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ABSTRACT

X-ray free electron laser experiments have brought unique capabilities and opened new directions in research, such as creating new states of
matter or directly measuring atomic motion. One such area is the ability to use finely spaced sets of coherent x-ray pulses to be compared
after scattering from a dynamic system at different times. This enables the study of fluctuations in many-body quantum systems at the level
of the ultrafast pulse durations, but this method has been limited to a select number of examples and required complex and advanced analyt-
ical tools. By applying a new methodology to this problem, we have made qualitative advances in three separate areas that will likely also find
application to new fields. As compared to the “droplet-type” models, which typically are used to estimate the photon distributions on pixe-
lated detectors to obtain the coherent x-ray speckle patterns, our algorithm achieves an order of magnitude speedup on CPU hardware and
two orders of magnitude improvement on GPU hardware. We also find that it retains accuracy in low-contrast conditions, which is the typi-
cal regime for many experiments in structural dynamics. Finally, it can predict photon distributions in high average-intensity applications, a
regime which up until now has not been accessible. Our artificial intelligence-assisted algorithm will enable a wider adoption of x-ray coher-
ence spectroscopies, by both automating previously challenging analyses and enabling new experiments that were not otherwise feasible with-
out the developments described in this work.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000161

I. INTRODUCTION

The construction and operation of x-ray free electron lasers

correlated in time to directly observe equilibrium dynamics of a given
system. This information on the thermal fluctuations can be related

(XFELs)' have enabled a great leap toward deeper understanding of
a diverse area of scientific research areas,” including planetary science,”
astrophysics,” medicine,” and molecular chemistry.'’ With the unprec-
edented brightness, short pulse duration, and x-ray wavelengths, new
states of matter can be created and studied,'’ while dynamics can be
monitored, and now controlled, on ultrafast timescales.

With the start of high repetition rate next-generation light sour-
ces, methods which have so far been challenging may become feasible,
such as resonant inelastic x-ray scattering at high time- and spectra-
resolution'” and x-ray photoemission spectroscopy.1 ' One such exam-
ple is x-ray photon correlation spectroscopy (XPCS),'™'® which uses
the spatial coherence of the x-ray beam to produce a scattering
“fingerprint” of the sample. This fingerprint, or speckle pattern, can be
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back to both the energetics and the interactions in the system. This is
typically measured by calculating the intensity-intensity autocorrela-
tion function g (g, t) and extracting the intermediate scattering func-
tion S(g, £) using the following equation:

§?(q.t) = 1+ AS(q. 1), (1)

where A is commonly known as the contrast factor and accounts for
properties of the beam. This allows the time correlation to be related
back to the physical properties of the system being studied.

Another benefit of these new machines is in their ability to pro-
duce finely spaced x-ray pulses with controllable delay, using x-ray
optics'” or special modes of the accelerator.'” These pulses enable
studies of spontaneous fluctuations at orders of magnitude faster
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timescales than what is possible using XPCS at x-ray synchrotron facil-
ities, with one key area of application being emergent phenomena in
quantum materials. We refer to this multi-pulse adding technique
here as x-ray photon fluctuation spectroscopy (XPFS).'” This is a
unique tool which differs from traditional pump-probe spectroscopy,
which detects the relaxation from a non-equilibrium state, by institut-
ing more of a “probe-probe” method, where fluctuations in the equi-
librium state can be measured directly by comparing how the system
changes between probe pulses. Here, one adds the pulses which are
too close together in time to be readout by the detector”’ and uses sta-
tistics of the coherent speckle”’ to compute the fluctuation spectra
using the contrast,””” i.e., the fast dynamical information of the sys-
tem can be distinguished by studying single photon fluctuations. Even
with the massive amount of photons per pulse, three things typically
result in a single photon detection process: the decrease in intensity
after the scattering process on a single pulse basis, the short pulse
duration, and the sometimes reduced intensity required to ensure exci-
tations are not produced in the sample.

In principle, if the discrete distribution of photon counts over the
detector can be accurately measured and enough samples averaged, it
is possible to determine the dynamical evolution the sample by com-
puting the speckle contrast C(q, ) as a function of delay-time ¢ and
momentum transfer g. The contrast is obtained by fitting a negative
binomial distribution”* parameterized by M = M(q,t) = &1~ and

) \ g
the average number of photons per pixel k, ie., P(k; k, M): !

P(k.F. M) :r,ffF?MAf) (;; f M)k(,; fM)M. @

Fitting this negative binomial distribution requires the extraction
of photon counts from raw detector images and works fairly well in
the hard x-ray regime and for large pixel size detectors.” *° In cases
where the pixels are small, or the energy of the x-rays is much lower,
this process can involve additional obstacles. One challenge is the
point spread function of a single photon can spread non-uniformly
over many pixels. This is especially true in the soft x-ray regime, where
there can be a large variability in the charge cloud size owing to vari-
able diffusion lengths within a pixel and low signal to noise ratios.
These effects have recently been shown to be corrected by a variational
droplet model called the Gaussian Greed Guess (GGG) droplet
model,”” which can fit the large variation in charge cloud radii to pro-
duce discrete images where each pixel contains the number of corre-
sponding photons.

While droplet-type models have been largely successful, there is
a need to increase the speed of these computational models as well
as to handle common scenarios, such as low signal-to-noise. A few
works have employed machine learning techniques to address some
of these outstanding challenges. For instance, the use of convolu-
tional neural networks to analyze XPCS data for well-resolved speck-
les has showed the denoising approaches can achieve significantly
better signal-to-noise statistics as well as estimations of key parame-
ters of interest.”” " Previous work has also considered the single-
photon analysis for hard x-ray detectors using machine learning.
One approach’’ has been to use a Tensorflow computational graph
with hand-crafted convolutional masks derived from an in-depth
study of photon physics at semiconductor junctions.’” This imple-
mentation is extremely fast, but does not apply to regimes where
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there may be a large number of photons per droplet. Another
method™ proposes a feed-forward neural network architecture,
based on a sliding prediction of 5 x 5 regions of the input image.
This was proposed for the photon map prediction task and is shown
to be applicable for hard x-ray, low count rate experiments.
However, additional factors such as noise, low photon energies, and
insufficient signal-to-noise ratios can cause limitations in this meth-
odology and thus obscure scientific results. Furthermore, in cases
where a higher intensity can be measured, the charge clouds can
quickly coalesce, making this problem intractable.

In this work, we expand the applicability of this ultrafast
method by demonstrating robust single-shot prediction using an
artificial intelligence (AI)-assisted algorithm in the soft x-ray regime
for data with relatively high average count-rates and significant
charge sharing. This is carried out using a fully convolutional neural
network (CNN) architecture,”* which we compare against the GGG
method, currently the best algorithm for soft x-ray analysis using
small pixel-size detectors.”” We find that we are able to access a new
phase space of measurement parameters that, until now, has not
been accessible in structural dynamics studies using the XPFS tech-
nique. Our algorithm enables a two order of magnitude speedup on
appropriate hardware, is relatively accurate for low contrast cases,
and is stable at higher intensities than the GGG algorithm. We first
describe the machine learning model and simulator used to train it,
specifying the architecture, how the model is trained, and the evalu-
ation metric used. This is followed by our main results, and the
three areas which were shown to return excellent results relative to
the current state-of-the-art models. Finally, we end with a discus-
sion of uncertainty quantification, and how one can judge the error
for different models.

Il. MODELING AND ANALYSIS APPROACH
A. Simulator description

One key issue in the development of supervised machine learning
algorithms is a robust simulator which can adequately describe the
data. To describe the simulator here, we denote an input XPFS frame
as x; € R*® and the corresponding output photon map as
pi € R3*>% The 3 x 3 reduction in dimensionality between x; and p;
is used to mimic the speckle oversampling factor that is typically used
in Linac Coherent Light Source (LCLS) experiments. The final calcula-
tions are performed on a 30 x 30 image to allow for the proper photon
events to be expressed per speckle.

The detector images and corresponding photon maps are simu-
lated according to the exact parameters described in Ref. 27, which
were tuned to mimic a previous experiment by matching the overall
pixel and droplet histogram. To simulate ground truth photon maps,
the following ranges were used: k € (0.025, 2.0) and C(q, t) € (0.1,
1.0). The relevant detector parameters are the probabilities (w;) and
sizes (o) of the photon charge clouds, the variance of the zero-mean
Gaussian background detector noise (o) and the total number of
analog-to-digital units (ADUs) per photon. These parameter values
are reproduced below in Table I and an example of a detector image/
photon map pair is shown in Fig. 1. For proper comparison, we used
the Gaussian Greedy Guess (GGG) algorithm with relevant parame-
ters which were optimized for these specific simulation parameters
described above.”’

9, 054302-2
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TABLE |. Simulation parameters used to generate detector images based on previ-
ous XPFS data collected by Seaberg et al. at the iron L-edge for magnetic
scattering.”

Number of pixels

per droplet 1 2 3 4 5 6
oG 010 025 035 045 055 0.60
w; 025 015 0.1 0.3 0.15  0.05

Photon ADU = 340 on=15ADU

B. Model architecture

In this problem, we seek a supervised machine learning model
which learns the functional mapping f : x;—p;, from Ny paired simu-
lated data points (x,-:mf, p,-:th). Specifically, given a raw detector
image, the output of the machine learning model is the predicted pho-
ton map. Later in the uncertainty quantification section, we add to this
approach by using an ensemble of machine learning models. In this
case, the output prediction is a median photon map and a standard
deviation photon map (Sec. I11 B).

In this case, the specific functional mapping was chosen to be a
U-Net neural network (Fig. 2), a fully convolutional autoencoder
architecture, which is characterized by having skip-connections
between different layers of resolution and has been shown to perform
well on various image segmentation tasks.” In the schematic in Fig. 2,
the architecture is outlined via successive “convolutional blocks.” Each
such convolutional block consists of two convolutional layers sequen-
tially applied to the input. After each convolution, we utilize batch nor-
malization”” to ensure robust optimization, followed by a Rectified
Linear Unit (ReLU) activation. The choice for using a fully convolu-
tional architecture was motivated by the insight that the important fea-
tures are expected to be local. The reason for this claim is that the
charge from a photon will only be able to diffuse to a small number of
neighboring pixels owing to large energy barriers across pixel bound-
aries.”” Therefore, to make a prediction for a given pixel, only a small
subset of the image is needed (generally no further than a pixel’s sec-
ond nearest neighbor). Furthermore, the point-spread-function of the
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photon does not really depend on the pixel location on the detector. In
addition, the fully convolutional architecture allows for variable input
sizes and therefore can be used to analyze larger regions of interest
(ROISs) on a given detector.

C. Training details and validation metrics

To train the model, we use the Frobenius norm between the pre-
dicted photon maps (P;) and the true photon maps (P;). This loss
function measures the mean squared deviation between the predicted
photon map and the true photon map, where the average is taken
both within a given frame (which contains N, pixels) and between
frames (Np) in the dataset. Here, we note that various loss functions
were considered for this problem during our numerical experiments.
In particular, we had experimented with the negative log-likelihood
loss in order to directly predict a mean and standard deviation for
each pixel. This would conform to the model referred to as a probabil-
istic neural network, which does not make an assumption of homosce-
dasticity. However, we found that the model optimization did not
converge well. We also observed a similar outcome when using an evi-
dential deep learning approach.”” Loss functions such as the L1,
Huber, and Frobenius norms gave good predictions in terms of valida-
tion performance for the contrast prediction. Additionally, we found
that framing the problem as a multi-class classification problem and
using the categorical cross-entropy loss gave comparable results.
However, ultimately, we opted against the latter procedure as it
required pre-specifying the total number of classes (i.e., the maximum
photon count) for the experiment and therefore imposed an un-
physical clipping operation for the data,

L(P,P) = i

Z

,
1P — Pijll5- 3)
1

J

The U-Net model is trained by minimizing L(P, P) with respect to
the model parameters. To train the neural network, we use the following
hyperparameters: Adaptive Moment Estimation (ADAM) algorithm for

optimization (8, = 0.9, 8, = 0.999)," batch size = 128, learning rate-
=0.001, and batch normalization. We used NVIDIA A100 GPU

FIG. 1. (a) An example of an XPFS detec-
tor image over a 90 x 90 pixelated detec-
tors. (b) Corresponding image of the
photon map produced by the simulator for
the detector image, plotted as the photon
distribution per speckle.
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Detector Image

Photon Map

FIG. 2. A schematic for the U-Net neural network developed here for single photon counting detection. The input is given by the 90 x 90 detector image with output shown of
the resultant 30 x 30 speckle photon map. Convolutional block layers are shown between the input and output images using the NN-SVG package.”

hardware with the Keras APL"" In addition, the input simulated detector
images were normalized by the photon ADU for the data (340 ADU).

We consider two primary regimes of count rates (k): low k,
which consists of data in the range (0.025, 0.2) and full-range k, which
consists of data in the range (0.025, 2.0). The first range is representa-
tive of data which can be analyzed by the GGG model in experiments,
while the second range encompasses the range of data previously col-
lected but not compatible with droplet-type models. We train models
for both regimes and denote them the low k model and the full-range
k model, respectively. Note, for some analyses we use the term high &,
which considers data only in the range (0.2, 2.0).

For the low k data, 100 000 training data points were simulated
based on the detector parameters in Table I and uniformly selecting k
in range (0.025, 0.2) and C(q,t) in the range (0.1, 1.0). Concretely,
each frame in the dataset samples a random value for k in range
(0.025, 0.2) and C(q, t) in range (0.1, 1.0). Then the photon popula-
tions are determined by sampling the negative binomial distribution
with the corresponding k and C(q, t) as parameters. Once the photon
populations are determined, they are randomly assigned to pixels
within a given frame. Therefore, the underlying photon distributions
will differ frame to frame. After the positions are determined, charge
smearing and noise is added according to Table I.

For the full-range k analysis, 300000 data points were used
for training with an equal proportion of data points coming from k
€ (0.025, 0.2), (1.0, 2.0), and (0.025, 2.0), respectively, with the C(q, t)
randomly chosen from the range (0.1, 1.0). This process can be con-
ceptualized as for a given frame, choosing a specific range with proba-
bility 1/3 and then choosing a specific k value from that range. This
approach was chosen to ensure good coverage within the full range of
k values.

For the validation and test datasets, a slightly different proce-
dure was chosen. Since our ultimate metric is contrast (and not nec-
essarily the mean squared deviation of the predicted photon map),
our validation and test data are carefully chosen to reflect this. In
general, the contrast is only really determinable using thousands of
frames as a large amount of data are needed to perform distribution
fitting. Therefore, for the low k data [(0.025, 0.2)], we actually have
18 validation and test sets of sizes 5000 and 2000, respectively. In
each dataset, the k ranges are the same as the training set (0.025, 0.2)
and are chosen uniformly, for each frame, as above. However, in this
case, for each dataset we fix a specific and different value for the con-
trast. For example, dataset 1 has a contrast of 0.05 and dataset 18 has
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a contrast of 0.95. In the full-range k data, we actually have 54 (18
x 3) validation and testing sets of sizes 5000 and 2000, respectively.
The 3 in this case refers to datasets simulated with k in the ranges
(0.025, 0.2), (1.0, 2.0), and (0.025, 2.0). The reason for having sepa-
rate k regions was to be able to select models only if they performed
well in all three ranges.

Using these predicted contrasts for different contrast levels, we
form a contrast—contrast parity plot for the ground truth contrast vs
predicted contrast. To select between competing trained models, the
optimal neural network was selected based on maximizing the correla-
tion between the estimated and the true contrast in the contrast-con-
trast parity plot. Specifically, for the low k data, we calculate the
correlation of the 18 validation contrasts (corresponding to 18 valida-
tion datasets) relative to the ground truth contrasts. For the full-range k
analysis, we use the average correlation from the contrasts from the
three different k ranges [(0.025, 0.2), (1.0, 2.0), and (0.025, 2.0)]. An
example of a sample validation plot is shown in Appendix A. In addi-
tion to the correlation, the validation and training loss functions were
also monitored during the course of training. A sample plot for the full-
range k data is also shown in Appendix A.

Here, again, it is worth emphasizing that the metric used to eval-
uate the photonizing task is important. For example, the overall accu-
racy is not necessarily a good metric since many photon maps have a
small number of photons. Therefore, a model which uniformly pre-
dicts 0 for each pixel will show an uninformatively high accuracy,
which is clearly not the desired performance and will lead to poor sta-
tistics. Similar issues have been documented in problems with high
class imbalances,*” and correlation-based similarity metrics for evalua-
tion are recommended therein.”’ Since our final goal is to obtain a
good estimate of the contrast, it is useful to use this information
directly in the evaluation metric.

Finally, to obtain an estimate of the contrast from the predicted
photon maps we use the maximum likelihood estimation (MLE)
procedure to estimate the parameters of the negative binomial distri-
bution. In general, the negative binomial distribution is a function of
both C(q,t) and k. However, we directly use a per-image estimate
for k and therefore the MLE procedure reduces to a 1D optimization
in C(q,t)."" We opt for the sequential 1D optimization procedure
since, although the negative binomial distribution is parameterized
by both k and the contrast, in practice the estimate of kis essentially
converged and has almost no experimental uncertainty for the k
ranges considered in this work.
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I1l. RESULTS AND ANALYSIS
A. Accuracy

In this section, we compare the prediction quality of the CNN
algorithms (both low k and full-range k models) against the GGG
algorithm on data which simulates LCLS experiments and for
which the ground truth contrast is known.”” The low count-rate data
[k € (0.025,0.2)] is analyzed using the low k model and the full-range
data [k € (0.025, 2.0)] is analyzed using the full-range k model. To
quantify performance, we show parity plots for the predicted and true

1.0 7
------ Parity Line f
$ CONN X
T Greedy Guess ,i
0.8 ¥
Ll ;Z
0 x5
© %I
- %
g 0.6 5
8 A
° j
2 iyt
Iy
04 ¥
£ [1F
7] ¥
0.2 1 }I
0.0+
0.0 0.2 0.4 0.6 0.8 1.0
True Contrast
(a)
1.00
>
& 0.08
1
=]
Q
Q
< 0.96
o
©
= » Average count rate: [0.025, 0.2]
£ 0.94 Average count rate: [0.025, 0.5]
46- A Average count rate: [0.025, 2.0]
£
. 0.92
Q
o
© A
@ 090 X =
> = A
< A 4 . A
0.88
0.2 0.4 0.6 0.8
Contrast
(©)

Predicted
5 4 3

6

contrast on datasets with varying contrasts. The error bars are derived
from the reciprocal of the Fisher information, evaluated at the contrast
estimate [I()']. Thus, the 95% CI interval follows from assumed
asymptotic normality of the MLE estimate. One crucial point is that
these error bars quantify only the statistical error from fitting the nega-
tive binomial distribution and assume that the predicted photon maps
are perfect (e.g., no ML or GGG bias). See Sec. 11 B for a more realistic
estimate of the error, which accounts for both model bias and statisti-
cal uncertainty.
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FIG. 3. Predicted vs true contrast for CNN and GGG algorithms for (a) k € (0.025, 0.2) using the low k model and (b) k € (0.025, 2.0) using the full-range k model. Each
data point corresponds to prediction on a test dataset of 2000 data points and subsequent maximum likelihood estimation (MLE). The CNN model exhibits smaller bias than
the GGG algorithm at low contrasts and for the full-range k data. Error bars are obtained using the confidence interval based on the Fisher information. The error bars for the
full k range are smaller than expected as imperfect photonization is not considered. See Sec. Il B for a discussion of model uncertainty. (c) Average accuracy as a function of
contrast level for three separate k ranges using the full-range k model. Error bars are obtained from the standard error in the slope of the linear regression fit. (d) Confusion
matrices for full-range k model predictions on testing data with k € (0.025-2.0). The model asymmetrically underpredicts high-photon events.

Struct. Dyn. 9, 054302 (2022); doi: 10.1063/4.0000161
© Author(s) 2022

9, 054302-5


https://scitation.org/journal/sdy

1.000

H

I>&
> <

0.995

Pearson Correlation
o o o o o
o (e} [(e} [(e) [(e}
< ~ <) © ©
o w o w o

0.965 | =@= Ground Truth Photon Map
~A— GG Photon Map
0.960 | “V— CNN Photon Map

|

FIG. 4. Contrast-contrast parity correlation for datasets gen-
erated using different k ranges. Here, the full-range k model
was used for all predictions. Note, the ground truth photon
maps do not have perfect correlation due to finite sampling
statistics.

[0.025-0.2510.025-0.5] [0.25-0.5] [0.50-1.0] [1.0-1.5]
k ranges

For low k and full-range k data at high contrasts, the CNN mod-
els and GGG algorithm give good predictions for the contrast.
However, it is worth pointing out that in this regime the CNNs sys-
tematically underpredict the contrast and have slightly larger bias than
the GGG algorithm. However, at low contrast levels, the GGG algo-
rithm exhibits much greater bias than the CNNs [Figs. 3(a) and 3(b)].
One possible reason for the overall superior performance of the CNN
models is that variation in photon charge cloud sizes and probabilities
are accounted for in training. We note that even after optimizing drop-
let parameters on simulated data with known detector parameters, the
GGG algorithm still exhibits large bias for lower contrast values, indi-
cating that the algorithm may not have the complexity required to
fully treat such data.

We also studied the performance of the full-range k model as a
function of k and found that, on an average photon map accuracy
basis, the prediction quality decreases with increasing k [Fig. 3(c)]. To
further examine model errors, we clipped the output photon map to
the range of (0, 8) (i.e., no photon map has more than eight photons
or less than zero photons) and analyzed the confusion matrix (CF;;) of
the predictions [Fig. 3(d)]. The diagonal of the confusion matrix repre-
sents per-class accuracy. For instance, CF, , represents the accuracy of
prediction for pixels containing two photons. It is evident that the
model makes a greater proportion of errors for higher photon counts;
note the trend does not hold for eight photon events due to the clip-
ping operation. The off-diagonals of the confusion matrix indicate
how the model makes errors. For example, the CF;¢ term indicates
the probability of the model assigning three photons to a pixel when
the true number of photons was actually equal to six. From these ele-
ments, we see that the CNN tends to underpredict high-photon events.
These observations suggest dataset imbalance issues due to the fact
that low-photon events are more probable in the training set (see
Appendix C).

Although the full-range k model is less accurate on a per-photon
map basis (relative to the low k model on low k data), this does not
imply inferior contrast predictions. In fact, the parity plots are similar
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[1.0-2.0] [2.0-2.25] [2.0-2.5]

for low and full-range k cases (Fig. 3). This observation stems from the
trade-off between information content and accuracy when higher k
data are included (see Appendix B).

In Fig. 4, we quantify the performance of the full-range k model
and the GGG algorithm at different k ranges using the correlation in
the contrast—contrast parity plot as our metric. It is evident that the
GGG algorithm is slightly biased across all k levels and performs
poorly for k > 2.0. This is unsurprising, as droplet-based algorithms
were designed to cope with small droplets with relatively few overlap-
ping charge clouds. Furthermore, this implies further development of
the CNN algorithm will be capable of handling datasets with large var-
iation in k ranges.

Finally, one important concern is to consider the sensitivity of
the CNN model to data from outside the simulated detector parameter
distribution. Although the full-range k model clearly outperforms the
GGG model based on the dataset shown in this manuscript, we cannot
immediately exclude the possibility that the GGG may generalize bet-
ter to a dataset with different simulation parameters. For this reason,
we compared the performance of the full-range k model and the GGG
algorithm on five datasets which are outside the training detector
parameter distribution and found that the CNN models were signifi-
cantly more robust. This analysis is detailed in Appendix D.

B. Uncertainty quantification

In this section, we consider a neural network ensemble approach
to quantify the uncertainty in the predicted photon maps and contrasts.
The motivation for such an analysis is that, while deep learning models
have exhibited significant successes in their application to scientific
problems, they have a tendency to engender overconfident predictions
that may be inexact. As an example, neural networks are unable to rec-
ognize Out Of Distribution (OOD) instances and habitually make erro-
neous predictions for such cases with high confidence.” " In
reliability-critical tasks, such errors and uncertainties in model
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predictions have led to undesirable outcomes.*** In this context, quan-

tifying the uncertainties in deep learning model predictions is highly
desirable.

There are two sources of predictive uncertainty that need to be con-
sidered: Epistemic and Aleatoric. Epistemic uncertainty”’ (reducible or
subjective uncertainty) arises due to lack of knowledge regarding the
dynamics of the system under consideration, or an inability to express
the underlying dynamics accurately using models. Epistemic uncertain-
ties can lead to biases in the predictions. Aleatoric uncertainty;” (irreduc-
ible uncertainty or stochastic uncertainty) arises due to noise in the
training data, projection of data onto a lower space, absence of important
features, etc. Aleatoric sources can lead to variances in the predictions.

For our analysis, we use an ensemble of neural networks to make
a point prediction of the contrast C(q, t) as well as to give an estimate
of the predicted uncertainty. We train ensembles, denoted low k
ensemble and full-range k ensemble, which correspond to the same
data used to train the low and full-range k models. This is in line with
model ensembling based uncertainty quantification (UQ) methods
validated in literature.”"” Such ensembling accounts for aleatoric
uncertainties due to the data and weight uncertainties. In our
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investigation, the neural network ensemble is formed via sequential
sampling, wherein ten partially decorrelated models were sampled
during the model training. Contiguous samples were spaced by ten
optimization epochs each. Here it is pertinent to note that we investi-
gated other uncertainty quantification methods including Monte
Carlo dropout,” deep evidential regression’” and Probabilistic Neural
Networks (PNNs that utilize the full negative log likelihood without
assuming homoscedasticity). We found that the PNN and deep evi-
dential approach had very poor convergence for our problem in our
experiments, and that the Monte Carlo dropout scheme did not
engender calibrated prediction intervals on a held-out validation set.
Therefore, in our experiments, the ensemble-based approach gave the
best point prediction and uncertainty estimate on a held-out validation
set. Here, we emphasize that our experimentation on various uncer-
tainty quantification approaches is not exhaustive, and we envision
substantial future work in this area.

For the ensemble, the contrast is calculated for each model via a
maximum likelihood procedure and the contrast point prediction is
taken as the median predicted value. To estimate the model uncer-
tainty, we provide a 95% contrast prediction interval using the

0.5

0.4

FIG. 6. (a) The full-range k CNN ensem-
ble used to visualize the (a) median pre-
0.3 diction photon map and (b) the standard
deviation prediction on a sample photon
map drawn from data in the range (0.025,
2.0) k. This analysis allows users to visu-

0.2 alize the region of the image where the
photon assignment may be challenging.

0.1

0.0

(b)
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standard deviation of the predicted contrasts and making the assum-
ing that the predictive distribution follows a t-distribution with nine
degrees of freedom (Fig. 5).

We see that the error bars are larger at lower contrasts, which
correctly captures the notion that the prediction task is harder at lower
contrasts.”” We also notice a systematic bias in the CNN models at
high contrasts. This bias may arise due to the epistemic uncertainties
due to the model form (structural uncertainty). Such structural uncer-
tainties in deep learning models cannot be accounted for by any extant
approach, including the procedure used in this investigation.
However, this indicates a need for more refinement on the present
approach (for instance, more fine grained optimization of the model
architecture, etc.) and will be explored more fully in future work.

Another interesting avenue is to consider the median predicted
photon map and the predicted standard deviation map to examine
where the neural networks lack consensus. An example of this pair of
outputs are shown in Fig. 6. Evidently, the ensemble predicts insignifi-
cant uncertainty for the majority of the image with the exception of a
few pixels with relatively high uncertainty. An interesting future strat-
egy could involve using the CNN model as a fast, initial approach and
subsequently run more complex fitting algorithms on regions of the
image with high predicted uncertainty.

C. Speed of inference

As x-ray sources and detectors move toward faster repetition
rates nearing 1 MHz, it is important to preserve the possibility of live
data analysis. Here, we compare the speed of an optimized GGG
droplet algorithm™ against the trained full-range k& CNN model (see
Table II). On 1 CPU, the CNN outperforms the GGG algorithm by
roughly an order of magnitude. This advantage stretches to two orders
of magnitude when comparing GGG parallelized across multiple CPU
cores to the CNN running on one NVIDIA A100 GPU.

TABLE |II. Speed comparison between the full-range k CNN model and the GGG
algorithm. Rates are reported for a prediction on 1000 XPFS shots. Using a CNN
deployed on GPU hardware yields a speedup of two orders of magnitude relative to
a multi-CPU droplet implementation.
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r1.25

100§

1.00

150
0.75

200
0.50
250 0.25

50 100 150 200 250

0.00

(2)

Device Algorithm Rate (kHz) Rate relative to 1 CPU
1 CPU GGG 0.008 1
12 CPU GGG 0.05
32 CPU GGG 0.1 12
1 CPU CNN 0.2 27
1 GPU CNN 5.0 700
® CNN

25 Greedy Guess Algorithm
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5 P
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0 e ,»‘“‘w
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0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
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FIG. 7. Time to make predictions on 2000 XPFS frames for the full-range k CNN
model vs the GGG algorithm as a function of k. Error bars are obtained from the
standard error in the slope of the linear regression fit. The CNN exhibits constant
scaling with k while the GGG scaling is observed to be linear.
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(b)

FIG. 8. (a) A larger input detector image with 270 x 270 pixels and (b) corresponding predicted photon map (90 x 90 pixels). The full-range k CNN model is able to make pre-
dictions on larger inputs than it was trained on.
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The observed speedup presented here is consistent with intuition.
At inference, the trained neural network, which consists primarily of
matrix multiplication operations, is efficiently parallelized over thou-
sands of GPU processes.”* In contrast, the GGG algorithm requires
for-loop operations at the level of each droplet. For this reason, one
additional beneficial property of the CNN model is that the prediction
rate does not depend on the content of the XPFS frames and is conse-
quently independent of k. In contrast, for the GGG algorithm, the run
time scales linearly with k (Fig. 7). Here, it is worth mentioning that
the GGG algorithm is already orders of magnitudes faster than the
droplet least squares algorithm,”* which is exponential in computa-
tional complexity. Such advances in speed will be important in future
experimentation for tasks such as live-contrast monitoring as well as
deciphering, in real-time, the number of frames needed to give suffi-
cient accuracy for a contrast measurement.

Finally, since the neural network architecture follows a fully con-
volutional paradigm, it is possible to make predictions on larger input/
detector sizes than those used in the training set. This is enabled by the
fact that fully-convolutional architectures learn local spatial filters
which apply to the full image, making training relatively efficient. For
this analysis, the neural network can handle input sizes of (N5 90a,
90b, 1), where a, b are positive integers and Nydenotes a variable num-
ber of frames. Note, that this allows for the model to be used on any
detector size after zero-padding to the nearest (90a, 90b) frame size
and does not require additional layers for a sliding window approach.
We calculate the average time to make predictions on datasets of
dimensionality (100, 90, 90, 1), (100, 270, 270, 1), and (100, 900, 900,
1). We observe rates of 3.4, 3.1, and 0.3 kHz, respectively. As the rate
only decreases a factor of 10 between a frame size of (90, 90) and (900,
900), it appears that we do not observe quadratic scaling that would be
observed using droplet-based algorithms. Furthermore, the ability to
analyze such data in a single-shot manner is a significant advantage
over the sliding approach for droplet analysis which has been devel-
oped.” A representative example of the CNN prediction using an
input resolution of 270 x 270 pixels is shown in Fig. 8.

IV. CONCLUSIONS AND FUTURE OUTLOOK

In this work, we have developed a convolutional neural network
architecture that is capable of analyzing single-photon x-ray speckle
data in non-optimal situations, such as for small pixel size detectors or
with soft x-ray energies. We have benchmarked this algorithm on real-
istic simulated data and found that it outperforms the conventional
Gaussian Greedy Guess (GGG) droplet algorithm in terms of speed
and computational complexity. Furthermore, the algorithm is able to
extract the contrast information for new ranges that were previously
inaccessible, such as under low contrast conditions—relevant for sys-
tems which scatter weakly, as well as in a high k regime.

An important area of future work is to integrate the neural net-
work into a live analysis pipeline. Here, one challenge will be to
develop software pipelines capable of monitoring and fitting detector
parameters over the course of the experiment. Then, if the detector
parameters diverge significantly from that of the training set, new data
should be automatically simulated and the models should be accord-
ingly updated. These considerations affect both the CNN and GGG
and therefore live detector parameter monitoring will be a generically
welcome development for the future. For the CNN, this approach

Struct. Dyn. 9, 054302 (2022); doi: 10.1063/4.0000161
© Author(s) 2022

would likely be combined with methods such as online learning™ or
transfer learning ™ in order to avoid re-training models from scratch.

Such developments will create new opportunities to perform live
studies of fluctuations using XPFS in novel systems, such as in quan-
tum or topological materials.
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available at https://github.com/slaclab/ml_xpfs.

APPENDIX A: MODEL TRAINING AND
VALIDATION METRICS

The training and validation mean-squared-error loss functions
were monitored as a function of epoch number in order to assess
whether the model exhibits overfitting. Figure 9 shows a representa-
tive loss function plot corresponding to the model trained for the
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FIG. 9. Sample plot showing the mean-squared-error as a function of epoch num-
ber for validation and training data for the full-range model.
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FIG. 10. Correlation in contrast-contrast parity plot. Here, each data point repre-
sents the predicted contrast over 5000 frames after fitting to negative binomial sta-
tistics. The overall evaluation metric of a model is the average of the correlations
for the different k ranges. In this instance, the average correlation is 0.9989.
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full range of data (0.025, 2.0). Here, it is clear that the loss function
values are similar between training and testing and, notably, that
the validation loss continues to decrease even after 100 epochs.

In addition, since the contrast is the important metric in this
analysis, we also opt to use the average correlation (across datasets
with different average count-rates) of the contrast-contrast parity
model as a metric for model validation. This metric can be visual-
ized in Fig. 10.

APPENDIX B: VALUE OF HIGH k

Here, we consider the value of utilizing data at higher k in the fit-
ting process. In this scenario, the photon maps are perfect samples
from the negative binomial distribution. In other words, the models
developed in this paper are not used to generate the photon maps and
therefore there is no error owing to detector image to photon map con-
version. At higher k, high-count photon events are more probable and
contain more information about the underlying distribution relative to
common events (e.g., 0 or 1 photon events). It follows naturally that
incorporating higher k data allows for fitting the distribution with less
data and more accuracy relative to only low k fits. In Fig. 11, we show
the results of fitting the negative binomial distribution with k varying
uniformly in two ranges, (0.025, 0.2) and (0.2, 2.0) for 2000 data points.
We see that for the higher k range, the error bars in the contrast are
much smaller relative low k.

Note that the argument made in this section is purely of a sta-
tistical nature based on the underlying negative binomial distribu-
tion and with no use of any model (ML or GGG). In practice, and
as shown in Fig. 3, model performance is worse at higher average
photon count. Therefore, there exists a trade-off between model
accuracy and value of information.
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FIG. 11. Comparison of fitting for high k data vs low k on data with perfect photon
maps (no error from denoising). Evidently, the error shrinks for higher k data.
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FIG. 13. Photon count probability distributions for three different images (per-frame) sampled from k in range (0.025, 2.0).

APPENDIX C: PHOTON TRAINING SET DISTRIBUTIONS

In this section, we show the overall photon count distributions
for the low k and full-range k datasets [Figs. 12(a) and 12(b)].
These distributions show that there is a definite dataset imbalance
due to over-representation of low-photon events.

On a per-frame basis, the probability distributions vary because
each training frame samples a different k and contrast. Three such indi-
vidual photon count distributions are shown in Fig. 13.

APPENDIX D: SENSITIVITY ANALYSIS

In this section, we consider the robustness of the machine
learning model to different choices of detector simulation parame-
ters. Specifically, the choices of simulation parameters represent
extrapolation and interpolation of those parameters presented in
the main text. We varied three specific parameters: the baseline
noise term, the charge cloud sizes and their respective probabilities.
The variable simulation parameters are delineated in Table III. For
this analysis, the simulated testing data comes from the (0.025, 2.0)
k range.
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In simulation (a), we consider a control experiment with the
same simulation parameters as reported in the main text. The per-
formance of the full-range k ML model and GGG is very close to
the dataset reported in Fig. 3. In (b), the baseline noise levels and
the charge cloud sizes are kept the same and only the probability
distribution over charge cloud sizes are changed. This scenario is a
small perturbation which would expose the model to similar config-
urations in the training set, however, with different weighting. We
do not observe any significant change for the ML model relative to
the control. Conversely, the GGG prediction quality decreases. In
(c), the model is forced to make a prediction on extrapolated and
interpolated charge cloud sizes. For example, (0.05, 0.7, 0.8) are out-
side the range of simulated charge cloud sizes and (0.15, 0.2, 0.4)
are within the range of previous simulations. The contrast parity
plots corresponding to the different perturbation experiments are
shown in Fig. 14. Here again both models’ predictions deteriorate;
however, the machine learning model is more resilient and still
accurate at high contrast. In (d), the baseline noise is increased rela-
tive to (c). We note that a similar performance is observed relative
to (c) for both models. Finally, (e) and (f) constitute conditions that
are quite far out of distribution and much further than would be
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TABLE Il. Simulation parameters for various experiments used to test the sensitivity and robustness of the ML and GGG models.

Simulation Charge cloud size (¢¢) Probabilities (w;) Background noise (o)
(a) (0.1, 0.25, 0.35, 0.45, 0.55, 0.6) (0.25,0.15, 0.1, 0.3, 0.15, 0.05) 15
(b) (0.1, 0.25, 0.35, 0.45, 0.55, 0.6) (0.166, 0.166, 0.166, 0.166, 0.166, 0.166) 15
(o) (0.05, 0.15, 0.2, 0.4, 0.7, 0.8) (0.166, 0.166, 0.166, 0.166, 0.166, 0.166) 15
(d) (0.05, 0.15, 0.2, 0.4, 0.7, 0.8) (0.166, 0.166, 0.166, 0.166, 0.166, 0.166) 17
(e) (0.025, 0.25, 0.5, 0.75, 0.9, 1.1) (0.166, 0.166, 0.166, 0.166, 0.166, 0.166) 20
(f) (0.01, 0.02, 0.03, 0.7, 1.0, 1.5) (0.166, 0.166, 0.166, 0.166, 0.166, 0.166) 22
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FIG. 14. Comparison between the ML and GGG algorithms for simulation parameters outside of the training simulator parameter distribution. The specific conditions in (a)—(f)
are detailed in Table III. For this analysis, the full-range k model was used to make predictions.

tolerated during an experiment. In a practical implementation, the
model would likely need to be retrained under such conditions.
However, interestingly, we find that the machine learning model
still performs admirably in these conditions. On the other hand, the

GGG model is not robust to these new parameters.
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