0 = −βa− (16)

and in consequence

(1 + i(ζ0 − δζNL − β))a0 =
f

2
(17)

Multiplying each side of the equation with its complex conjugate results in

(1 + (ζ0 − δζNL − β)2)|a0|2 =
f2

4
(18)

An immediate insight is that the strong coupling between forward and backward waves limits the power in the forward (or
backward) wave to values of

|a0|2 ≤ f2/4 (19)

Expressing δζNL via the field amplitudes gives

(1 + (ζ0 − 3|a0|2 − β)2)|a0|2 =
f2

4
(20)

and for the detuning

ζ0,± = β + 3|a0|2 ±
√

f2

4|a0|2
− 1 (21)

where ζ0,+ corresponds to an effective red-detuning and ζ0,− to an effective blue-detuning with regard to the lower-frequency
hybrid mode a−.
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3 Threshold condition and first oscillating sideband

We consider two initially zero-power (except for vaccuum fluctuations) sidebands with mode number ±µ relative to the pumped
mode. Their CMEs are

∂ta+µ = −(1 + i(ζµ − 4|a0|2))a+µ + ia20a
∗
−µ (22)

∂ta
∗
−µ = −(1− i(ζµ − 4|a0|2))a∗−µ − ia∗20 a+µ (23)

where again |a0|2 ≈ |b0|2 was assumed and ζµ = 2

κ
(ω0 −ωp +

1

2
D2µ

2) = ζ0 +
D2

κ
µ2. The Eigenvalues of this set of equations are

λ± = −1±
√

|a0|4 − (ζµ − 4|a0|2)2 (24)

The parametric gain experienced by the two sidebands therefore is

G = κ

√

|a0|4 −
(

ζ0 +
D2

κ
µ2 − 4|a0|2

)2

(25)

At least a intracavity power of |a0|2 = 1 is required to reach threshold. With Eq. 19 it follows that for strong coupling the
threshold pump power f2 ≥ 4|a0| is at least four times the threshold power of a resonator without forward-backward coupling.

3.1 First oscillating sideband

The phase mismatch between the pump wave and the resonator modes can be quantified via their effective (including nonlinear
frequency shifts) detuning ζµ,eff from an equidistant D1-space frequency grid. A smaller ζµ,eff implies better phase matching.

ζµ,eff = ζ0 +
D2

κ
µ2 − 4|a0|2 (26)

= β − |a0|2 ±
√

f2

4|a0|2
− 1 +

D2

κ
µ2 (27)

For DKS the resonator is characterized by anomalous dispersion D2 > 0 (β ≫ D2/κ). It can therefore be guaranteed, that
the first generated sideband pair (best phase matching) will be µ± 1, if

β − |a0|2 −
√

f2

4|a0|2
− 1 > 0 (28)

Assuming |a0|2 ≤ f2/4 we find

β > f2/4 ⇔ γ/κ > f2/8 (29)

as a condition that guarantees that the first sideband pair will be generated at µ = ±1.

3.2 Threshold power

The threshold power fth is the power level where the parametric threshold G > κ can be reached. Inserting Eq. 21 for the
detuning into Eq. 25, we obtain for the threshold condition

|a0|4 −
(

β + 3|a0|2 ±
√

f2
th

4|a0|2
− 1 +

D2

κ
µ2 − 4|a0|2

)2

= 1 (30)

⇔|a0|4 − 1 =

(

β ±
√

f2
th

4|a0|2
− 1 +

D2

κ
µ2 − |a0|2

)2

(31)

Under the assumption that β − |a0|2 −
√

f2

th

4|a0|2
− 1 > 0 (condition for first oscillating sidebands µ = ±1), this results in

f2
th = 4|a0|2 + 4|a0|2

(

β − |a0|2 +
D2

κ
µ2 −

√

|a0|4 − 1

)2

, (|a0|4 > 1) (32)

This equation can be solved numerically. For example, β = 4 results in f2
th ≈ 8.4
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3.3 Threshold power assuming zero-effective detuning

A simplified threshold condition may be derived assuming that the threshold will be reached at zero effective detuning so that

ζ0 = β + 3|a0|2 and (33)

f2
th = 4|a0|2 (34)

In this case the threshold condition is

|a0|4 −
(

β + 3|a0|2 +
D2

κ
µ2 − 4|a0|2

)2

= 1 (35)

⇔ f4
th

16
−
(

β − 1

4
f2
th +

D2

κ
µ2

)2

= 1 (36)

⇔ f2
th =

2 + 2
(

β + D2

κ
µ2
)2

β + D2

κ
µ2

(37)

Assuming that β ≫ D2

κ
µ2 this simplifies to

f2
th ≈ 2 + 2β2

β
= 2β +

2

β
⇔ f2

th ≈ 4
γ

κ
+
κ

γ
(38)

For β = 4 we find f2
th = 8.5, almost equal to what is obtained through Eq. 32.

4 Pump mode hybridization above threshold

The derivations of Section 1 are only valid below threshold, where only the forward and backward pump mode are excited.
Above threshold, and in particular in presence of DKS, the effective frequencies of the hybrid mode resulting from the avoided
mode crossing of the coupled forward and backward modes are

ω±,eff =
1

2
(ωa,eff + ωb,eff) +

1

2

√

(ωa,eff − ωb,eff)2 + 4γ2 (39)

where ωa,eff and ωb,eff are the effective (i.e. taking nonlinear frequency shifts into account) resonance frequencies of the forward
and backward modes, respectively.

ωa,eff = ω0 −
κ

2

(

Re(F̂ [|ψa(θ)|2ψa(θ)]µ=0/a0) + 2
∑

η

|bη|2
)

(40)

ωb,eff = ω0 −
κ

2

(

Re(F̂ [|ψb(θ)|2ψb(θ)]µ=0/b0) + 2
∑

η

|aη|2
)

(41)

(42)

where ψa(θ) = F̂−1[aµ] and ψb(θ) = F̂−1[bµ] are the spatio-temporal field profiles and F̂ [ . ]0 stands for the component
corresponding to the pump mode (F̂ denotes the Fourier transform).

5 Comb generation in the backward direction

Due to the initially similar power-levels in forward and backward pump modes, combs may in principle not only be generated
in the forward, but also in the backward direction. Indeed, when the pump laser detuning is between the (effective) resonance
frequencies of the hybridized modes, the backward-wave is usually stronger (despite the forward-pumping). For the parameters
considered in this work, we found that this range of detuning does not overlap with the soliton existence range and backward
combs were not observed. However, backward combs represent an interesting opportunity for additional research. Aside from
backward comb generation we note, that backward modulation instability, can trigger forward modulation instability (and comb
generation) and vice versa, through a non-zero forward-backward coupling of the modulation instability sidebands. This can
readily be included in the numeric model by introducing non-zero γ also for modes with µ 6= 0.
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