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Quantum Eigenstates of a 

Strongly Chaotic System and 

the Scar Phenomenon 1 

by 

R. Aurich and F. Steiner 

II.Institut fiir Theoretische Physik , Universitat Hamburg 

Luruper Chaussee 149 , 2000 Hamburg 50 

Federal Republic of Germany 

The quantum eigenstates of a strongly chaotic system (hyperbolic octagon) are studied 
with special emphasis on the scar phenomenon. The dynamics of a localized wavepacket is 
discussed which travels along a short periodic orbit yielding a test for the scar model developed 
by Heller. The autocorrelation function C(t) and the smeared weighted spectral density S7 (E) 
are in accordance with this model, but the conclusion that this implies the existence of scarred 
eigenstates is not confirmed. A random wavefunction model generates with the same probability 
intensity structures being localized near short periodic orbits as the wavefunctions obeying the 
SchrOdinger equation. Although there are some eigenstates which are localized near a periodic 
orbit, the conclusion that their intensities differ significantly from the statistically expected 
ones cannot be drawn. Thus the scar phenomenon seems to be absent in the case of hyperbolic 
octagons. 

1Supported by Deutsche Forsehungsgemeinscha.ft under Contract No DFG-Ste 241/4-6 

I Introduction 

In this paper we study the quantum eigenstates of a conservative Hamiltonian system with 
two degrees of freedom having a purely discrete spectrum. The classical counterpart of the 
quantum system is strongly chaotic, i.e. a K -system. The first predictions on characteristic 
properties of quantum eigenstates of classically strongly chaotic systems were derived from 
phase spa.ce considerations in which the Wigner function W( q,p) [1] plays a crucial role. Since 
the energy is the only constant of motion, the classical dynamics takes place in phase space 
on a three dimensional energy surface on which the Wigner function should semiclassically 
concentrate. This behaviour should occur because of W( q, P) -t hNW2( q,p) for h -t 0 
and N degrees of freedom [2], i.e. in the semiclassical limit the Wigner function must either 
diverge or vanish. Furthermore, the so-called "semiclassical eigenfunction hypothesis" states 
that the Wigner function semiclassically condenses like a 6-function on the energy surface 
[3, 4, 5]. The properties of the wavefunctions W(q') can be obtained by projecting the Wigner 
function from phase space onto the configuration space. In this way it could be shown that the 
wavefunctions should not possess caustics like the wavefunctions· of integrable systems, and that 
the autocorrelation function of the. wavefunctions should reveal a universal behaviour expressible 
by Bessel functions [5]. In addition, the amplitude distribution P(W) of the wavefunctions W was 
conjectured. to be· a Gaussian [5] which was recently confirmed on numerical grounds [6, 7, 8, 9]. 
Intuitively one expects an irregular intensity structure of the wavefunctions and "chaotic" nodal 
lines. 

In view of the above semiclassical results on chaotic wavefunctions, Heller's discovery of 
scarred wavefunctions in the stadium biJliard (lOJ came at a surprise since the scars endow 
wavefunctions with some special structure. Heller has given the following definition of a scar 
[11): "A quantum eigenstate of a classically chaotic syst_em has a scar of a periodic orbit if 
its density on the classical invariant manifolds near the periodic orbit differs significantly from 
the statistically expected density." Thus a wavefunction possesses a scar it'its intensity IWI2 

along a periodic orbit is either very high or very low. In addition to the stadium billiard there 
are some further examples like the hydrogen atom in a magnetic field [12] or the two---center 
shell-model [13] for which the authors [12, 13] claim the existence of scars. 

. However not all chaotic systems show the scar phenomenon, a fact to which we have drawn 
attention already in our previous work [7J. Recently, in numerical studies of wavefunctions in· 
Artin's billiard, i.e. the Maass waveforms of PSL(2,Z), no scars on closed geodesics have been 
observed [9]. In [14] the behaviour of the maximal intensities of eigenstates in dependence of 
their excitation energy is discussed on a rigorous mathematical basis. These maximal intensities 
seem to increase so slowly with energy that localization seems to be improbable. Thus the 
question of scars is far from being settled. 

In this paper the wavefunctions of hyperbolic octagons are studied with special emphasis 
on the scar phenomenon. As our main result we show that scarring is absent in our system 
which thus provides an interesting counter example. In section II a short introduction to our 
system, the free motion on hyperbolic octagons, is given. Section III provides a summary of 
the arguments put forward by Heller [11] which yield the theoretical framework of the scar 
analysis. Section IV is devoted to the computation of the time evolution of a given initial state 
in a hyperbolic octagon which is then used for a computation of the autocorrelation function 
C(t) defined in eq.(7) and the smeared weighted level density ST(E) defined in eq.(ll). In 
section V we present for the first time a theory for C(t) baaed on periodic-orbit theory using 
an approximation for ST(E) which shows that the "zero-length" contribution alone accurately 



accounts for C(t) for times t of the order of the revolution time along the periodic orbit. In 

section VI a random wavefunction model is introduced and compared with the "true" wave­

functions. With respect to the scar phenomenon the random wavefunctions reveal the same 

behaviour as the "true" wavefunction~. This analysis shows that the accumulation of high 

intensity structures near short periodic orbits in some eigenstates is not statistically significant, 

and thus we conclude that the scar phenomenon is absent in the case of hyperbolic octagons. 

II Hyperbolic Octagons 

The chaotic model that is discussed in this paper is a conservative Hamiltonian system with 

two degrees of freedom which classically consists of a point particle sliding freely on compact 

hyperbolic surfaces. The surfaces to be considered are compact Riemann surfaces :F of constant 

negative Gaussian curvature with genus g = 2, i.e. they have the topology of a sphere with two 

handles. Due to the Gaufi-Bonnet theorem, Area( F)= 411"(9 -1), the area of such a surface is 

Area( :F) = 47r. The sphere with two handles can be cut so that one obtains an octagon with 

geodesic edges, where opposite sides must be identified leading to periodic boundary conditions. 

A given octagon is mapped into the Poincare disc 'D, which consists of the interior of the unit 

circle in the complex z-plane (z = x1 + ix2) endowed with the hyperbolic metric 

4 
g;i = (1- x~- x~)26;:i ' i,j = 1, 2 (1) 

corresponding to constant negative Gaussian curvature K = -1. (This fixes the length scale.) 

The hyperbolic distance d(z, z') between two points z and z' is given by 

cosh d(z, z') := 1 + 2lz- z'l
2 

f-1 , ,.,,,, ,,.,, (2) 

The classi~al motion (geodesic flow) is determined by the Hamiltonian H = 
2
!,.p;giipj, 

Pi = mg;j dx3 jdt. The geodesics are circles intersecting the boundary of the Poincare disc D 

perpendicularly. 
The quantum mechanical system is governed by the SchrOdinger equation 

- Ll.Wn(z) ~ EnWn(z) 1 ''l'(i)' i)') 
6, = 4(1 - .XI- X 2 ax~ + 8x~ (3) 

where we used 1i = 2m = 1. The periodic boundary conditions are realized by identifying the 

points z and z' = b(z), 

where the "boosts" 

b(z) :~ az + fJ 
p~z +a'" lal' -lfil' = 1 , 

b ~ (;. :. ) E SU(1,1)/{±1} 

( 4) 

are chosen such that they map a given edge onto the opposite edge. Four boosts are sufficient 

for the description of a given octagon. These four boosts and their inverses are the generators 

of the Fuchsian group r which tessellates the Poincare disc 'D. The solutions of the Schr6dinger 

equation (3) have to obey the periodic boundary conditions 

W(z) ~ W( b(z)) for all bE f 

2 

(5) 

and are normalized according to 

j j:F dx1 dx2 (1 
4 

X~- x~)2 W~(z)Wn(z) = Omn (6) 

For more details of this model, see the well-written introductions in (15, 16] and our earlier 

papers [17, 18, 7, 8, 22, 23]. 
The quantum eigensiates of hyperbolic octagons were already investigated in [7, 8]. In 

[7] an exact orbit theory for the quantum eigenstates was derived and applied. It allows 

the computation of a few low lying eigenstates in terms of classical orbits. This theory is 

an exact version of Bogomolny's semiclassical scar theory [19] which yields the semiclassical 

contributions of classical orbits to quantum wavefunctions. The description of highly excited 

wavefunctions by this orbit theory is practically not possible since the number of required 

orbits increases exponentially with the excitation energy of the state. For the computation of 

the first few excited eigenstates only a limited number of orbits is needed and one observes 

a scar phenomenon: eigenstates with positive parity develop the strongest intensities in the 

neighbourhood of the first few periodic orbits, whereas eigenstates with negative parity possess 

nodal lines there. However, this scar phenomenon is limited to the eigenstates with energy 

E < 10. For higher excited states too many orbits contribute collectively so that no connection 

to a single orbit survives, and no sca,;s are expected from the orbit theory. In principle one 

cannot exclude the possibility that an unknown miraculous mechanism exists by which very 

long orbits enhance the contribution of a special short orbit. This would correspond to the 

bootstrapping effect in the framework of periodic orbit theory [20]. However, the purpose of 

this paper is to demonstrate that such a mechanism seems not to exist and--no scars occur in 

highly excited eigenstates. The statistical properties of highly excited eigenstates were already 

discussed in [8] where it was shown that the amplitude distribution P(W) is a Gaussian and that 

the circular-wave expansion coefficients of the eigenstates behave like pseudo-random numbers. 

These properties support the picture of irregular wavefunctions without any order enforced by 

periodic orbits. The eigenstates discussed in [8] were computed usiilg the boundary-dement 

method. The same method was employed to compute all eigenstates of positive parity with 

energy between E = 1500 and E = 2140 for the asymmetric hyperbolic octagon defined by 

the following corner points z~: = rke;"'k in the Poincare disc: r 1 = 0.9405185836, ~.p1 = 0, 

r2 = 0.8701653, 1./)2 = 0.8023654, ra = 0.7609273, 1./)a = 2.1175027, r 4 = 0.8575482, rp4 = 

2.5846103, where the other 4 corner-points are obtained from these by the parity transformation 

z --+ -z (see also figure 4). There are 317 ~igenstates with positiVe parity in' tHiS eniti-fu''iriteival 

constituting the basis of our scar analysis. 

III The scar model 

In this section we would like to briefly review the arguments given by HeUer [10, 11] which force 

som~ quantum eigenstates to be scarred by short periodic orbits. One considers a Gaussian 

wavepacket Wa(z, t) which moves along a short periodic orbit of the given chaotic billiard. 

The expectation values of position and momentum are governed by the Ehrenfest theorem and 

thuS obey the laws of classical dynamics, and the wavepacket Wa(z,t) revolves along the given 

periodic orbit. Now consider the overlap integral 

C(t) :~ ( W'a(z,O) I W'a(z,t)) (7) 

3 



which should show as a function of time t peaks with period T = '*' corresponding to the 
multiple traversals of the wavepacket, where l is the length of the periodic orbit. Since the 
wavepacket spreads, the amplitude of the peak declines after each traversal. The decline is 
determined in the case of chaotic systems by the time-dependent Liapunov exponent A of the. 
classical periodic orbit according to e-At/2 [11]. Expanding the wavepacket at timet= 0 with 
respect to the normalized quantum eigenstates w .. (z) 

00 
'lia(z,O) = L c,. 'll.(z) (8) 

n=O 

yields for (7) the expansion 

00 00 
C(t) = L lc..l' ,-;E.< C(O) = L lc..l' = 1 (9) 

n=O n=D 

The Fourier transform of C(t) with respect to energy E yields the spectral density S(E) 
weighted by the probabilities lc...l 2 

1 100 . S(E) := - dt C(t) e'E' 
211" -OQ 

L lc..l' .5(E- E.) 
n=O 

(10) 

If the t-integration in (10) is carried out only over the interval [-7, T] one obtains a. smeared 
weighted spectral density 

Sr(E) := _l_ j 7 
dt C(t) ,•E• = ~ I I' sin( (E.- E)T) 

211" -T LJ C.,. ( n=o 1rE .. -E) 
(11) 

where the energy resolution tl.E is roughly given by tl.E = ¥. The crucial point is that the 
Fourier transform of a function which shows peaks at a period T with a decline proportional 
to cAt/2 has peaks of width >. with a spacing w := ¥-· Thus if C(t) is known up toT"' :::::: ¥ 
the Fourier transform Sp (E) should already show this feature. If the width is much smaller 
than the distance between the peaks, i.e . .,\ < w, only the eigenstates which are lying in 
these "bands" contribute to the expansion of the wavepacket. Since the wavepacket shows 
an enhanced intensity only along the periodic orbit this must carry over to the properties 
of the contributing quantum eigenstates, which are then scarred by the periodic orbit. This 
.U.gumentation requires that the wavepacket is sufficiently localized after the time T"' because 
a wavepacket which is spread after 7"' over the whole periodic orbit interferes with itself and 
does not produce the required "periodicity, of C(t). 

The relative enhanceme~t of the probabilities lc..l2 within such a band is of t!:e order !f· 
However, there are Nb = >.d(E) quantum eigenstates within such a band, where d(E) is the 
mean level density. If the number Nb of contributing eigenstates is too large, the above argu­
mentation is flawed, since the localization of the wavepacket is only collectively reproduced by 
the N6 eigenstates and a. one to one correspondence is missing. In other words, since too many 
eigenstates produce the strong intensity near the p_eriodic orbit, an individual eigenstate does 
not need to show a significant intensity deviation from the statistically expected one, and scar­
ring is absent. In the following we will see that this happens, indeed, in the case of hyperbolic 
octagons where no scarred eigenstates occur. 
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IV Wavepacket dynamics in hyperbolic octagons 

To scrutinize Heller's argumentation it is necessary to consider the dynamics of a suitable 
wavepacket in our model, the hyperbolic octagon. The time evolution of a given initial state is 
completely determined by the Feynman kernel K(z,z';t) which can be expanded with respect 
to the quantum eigenstates of the system 

K(z,z';t) = :f: ,-•E.< 'll.(z) 'll:(z') . (12) 
n=O 

A representation of the Feynman kernel can be obtained from the exa.ct sum rule for wavefunc­
tions derived in our previous paper [7] 

00 1 roo L h(p.)'ll.(z)'li:(z') = 2 L }, dp ptanh(,.p) h(p) P-\+;,(coshd(z,b(z'))) , (13) 
n=O 11" bEr 0 

where P-t+ip( cosh r) denotes the Legendre function and h(p) an arbitrary function satisfying 
the three (sufficient) conditions: 

• h(p) = h( -p), 

• h(p) is holomorphic in the strip !Impl:::; t + e,e > 0, 

• h(p) = o(p-'-6 ),.5 > 0, fm IPI ~ 00. 

With the choice 

h(p) = exp(-iEt) ' 1 E =:P +4 (14) 

eq.(13) yields the following representation of the Feynman kernel 

1 100 .(, 'J K(z, z'; t) = - L dp p tanh(,.p) ,-'' +, 'P_,.,,(cosh d(z,b(z'))) 
211"bEro 2 

(15) 

Without the summation over the Fuchsian group r, the free Feynman kernel of the Poincare 
disc (7 := d(z,z')) 

is obtained. 
sentation 

1 100 -i( 2+l.)t Ko(T;t) =- dpp tanh(1rp) e P ' P_!.+ip(coshr) 211" 0 . 2 
(16) 

The Legendre function P_:t+iv(coshT) can be computed from the integral repre-
' . ,121' cos(pt) dt P 1 1 (coshr) =-

-2+P 1r o v'coshT-cosht 
(17) 

However, for a numerical evaluation of the Feynman kernel eq.(l5) is hardly adapted since the 
amplitude of oscillations of the integrand in (15) grows like .v'P as can be inferred from the 
asymptotic behaviour of P-t+ip(cosh r) 

~ 
~ 

P_,.,,(coshT) - sin(p7 + -
4

) := f(p) , p ~ oo . (18) , 
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This drawback is reflected by the fact that the chosen h(p), eq.(l4), does not satisfy the third 

sufficient condition stated after (13). A numerically suitable expression can be derived by 
exploiting the asymptotic behaviour (18) 

K0 (r;t) ~ _1_ {oo dppe-•<>'+l>• (•anh(.-p)P_,+;,(coshr)-f(p)) + I(r;t) , (19) 
2rk 2 

where 

I r·t ·- - d e-•Et- U --·-·-1 oo . e;(-.
2
/(4t)-t/4) ( 1 1 1"2 ) 

( ' ) .- 211" 1 p p J(p) - 2'11"~(it)3/4 4. 2' 4it (20) 

Here U(-1/4; 1/2; z) is a Kummer function which can be expressed by the confluent hyperge­

ometric function 1F1(a; b; z) [21] 

U ( -H;z) ~ vb gvrzr(1/4),F, G;~;z) + f(3/4),F, ( -H;z)} . (21) 

The asymptotic behaviour of (19) is determined by the asymptotic behaviour of U( -1/4; 1/2; z) 

[21] ([z[ ~ oo) 

( 1 1 ) !/4 ( 1 ) u -·v2; z - z + o izl''' (22) 

which leads to the semiclassical approximation (t <t:: r 2 /4) 

1 ~ ;(2-·) Ko( r; t) !:::! --. -.-- e .j,• • 

411"~t smh r 
(23) 

In figure 1 a comparison is shown between the Feynman kernel computed from (19) and the 

semiclassical approximation (23). The agreement is nearly perfect, and in our time-evolution 
computations the semiclassical approximatio;n (23) is used. A generalization to arbitrary di­

mensions ha.s been derived in [22]. 
It is interesting to compare this semiclassical approximation with the exact Feynman kernel 

of the free particle in the Euclidean plane which is 

_1 e;ft. K~(r;t) = 411"it (24) 

again for 1i = 1 and 2m = 1. One observes that the hyperbolic kernel (23) has (besides the phase 

factor e-it/4
) an additional factor ~which can be interpreted as a factor compensating the 

hyperbolic metric. Considering polar coordinates (r,¢), the invariant volume element of the 

hyperbolic plane is dp. = sinh rd-rd¢, whereas the one of the Euclidean plane is dl = rd-rd¢, of 
course. Thus the ratio with which a source at a distance 7 acts in the Euclidean case compared 

to the same situation in the hyperbolic case is given by ~ = ~ ... Since the prefactor in the 

Feynman kernel can be interpreted as the square root of the classical probability, the full factor 
is understood. 

According to Heller's argumentation one should consider a locali'zed wavepacket which moves 
along a short periodic orbit. We choose the second shortest periodic orbit in our hyperbolic 

octagon, a periodic orbit with length 12 = 2.20527 ... which obeys the scarring condition l < 
211". In the Poincare disc this periodic orbit intersects the origin z = 0 at an angle {) -= 
1.210798541 ... , see the full line in figure 4. The wavepacket is constructed by multiplying the 
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Figure 1: Real and imaginary pa.rt of the semiclassical approximation (23) for the Feynman 
kernel K 0 ( r; t) are shown as full curves as a function of r for t = 0.01. The small dots denote 

the results obtained from the exact regularized formula (19). Excellent agreement is observed. 

Gaussian distribution exp ( -~) with a plane wave according to the hyperbolic metric. For a 

sufficiently small parameter a a focalized wavepacket is obtained moving in the direction of the 

plane wave. A plane wave moving with momentum p through the origin z = 0 in the Poincare 
disc has the representation [16] 

[
l-[z[']t+•> [ 1 ]'+;, 

Ev(p,z) = --- ~ , 
lz- pl 2 cosh 7" -sinh T cos(¢- t?) 

(25) 

where z = tanh~ e'<l>, and p = ei.Y is the point at infinity ( lzl = 1) at which the plane wave 
arises at the bounda.ry of the Poincare disc. Thus the wavepacket with the initial form 

Wa(z,t=O)- cexp{-;:2 - (~+ip)ln[coshr-sinhrcos(¢-iJ)]} , zE:F, (26) 

moves in the direction defined by the angle .,'). The wave packet must be sufficiently strongly 

localized within the considered octagon :F so that W0 (z, t = 0) is negligi.ble near the boundary 

of the octagon, since the initial state must obey the periodic boundary conditions determined 
by the Fuchsian group r. The periodic-bounda.ry condition is then enforced by considering 

the initial state (26) only within the octagon F, and by transforming every point outside :F 
according to r into the octagon. For such a localized state the normalization constant c is given 

by 
1 

c ~ -JFa.-~.,&~2=,-""e"""':;:l,c=erf~(,=a=,/ ,f2=;2"C') 
(27) 
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The quantum eigenstates of hyperbolic octagons can always be classified by parity -symmetry, 
i.e. lP';( -z) = ±W;{z). It is thus convenient to consider initial states with a fixed parity. 
The restriction to a desymmetrized spectrum also enhances the probability to detect a scarred 
quantum eigenstate, since, as already emphasized, the number Nb of contributing states within. 
a band is N6 = Xd(E). Thus the level density d(E) is reduced by a factor of two by restricting 
to a single parity class, and the "burden" to generate a high intensity near the periodic orbit 
is shared by only half of the number of states. The Liapunov exponent A is, as a classical 
quantity, not affected by the desymmetrization process. The following wavefunction 

>!i~(z,t = 0) = ~ { 'lia(z,t = 0) ± >lia(-z,t = 0)} (28) 

defines an initial state with definite parity. 

1.0 

0.5 

0.0 

-0.5 

-1.0 

' r \ -:;;.11\\~~~~:-------------______ _j 'n\ (t~\ 
, !, ' i , il \ 
'!' \\ ,,, \,I· i , I\ 
1 1 1 t , \ 1 1 1 , 1 ; 1 ; r 1 

, L I \ \I \\) \\I i \ \I i 
l• I 1 I \I i I \1 I 
if! \1 \\l 1\f/ 
I r ) .J -'I} I I i I, i ,,v 

11 \, j 
i, 1 

I ~ 1 

·d! 
:~ 
'• \ 

0.0 O.QJ 0.02 0.03 t 0.04 

Figure 2: The autocorrelation function C(t) is shown for the wavepacket travelling along the 
second shortest periodic orbit as discussed in the text. The real part of C(t) is displayed as 
a dotted curve and the imaginary part as a dashed curve. The lower full curve shows IC(t)l, 
whereas the upper full curve represents e->..t/2 • 

For our numerical evaluation we have chosen the case with positive parity. The wavepacket 
has a width of a= 0.1 and an energy of E = 2000. The evolution of the wavepacket has been 
computed by using the time-evolution equation 

'lia(z, t) = f d~(z') >lia(z', 0) K(z, z'; t) 
l:F . 

(29) 

up tot = 0.04 corresponding to roughly 1.5 revolutions around the periodic orbit. The resulting 
autocorrelation function C(t) defined in eq.(7) is shown in figure 2. After the first decline of 

8 

C{t) the wavepacket shows practically no overlap with its initial state. Then the wavepacket 
returns to its starting point at t ~ 0.025 leading to an increased overlap followed by a further 
decline. The smooth declining curve in figure 2 corresponds to the expected decline e-:>.t/2, 

which is thus roughly confirmed by our numerical computation. 

0.002 ' 

' . 

0.001 

. 

0.0 
,[\ v j \~ 

0 1000 2000 3000 E 4000 

Figure 3: The Fourier transform Sr(E) of C(t) is shown as a full curve. In the interval between 
E = 1500 and E = 2140 the smoothed spectral density computed from the quantum eigenstates 
via the second relation in {11) is shown as a dotted curve. 

Knowing G(t) up to 7 = 0.04, the smeared weighted spectral density Sr(E) can be com­
puted using (11 ). The result is shown in figure 3, where one observes the expected band · 
structure which is centered around the energy E = 2000, i.e. the energy of the wavepacket. In 
addition, the expansion coefficients Cn haVe ·been computed fr:om the eigenstates in the energy 
intervalE E [1500, 2140] which also yield ST(E) by {11). This evaluation is also presented in 
figure 3 as a dotted curve. The agreement is excellent and no deviation is visible except near 
E = 1500 and E = 2140 where the contributions of-the eigensta.tes lying outside the considered 
interval are not negligible due to the finite value of T. Most interesting are the locations of the 
bands whose positions are in agreement with a kind of modified Bohr-Sommerfeld quantization 
rule for the bands instead for single quantallevels. The simple requirement that a band occurs 
when the length ln of the periodic orbit is a multiple of the de Broglie wavelength ..\8 = ~. 
leads to the "band-quantization" condition 

PN = 
hN 
I, (30) 

where N = 1, 2, 3, ... is the "band-quantum number". The perpendicular lines in figure 3 show 
the energies of the bands associated with the length l2, and striking agreement is observed. 

9 



Figure 4: The eight simplest geodesics are shown in the Poincare disc. They intersect each 
other at the origin z = 0. The shortest one, which plays the crucial role in this paper, is shown 
as a full line. See also table 1. 

It is interesting to consider localized wavepackets which start again at the origin z = 0 in 
the Poincare disc but in different directions defined by the angle{) in eq.(26). Then one expects 
for Sr(E) a band structure if the angle{) lies.near an angle belonging to a short periodic orbit 
and no structure if it is far away from these angles. There are eight simple periodic orbits 
which cross the origin z = 0, see figure 4. Four of these are the straight lines connecting 
opposite corner points of the octagon. The other four are the connection lines of the midpoints 
of opposite edges of the octagon. The angles at which these pe~iodic orbits intersect the origin 
z = 0 are listed together with the lengths of the periodic orbits in table 1. In figure 5 the 
smeared weighted spectral density S.r(E) is shown in dependence of the angle{) at which the 
wavepacket starts. S-r(E) is obtained from eq.(ll) forT= 0.04 by computing the overlap Cn 

of the wavepacket with the eigenstates in the energy intervalE= 1500 toE= 2140. The most 
pronounced band structure occurs at {) ~ 1.21, and a view at table 1 reveals that this angle 
corresponds indeed to the shortest periodic orbit crossing the origin z = 0. It is exactly the 
periodic orbit which has been discussed above. The second shortest periodic orbit with length 
l = 3.303 ... and angle {) = 0.23 ... shows already a much less pronounced band structure 
although it safely obeys the scarring condition l < 211". The longer the periodic orbit the more 
diminishes the band structure and thus the probability of scarring of the eigenstates. This 
result justifies our choice to use the periodic orbit at {) ~ 1.21 for our scar analysis since it 
shows all the properties predicted by the scar model. 
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Figure 5: The smeared weighted spectral density Sr(E) is shown in the energy range E=1500 
to E=2140 in dependence of the angle{) E [0,1r] at which the Gaussian wavepacket starts at 
the origin in the Poincare disc. 

V Periodic-orbit theory for C(t) 

In this section a periodic-orbit expression for C(t) is derived from lenl 2 = F(pn), where F(p) 
approximates the band structure of ST( E) found in the last section. This expression shows 
that from the point of view of periodic-orbit theory the main contribution of the recurrence 
behaviour of C(t) arises from the Thomas-Fermi term, i.e. the so-called "zero-length" term, 
and not from the periodic-orbit contribution of the second shortest periodic orbit with length 
{z. Vje express an approximation to ST(E), which itself is expressed in terms of the quantal 
energies, by the periodic-orbit formula which then allows to find the dominant contribution. 

The coarsest structures of ST(E) are determined by the short time behaviour of C(t).· The 
maxima of the bands of S-r(E) are superimposed on a Gaussian whose width is completely de­
termined by the width a of the initial Gaussian wavepacket and its momentum p. Since only the 
behaviour at shortest times is required, it suffices to consider the wavepacket in the Euclidean 
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~ I 
0.00000000 6.97009319 
0.23761642 3.30340299 
0.80236540 5.33504000 
1.21079854 2.20527103 
2.11750270 3.99365627 
2.41849784 3.77084538 
2.58461030 5.13601806 
2.98568650 4.00481241 

Table 1: The angles 11 and the lengths 1 of the eight simplest periodic orbits crossing the origin 
z = 0 in the Poincare disc aie given. See also figure 4. 

metric, which then allows analytical computations. Starting with a Gaussian wavepacket of 
width a and momentump in the Euclidean plane, one obtains S(E) "'E- 114 e-2 "

2 (-/E-pf. This 
determines also the envelope of the bands in the hyperbolic case. With the band-quantization 
condition PN = 2~N we thus obtain as an approximation to ST(E') the function 

= = F(p') = j,[ e-2a2(p-p')2 E e-C!(PN-P')2 + N e-2a2(p+p')2 E e-O<(PN+P')2 (31) 
N=l N=l 

where pis again the momentum of the wavepacket. The second term in eq.(31) has been added 
in order to obtain an even function as it is required by the Selber~trace formula. The width of 
the bands is denoted by a:, which is the only free parameter, and N is a normalization constant 
which is determined by the constraint 

!,= dE ST(E) = 1 . (32) 

In figure 6 a comparison is shown between the function ST obtained from the time-evolution 
of the Gaussian wavepacket-and our ansatz F(p). We conclude that the coarse structure is weJl 
approximated apa.rt from the fact that the bands at higher energies are somewhat overestimated 
which is caused by neglecting the factor E-114 in the ansatz (31), which is, however, convenient 
in order to obtain manageable expressions. With the approximation F(p) it is now possible to 
write down the periodic-orbit expression for G(t) by using the Selberg trace formula which is 
identical to Gutzwiller's periodic-orbit theory in the case of hyperbolic octagons. 

The Selberg trace formula for distinct parity classes reads [23] 

= I: h(p~) 
n=O 

11oo 3 loo h(p) -
2 

dp p tanh(~p) h(p) ± -
4 

dp -h-
-c:o -co COS 1rp 

+ "~ x±(l,)' I, (k I ) 
~~2·h!:..J.ng n, 
{I,.} k=l SID 2 

(33) 

Here the function h(p) has to obey the same conditions as in the sum-rule (13) for the wave­
functions. The characters x±(ln) of the periodic orbits with lengths ln obey x+(ln) = +1 in 
the case of positive parity. The Fourier transform of h(p) is denoted by g(x). With the choiCe 
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1000 2000 3000 E 4000 

Figure 6: The ansatz F(p), eq.(31), is shown for a: = 1.55 (full curve) in compa.rison with 
Sr(E) obtained from the time-evolution of the Gaussian wavepacket (dotted curve). 

h(p') = F(p') exp{ -i([l2 + ~)t} one obtains an exact periodic-orbit formula for C(t), 

C(t) = f lc,.l' ,-Et• = f F(p~) ,-•,t'•-••1• = f h(p~) (34) 
n=O n=O n=O 

which belongs to a wavepacket with probabilities lc...l 2 = F(p;t). The resulting periodic-orbit 
formula reads in the semiclassical limit p --+ oo 

C(t) 
2~ 00 

= c . L: e -crrN { 1 - v'1f pePz erfc(p)} 
a+f3+~t N=l 

+ 3Cy'ii' . f ,-a>'N { e'terlc(7+) + e">'erlc(7_)} 
-y'o: + f3 + ~t N=1 

~ 00 

+ c L: e-rrp~ 
J~(a + (3 +it) N=• 

X"~ I, [ (("PN+f3p+i'"')') ~~2·hkl exp 2 
{In} k=l SID T . a+f3+it ( (apN+f3p-i~)') l +exp (3 . 

a:+ +tt 
(35) 

with 2= !Ne-•tf4e-fJP
2

, p =-~and 1'± = .,.f2±ot.pN±_nP, f3 = 2a2 • A close inspection of 
2 J ot.+f:l+•t J ot.+/3+11 

eq.(35) reveals that for times t of the order of the revolution time the dominant contribution 
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comes from the first term on the right hand side of (35) corresponding to the zero-length 
term. Only for times t much larger than the revolution time the contribution of the periodic 
orbits becomes important. Thus the short time behaviour is completely determined Py the 
zero-length term and by the band-quantization condition which turns out to be the crucial 
ingredient. Using the asymptotics of the error-function erfc(z) the following approximation, 
valid for short times, is obtained 

C(t) "' 4cft f: (<>PN + f3p) exp ( af3(PN- p)
2 
+ it(aP'N + f3p')) . (JB) 

(a+ f3 + •t)'1' N=1 "+ f3 +it · 

The real and imaginary part of eq.(36) are shown in figure 7 as full curves in comparison 
with C(t) (dotted curves) obtained from the time-evolution of the wavepacket. (The formulae 
in this section are valid for eigenstates normalized with respect to half an octagon being the 
fundamental domain for a fixed parity class. The eigenstates in the remaining parts of the paper 
are normalized according to eq.(6). In :figrn:e 7 the resulting factor of 2 has been corrected.) 
The agreement is striking, and we would like to note that the zero-length term knows nothing 
about the given octagon apart of the length of a single periodic orbit, because the zero-length 
term is the same for all octagons. The given octagon is encoded in the length spectrum of the 
periodic orbits entering the periodic-orbit sum, but not in the zero-length term. 

1.0 

0.5 

0.0 ?·- -di.' "\\ •1 

iii' 

-0.5 m l 

-1.0 
0.0 0.01 0.02 0.03 t 0.04 

Figure 7: Real and imaginary part of the zero-length contribution (36) (full curves) of the 
periodic-orbit theory are shown together with the "true" C(t) (dotted curves). 

14 

VI A random wavefunction model 

In the preceding sections we have shown that the probabilities lc,.,J" are indeed distributed 
according to the model based on wavepacket dynamics. The best scar candidates among the 
quantum eigenstates should therefore lie under those bands which have the largest probabilities. 
In figure 8 the probabilities lc.,.l 2 are plotted together with their smoothed distribution ST(E) for 
T = 0.04. Some eigenstates lying under the bands have indeed somewhat larger probabilities, 
and considering these as a scar measure, one would expect that these eigenstates possess scars. 
In figures 10 to 13 the intensities of the four eigenstates with the largest probabilities lc.,.l2 

are shown. Figure 10 shows the wavefunction with the "highest value of lc,..l 2 having energy 
E = 1586.400 (see figure 8) which displays indeed some enhanced intensities along the periodic 
orbit. However, these intensity structures have to be compared with the random wave model 
to settle the issue whether these structures differ significantly from randomly generated ones. 
The figures 11 to 13 show the next to "best" scar candidates. These eigenstates show already 
less strikingly enhanced intensities near the periodic orbit. This is clearly a consequence of the 
fact that the burden to generate high intensities near the considered periodic orbit is shared by 
too many eigenstates. 

0.020 

0.015 

0.010 

0.005 . . . . .. .. .. .. . 
~_:~:-=~-:_;.!.~;_:a~~~-.!f~ 

0.0 
1500 1600 1700 1600 1900 2000 2100 E 

Figure 8: The probabilities lenl 2 are plotted in the energy range 1500::; E:::; 2140, comprising 
317 eigenstates with positive parity. In addition the smeared weighted spectral density S-r(E), 
eq.(ll), obtained from these probabilities is shown for T = 0.04 as a full curve. The dotted 
curve shows ST(E) calculated from the coefficients of the random wavefunctions which reflects 
no regular band structure. 

The values of the highest probabilities are not larger than the values produced by the ran-
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dom wavefunctions which know, however, nothing about any periodic orbit. In [8] the quantum 
eigenstates were expanded in terms of Legendre functions, and the exparu~ion coefficients with 
respect to this basis Were shown to be Gaussian distributed. This fact offers a simple method 
to generate random wavefunctions. The expansion coefficients with respect to the basis of· 
Legendre functions are generated by a random-number generator according to a Gaussian dis­
tribution. This generates then a wavefunction which obeys the free SchrOdinger equation, since 
the basis functions obey it. However, these wavefunction do not obey the periodic-boundary 
conditions, since this is only possible for the true eigenstates. Nevertheless, statistical proper­
ties like the amplitude distribution P(W) are the same for the true eigenstates and the random 
wavefunctions, since these properties are closely connected with the distribution of the expan­
sion coefficients [8]. The important point for a comparison with respect to scars is that a random 
wavefunction cannot know anything about periodic orbits of the given hyperbolic octagon since 
it knows nothing about the periodic-boundary conditions by which the octagon is defined. In 
the energy range from E = 1500 to E = 2140 we have generated 520 random wavefunctions 
and computed their overlap integral with the wavepacket at t = 0, i.e. the coefficients c.,. one 
would obtain if the wavepacket would be expanded into the random wavefunctions and if the 
random wavefunctions would constitute a complete basis. In figure 9 we show a comparison 
of the cumulative distribution of the probabilities Jc,.J2 of the true eigenstates and of the ran­
dom wavefunctions. Both distributions agree well, and the Kolmogorov-Smirnov test yields a 
significance level of 41% that both distributions are identical. To avoid misunderstanding we 
note that the distributions of the c, 's are the same but not the locations at which they occur, 
because the c, 's of the true eigenstates possess larger magnitudes under the bands but not the 
c,.'s of the random wavefunctions, which possess no band structure as figure 8 (dotted curve) 
reveals. It looks as if the theory based on the wavepacket dynamics leads only to a sorting 
of the c,'s with respect to the bands, but does not alter their magnitude. There occur again 
some large coefficients c.,. due to random wavefunctions which would be scar candidates. The 
four random wavefunctions with the highest probabilities Jc,.J2 are shown in figures 14 to 17. A 
closer inspection shows clearly that the intensity structures of the random wavefunctions look 
similar to the four best scar candidates of the true eigenstates displayed in figures 10 to 13. The 
"best" random wavefunction (figure 14) shows an even more pronounced scar than any of the 
true wavefunctions. We thus conclude that there are no scars in highly excited eigenstates since 
the intensity structures seen in the true eigenstates do not differ in a statistically significant 
way from those seen in the random wavefunctions. 

VII Summary and Discussion 

In this paper we have studied highly excited quantum eigenstates with respect to the scar 
phenomenon which should endow the eigenstates with an enhanced structure according to 
Heller's scar model. The strongly chaotic system considered by us consists classically of a 
point particle sliding freely on a hyperbolic octagon. For the chosen hyperbolic octagon all 
eigenstates with energies En E [1500, 2140] and positive parity have been computed. The 
obtained 317 eigenstates have been the basis of our. scar analysis. 

The central point of Heller's scar model is provided by the dynamical properties of a localized 
wavepacket being launched along a short periodic orbit. The autocorrelation C(t) reflects the 
periodicity of the chosen trajectory for times of the order of the period. This in turn enforces 
a band structure of the smeared weighted spectral density Sr(E) which carries over to the 
individual weights JenJ, i.e. the overlap of the localized wavepacket with the eigenstates. If 
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Figure 9: The cumulative distribution of the probabilities jc,J2 of the quantum eigenstates (full 
curve) is shown in comparison with the distribution obtained from the random wavefunctions 
(dashed curve). 

only a very limited number of very large lc,.J's occurs, the corresponding eigenstates must 
generate the localized wavepacket and have also to be localized. If, however, no small subset 
of. eigenstates is selected by the Jc,.l's then many eigenstates share the burden to generate -the 
localization along the periodic orbit, and no scar can be expected. This is exactly the case for 
hyperbolic octagons where already the number Nb = Xd(E) of quantum states lying under a·. 
single band is very large, e. g. for E = 2000, as discussed in the preceding sections, one obtainS 
with A= 2p and d(E) =!the value Nb ~ 44. Furthermore, with increasing energy the number 
of states under a single band increases, Nb ~ .JE, which suggeSts that in the semiclassical limit 
no scarred eigenstates can be expected. Since there are several bands, more than one hundred 
eigenstates contribute, and no trace of a scar should be left. Only for chaotic systems with very 
small Nb's o:be can expect scarred eigenstates. 

To investigate the possibility that some quantum eigenstates could have nevertheless an 
intensity structure near short periodic orbits which differs significantly from the statistically 
expected one, we have created a random wavefunction model. A comparison of the random 
wavefunctions with the quantum eigenstates shows no statistically significant difference. In­
deed, a comparison of the distributions of the Jc,.j's shows that both are identical with a high 
significance level of 41% obtained from the Kolmogorov-Smirnov test. Since the random wave­
function model knows nothing about periodic orbits, the existence of eigenstates which are 
scarred by periodic orbits is very improbable in the case of hyperbolic octagons. 
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Figure 10: The intensity 1Wn(z)l2 of the eigenstate at energy E = 1586.400 is shown in the 
Poincare disc, whose boundary lzl = 1 is presented by the circle. The intensity is plotted in 
black, if it is above the threshold value -ln(c/V2)/2tr with c = 0.6. 
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Figure 11: The same as in figure 10 for the eigenstate at energy E = 2078.757. 
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Figure 14: The random wavefunction with the largest overlap with the Gaussian wavepa.cket 
at energy E = 1700. 
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Figure 15: The random wa.vefunction with the second largest overlap with the Gaussian 
wavepacket at energy E = 2137.5. 
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Figure 16: The random wavefunction with the third largest overlap with the Gaussian 
wavepa.cket at energy E = 1925. 
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Figute 17: The random wavefunction with the fourth largest overlap with the Gaussian 
wavepacket at energy E = 2137.5. 
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