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Dramatic advances in protein structure prediction have sparked debate as to whether the 
problem of predicting structure from sequence is solved or not. Here, I argue that AlphaFold2 
and its peers are currently limited by the fact that they predict only a single structure, instead 
of a structural distribution, and that this realization is crucial for the next generation of 
structure prediction algorithms. 
 
The latest structure prediction methods, most prominently AlphaFold2 and RoseTTAFold,1,2 have 
reduced the effort needed to obtain a structural model from months or years of laboratory work 
to a few keystrokes. While the predicted models do not reproduce experimental results in every 
case, this leap is dramatic enough to have provoked a series of self-reflective commentaries in 
the structural community,3–5 some directly debating whether structural biology is “solved” or 
not.6,7  
 
AlphaFold2 and its contemporaries aim to predict a single structure per sequence, yet proteins 
do not adopt a unique structural state. They move, and while not all motion is biologically 
meaningful, numerous lines of evidence have shown specific motions are necessary for protein 
function.8,9 NMR, crystallography, and cryoEM have each been used to measure such motions,10–
12 which are often conceptualized as an energy landscape that describes the distribution of 
conformations a protein adopts and the rates at which those conformations interconvert.13 
 
While the dynamic nature of proteins is widely accepted, the fact that structural heterogeneity 
manifests regularly in experimental structures – those in the protein databank (PDB) today – 
appears underappreciated. Indeed, it’s common to hear talk of the structure of a particular 
protein, reflecting our biased thinking. This may be a byproduct of the expense of determining 
even a single structure for a given sequence. The PDB is strongly skewed towards single structures 
per sequence (supplemental figure 1). Nonetheless, whether a structure is derived from 
crystallography, cryoEM, or NMR data, it would be better to speak of it as a structure, one of 
many possible conformations. 
 
Experimentally determined structures are not unique given a sequence 
A distribution of structures can be determined from experimental data in one of two ways. First, 
multiple conformations are often required to model diffraction data, cryoEM images, or NMR 
NOEs from a single dataset. All three techniques average over an ensemble of many molecules 
in order to produce a signal. These averages are blurred by the structural differences from 
molecule to molecule, requiring models that incorporate structural heterogeneity to explain the 
data. This is accomplished by B-factors, multiple classes, alternative conformers, ensemble 
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models, etc. Irrespective of the technique, it is essential to model the conformational 
heterogeneity to obtain satisfactory agreement with the measured experimental data. 
 
A second level of variability exists. Repeated structural measurements of the same protein can 
yield different structures. While this may seem concerning, often these variations are intentional. 
For instance, different solution conditions can frequently be used to produce crystals with 
different lattices. The changes in packing can generate different structures.14 While the structural 
changes are sometimes subtle, they exceed the coordinate error of the data. Alternatively, some 
structures may be determined in the presence of specific ligands, cofactors, ions, or other 
perturbations that change the protein structure from one experiment to the next.15 Studies over 
the last decade show the temperature of data collection can alter the observed protein 
structure.16 Additional variability arises from the experiments themselves: in crystallography, for 
instance, radiation damage incurred during data collection can do the same.17 Even when these 
factors are controlled, variability persists. For instance, protein crystals are typically manually 
handled and plunge-frozen in liquid nitrogen before data collection, inducing idiosyncratic 
mechanical strain on the crystals lattice and frequently altering the determined structure.  
 
The fact that a single sequence may give rise to many valid protein structures has implications 
for structure prediction. Because experimental structure determination can yield multiple 
outcomes, the accuracy of any single experiment is not an appropriate benchmark of success for 
structure prediction algorithms. Since no experimental data or model is perfect, every structure 
in the PDB will have some errors in the reported coordinate positions. There is some set of 
acceptable models that are “within error” for any given experiment. We might feel reasonable in 
saying the prediction has achieved experimental accuracy if a predicted structure’s atomic 
coordinates are within this error, and that it has failed if it is outside this error limit. This would 
be too strict, however. Determining the structure of the same sequence but under different 
experimental conditions can produce appreciably different structures. These different structures 
would not be considered within error by any reasonable method of quantifying that error. 
Instead, if a predicted structure is contained within the set of possible experimental outcomes, it 
should be considered to have achieved experimental accuracy, even if no documented 
experiment precisely matches that result. 
 
AlphaFold2 has reached the frontier of the single-structure approximation 
The main protease (Mpro) from SARS-CoV-2 provides an excellent case study, highlighting why a 
single experiment cannot be used to assess the experimental accuracy of a prediction. During 
viral replication, much of the viral genome is synthesized into long polyproteins. Mpro processes 
these into individual proteins, and is essential for viral function. Intense interest in this system as 
a drug discovery target since late 2019 has resulted in a large number of high-quality structures 
of this system. As of June 2022, 452 structures of full-length, wild type Mpro were registered in  
the PDB, spanning many different crystallization conditions, bound ligands, and data collection 
temperatures. They show a correspondingly rich structural distribution (Fig. 1). 
 
An AlphaFold2 model of Mpro compares favorably to this distribution. The smallest RMSD 
between the AlphaFold2 model and any PDB entry is 1.2 Å (PDB ID 7VLP, RMSD of non-hydrogen 
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atoms modeled in all structures). The largest is 2.0 Å (PDB ID 7T46). Compare this to 1.75 Å, the 
largest RMSD between any pair of Mpro PDB depositions. Based on this simple metric, AlphaFold2 
provides – in a few cases – a more accurate prediction of an experimental structure than would 
be provided by a different experimental structure! 
 
The AlphaFold2 model is not in the geometric center of the experimental distribution (Fig. 1). On 
average, two randomly selected experimental structures will be more similar to each other than 
to the structure prediction. Still, the experimental-to-experimental distribution of RMSDs is large 
enough that it overlaps with the experimental-to-AlphaFold2 distribution. This result holds even 
when the experimental set is restricted to structures with no specific ligands bound (Fig. 1). 
AlphaFold2 has reached the frontier of the set of experimentally determined structures.  
 
If a predicted structure is of sufficient quality to be contained in the set of experimental 
outcomes, this has direct implications for applications in which one might substitute a prediction 
for an experimental structure. Consider structure-based drug discovery, where atomically 
resolved structures are desirable. For targets with high-quality structure predictions and 
structural variability in the ligand-binding site, in silico ligand screening procedures that employ 
a rigid protein receptor will be more limited by a lack of protein flexibility than the accuracy of 
the structure prediction. Mpro is a prominent drug target that appears to fit this paradigm. 
 
Putative drug-discovery applications highlight why the set of possible experimental outcomes is 
a more useful definition of “experimental accuracy” than coordinate error. For each individual 
experimental structure, the all-atom RMSDs between the AlphaFold2 model are at least twice as 
large as the reported coordinate error for these structures (supplemental figure 2). For any single 
Mpro experimental dataset, the AlphaFold2 structure would not be an acceptable model to 
explain the data. Still, this does not mean it is less informative in terms of scientific insight than 
an experimental structure of Mpro randomly selected from the PDB. 
 
A single structure cannot capture functional motion 
Structural heterogeneity underpins protein function. An archetypical example is hemoglobin, the 
protein that transports oxygen in humans and all other known vertebrates except icefish. In the 
process, hemoglobin toggles between a “tense” oxygen-free state (T) and a “relaxed” oxygen-
bound state (R).9 A survey of 16 human hemoglobin structures deposited in the PDB reveals that 
the oxygen-free T-state structures are highly similar to one another, reflecting the rigid, low-
entropy nature of this state. In contrast, the R-state structures, bound to either O2 or CO, are 
considerably more diverse. The atomic coordinates of AlphaFold2’s model of hemoglobin lie 
geometrically halfway between these two structural extremes (Fig. 2). This is, perhaps, expected 
– with no information about the presence or absence of oxygen, a prediction intermediate 
between the R and T structures seems ideal. This case demonstrates both how good current 
structure prediction algorithms are and the opportunity to better understand biology through 
protein dynamics. The latter cannot be captured by a single structure. 
 
In fact, AlphaFold2 may be capable of self-reporting when its single-structure approximation 
breaks down. ABL, a tyrosine kinase, provides an example. ABL is involved in cell differentiation, 
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division, adhesion, and DNA repair, and is an oncology drug target. Like other kinases, ABL 
exhibits a flexible “activation” loop containing a three-amino acid D-F-G motif, which toggles 
between an active DFG-in and inactive DFG-out state. This structural flexibility is essential for the 
protein’s regulation and function. In the 25 human ABL kinase structures deposited in the PDB, 
the activation loop adopts a variety of conformations. Each conformation is generated by the 
experimental conditions, notably ligands and crystallization reagents. In each crystal dataset, the 
various loop positions are unambiguous but, on average, less well-ordered than the surrounding 
atoms (judged by B-factors and map correlation, supplemental figure 4).  
 
AlphaFold2 produces a per-residue prediction of confidence, the predicted Local Distance 
Difference Test (pLDDT).1,18 In ABL’s regions of high structural variability, the confidence is 
correspondingly lower (Fig. 3). Notably, AlphaFold2 correctly reports reduced confidence in the 
functional activation loop, where the ensemble is not well captured by a single structure. In this 
case, the algorithm simply predicts a common conformation and down-weights the prediction 
confidence in regions of high variability, highlighting the limit of the single-structure 
approximation. Structural variability is only one reason structure prediction confidence might be 
lowered. For instance, the AlphaFold authors note that regions of low sequence coverage also 
exhibit reduced pLDDT.1 A precise accounting of the contributions to AlphaFold2’s errors is 
beyond this work, but the ABL case study suggests structural heterogeneity should be considered 
a significant factor. 
 
Supporting the notion that AlphaFold2 might already contain information about the distribution 
of protein structure is work on fold-switching proteins. Chakravarty and Porter have reported 
that for these systems, AlphaFold2 typically succeeds in predicting the structure of one fold, but 
not the other.19 Predictions of fold-switchers have moderately reduced pLDDT vs. single-fold 
proteins, but the predicted LDDTs are still substantially higher than for disordered proteins or 
disordered regions of specific proteins. Even more strikingly, Wayment-Steele and colleagues 
have shown that by clustering the sequences used by AlphaFold2, the algorithm can in fact 
predict both folds in specific fold-switching systems.20 This exciting result suggests that 
predictions of structural distributions may not be far off, as AlphaFold2 can already produce 
multiple correct structural outputs for the same protein. Further, these results reinforce the 
hypothesis that current models are limited by a single-structure output space. 
 
Distributions of conformations are the future of structural biology 
Structure prediction has advanced significantly, right up to the frontier where the single 
sequence, single structure approximation has broken down. While AlphaFold2 and its peers 
enable breakthroughs today, tomorrow’s challenge is already clear: modeling protein structural 
distributions. If we could model and predict distributions, Mpro, hemoglobin and ABL kinase each 
provide a strong argument for what we might learn, and why a single-structure view cannot 
capture all of protein function. 
 
Consider hemoglobin. A single structure cannot describe both the T and R states, cannot capture 
how oxygen is bound and released, and therefore cannot capture the protein’s biological role. It 
is not difficult, however, to imagine an extension to the current structure prediction model, 
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where the output space is a distribution of protein conformations, not just a single structure. The 
scientific impact of such models would be greatly enhanced if the distribution could be modeled 
as a function of relevant conditions: ligands, pH, binding partners, oxygen concentration, 
temperature, etc. How to build such models, manage the potentially endless list of possible 
model inputs, benchmark them against experimental data, and ensure humans can enjoy 
learning from such models remains hard work. But while the path is not known, the direction is 
clear. Machine learning algorithms capable of modeling continuous distributions of protein 
structure are already emerging, and we can expect significant progress in the coming years.21–24 
 
The mission of learning protein distributions will require new abstractions and representations 
of protein structure, but also new experiments to train and guide those algorithms. Time-
resolved crystallography,25 modeling continuous structural distributions from cryoEM data,21,22 
and even the analysis of large, statistically significant sets of crystals of the same protein are 
already pushing the frontier of our knowledge. These efforts must continue and expand to 
support the training of models of protein structure distributions. 
 
Understanding how protein structure changes upon ligand binding, interface formation, or 
changes in the surrounding environment represents an opportunity to get to the heart of protein 
function. In light of this, we might look back on this time not as the age in which structural biology 
was solved, but as its golden age. 
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Figure Legends 
 
Figure 1. AlphaFold2’s model of Mpro is on the frontier of the set of experimentally determined structures. Panel 
A: the Mpro functional unit, a dimer (grey surface), is shown with the backbone traces of 64 ligand-free structures 
deposited in the PDB (blue) aligned to AlphaFold2’s model (magenta). Panel B: RMSD between all pairs of Mpro PDB 
entries (blue) and from AlphaFold2’s model to each PDB entry (yellow). Panel B, top: filtered for Mpro structures 
without specific ligands bound (“ligands” excludes crystallization reagents, buffers, salts). Panel B, bottom: all Mpro 
PDB entries. RMSDs are computed for all protein, non-hydrogen atoms modeled in all structures. PDB IDs included 
are those with 100% sequence identity match to PDBID 7ar6; a list is included in the supplementary information.  
 
Figure 2. AlphaFold2’s prediction of hemoglobin lies between the R and T states. Shown are experimental 
structures of O2- or CO-bound (R, orange) and ligand-free (T, blue) hemoglobin, superimposed with the AlphaFold2 
prediction (magenta). Right insert: detail of the structural superimposition. Left insert: PCA analysis of the dihedral 
angles shows the atomic coordinates in a space of reduced dimensionality. Plotted are the first two principal 
components, which explain 45% of the total variance (supplemental figure 3). Note: included T-state structure 1HGC 
is partially O2-bound, with the two a-subunits binding and the b-subunits ligand free. Structures selected from those 
highlighted in ref. 9. 
 
Figure 3. AlphaFold2 uncertainty correlates with structural variability in ABL kinase. Left: for 25 structures of ABL 
kinase, the LDDT computed across the experimental ensemble plotted against the AlphaFold2 model’s certainty 
metric, predicted LDDT (Spearman correlation coefficient 0.47). Color of markers shows position in sequence. The 
dynamic N-terminus and activation loop exhibit notably low confidence. Right: structural superimposition of the 
same experimental structures from the PDB, colored by AlphaFold2’s confidence (pLDDT; AlphaFold2 model not 
shown). In regions of high variability between structures, such as the activation loop, the pLDDT reports lower 
confidence. PDB IDs listed in the supplemental information. 
 
  


