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Abstract: The ability of pulsed nature of synchrotron radiation opens up the possibility of

studying microsecond dynamics in complex materials via speckle-based techniques. Here, we

present the study of measuring the dynamics of a colloidal system by combining single and

multiple X-ray pulses of a storage ring. In addition, we apply speckle correlation techniques at

various pulse patterns to collect correlation functions from nanoseconds to milliseconds. The

obtained sample dynamics from all correlation techniques at different pulse patterns are in very

good agreement with the expected dynamics of Brownian motions of silica nanoparticles in

water. Our study will pave the way for future pulsed X-ray investigations at various synchrotron

X-ray sources using individual X-ray pulse patterns.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Speckle-based techniques are well established to investigate sample dynamics in soft matter.

The high coherence beam leaves an imprint of the spatial distribution of the subjected system

on a diffraction image as a grainy interference pattern at the detector plane, which is typically

called “speckle”. The movement of disordered particles shifts the relative phases of the scattered

field and induces temporal variations in the speckle patterns. Consequently, these fluctuating

speckle intensities reflect the information of the system dynamics, which can be quantified by

a correlation function. For many decades, optical laser systems have been widely employed

to generate speckle patterns for photon correlation spectroscopy (PCS) [1–3]. Thanks to the

improvement of the coherent X-ray flux from synchrotron sources, X-rays have been employed for

speckle-based measurements of dynamics on the atomic scale [4] or optically turbid system [5].

One of the most robust techniques, called X-ray photon correlation spectroscopy (XPCS), is a

powerful and convenient tool for measuring dynamics. The temporal resolution of the technique

is defined by the number of images taken in time. In the past decades, considerably slow systems

have been in the focus of XPCS studies [6–14]. Recently, new advanced detector technology has

begun to offer 2D detectors with the microsecond temporal resolutions in XPCS measurements

(e.g., VIPIC [15], UFXC32k [16], Tristan detector [17], and the XSPA-500k [18]). Recently

developed X-ray detectors offering MHz frame rates, such as adaptive gain integrated pixel

detector (AGIPD), enable to investigate of nanosecond colloidal dynamics at 3rd generation

#477774 https://doi.org/10.1364/OE.477774
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X-ray synchrotron sources [19] and X-ray free electron laser (XFEL) sources [20,21]. In order to

measure sample dynamics faster than accessible with XPCS, X-ray speckle visibility spectroscopy

(XSVS) has been developed, which evaluates a speckle contrast as a function of illumination

time. The longer illumination time compared to system dynamics leads the more blurred speckle

images and a loss in contrast of the speckle images. This concept was introduced in optical laser

systems [22] and extended to X-ray regime [23–27].

An alternative speckle technique is double pulse XPCS (DP-XPCS). The technique evaluates a

speckle contrast of two summed speckle patterns separated with a delay time, which corresponds

to the temporal resolution. DP-XPCS has been demonstrated with sequentially obtained speckle

patterns [28] and an optical pulse laser scheme [29]. More recently, DP-XPCS has been employed

in a special operation mode of linear accelerators of XFEL [30,31] or X-ray split-and-delay unit

[32–42] to investigate nanosecond dynamics beyond detector frame rate limitations.

In this paper, we demonstrated XPCS measurements using single and multiple X-ray pulses

from nanoseconds to milliseconds time scales. Thanks to the MHz frame rate of the detector, we

investigated the sample dynamics with 192 ns temporal resolution in a single pulse mode. In

addition, we covered the gap between nanoseconds to milliseconds using the multiple X-ray pulse

modes in the correlation function. The obtained sample dynamics are in excellent agreement

with the expected dynamics of the system.

2. Materials and methods

2.1. Experiments

The experiment was conducted at the coherent application beamline P10 of PETRA III [43].

The monochromatic 8 keV X-ray beam was focused vertically and horizontally down to db =

2.5 µm at the sample position. The speckle size ds = 310 µm was estimated at the detector

plane located at a distance L = 5 m, according to ds = λL/db, where λ is the X-ray wavelength.

The silica colloidal nanoparticles (NPs) with a core radius R of 65 nm were dispersed in water

and filled in a 700 µm thick quartz capillary. The SPARTA detector, which was developed by

the X-Spectrum GmbH with AGIPD technology [44–46] was employed to measure the sample

dynamics. The detector is composed of 128 × 512 pixels with a pixel size of 200 µm × 200 µm.

It can collect up to 352 memory cells (i.e., frames) at a frame rate in the MHz range in a single

burst (i.e., measurement). The images have to be read out until the next MHz acquisition burst

can be triggered 0.1 s later. Note that the number of X-ray pulses (N) between two consecutive

frames adjusts the time resolution and the achievable time window in correlation functions. In

this work, we selected N = 1, 5, and 40 to capture the sample dynamics (see Supplement 1 and

Table 1). The detector signal was carefully extracted using a background subtraction method that

is elaborated elsewhere [19,21] and subsequent conversion of the cleaned signal to an integer

number of photons. An additional pixel mask was applied in the analysis to exclude detector

pixels with high electronic noise. The depicted speckle patterns after the data conversion process

to photons are shown in Fig. 1(b).

Table 1. Data collection modes of
SPARTA. N and ∆t denote the number of

X-ray pulses between two successive
frames and the time range of correlation

functions, respectively.

N ∆t

1 (N1, Single pulse mode) 192 ns - 67.6 µs

5 (N5, 5 pulse mode) 960 ns - 338 µs

40 (N40, Revolution mode) 7.68 µs - 2.7 ms
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Fig. 1. (a) Schematics of the speckle measurement experiment employing the intrinsic

pulse structure of PETRA III. Coherent X-ray pulses are delivered at the sample position

with 192 ns temporal separation. SPARTA collects 352 images in a single measurement,

and the delay time between each frame is set by the number of X-ray pulses between two

consecutive frames N. (b) Speckle images of XSVS and DP-XPCS for N40 with varying

number of frames n.

2.2. X-ray photon correlation spectroscopy

Three complementary XPCS techniques (i.e., XPCS, XSVS, and DP-XPCS) were employed to

evaluate the sample dynamics obtained from different collection modes.

2.2.1. XPCS

The intensity fluctuations in time are caused by the spatial rearrangement of colloidal particles.

The sample dynamic properties are traced by the intensity autocorrelation function together with

the Siegert relation [47,48]

g(2)(Q,∆t) =
〈I(Q, t)I(Q, t + ∆t)〉

〈I(Q, t)〉2

= 1 + β0 |f (Q,∆t)|2,

(1)

where I(Q, t) denotes the intensity of the speckle pattern at wavevector Q and time t. The bracket

〈〉 stands for time averaging, and ∆t represents a delay time. The wavevector Q is defined by

λ and scattering angle 2θ according to Q = 4π sin(θ)/λ. The β0 is the speckle contrast mostly

defined by the degree of coherence of the beam and experimental configuration [49,50]. For

the simple monodisperse colloidal case, the intermediate scattering function (ISF: f (Q,∆t)) is

considered via a simple exponential decay function

f (Q,∆t) = exp(−Γ(Q)∆t), (2)

where Γ(Q) = D0Q2 for typical Brownian motion and D0 is defined by the Stokes-Einstein

relation as D0 =
kbT

6πηR
, where kb, T , η are the Boltzmann constant, environment temperature and

medium viscosity, respectively. Note that in the limit of ∆t → 0, the g(2) − 1 corresponds to the
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β0(∆t = 0) and decreases as a function of ∆t taking into account the sample dynamics that can be

expressed as

β0 exp(−2Γ∆t) = g(2)(Q,∆t) − 1. (3)

The obtained correlation function provides the contrast βC(Q,∆t) = β0 exp(−2Γ(Q)∆t) that

starts with β0 and decreases as a function of ∆t due to the sample dynamics.

2.2.2. X-ray speckle visibility spectroscopy

In order to investigate system dynamics using XSVS from sequentially obtained speckle patterns,

a speckle image with an exposure time te is defined as IV (Q, te) =
∫ t+te

t
I(Q, t′)dt′ =

∑n+ne
n I(Q, n),

where te = 190 ns × neN, and ne is the number of frames corresponding to te. The extending

of te does not affect the speckle contrast until the sample characteristic time Γ−1 is sufficiently

smaller than te. In contrast, when te>Γ
−1, the speckle image is washed out, and consequently,

the contrast decreases. In Fig. 1(b), the degrading of speckle image clarity as a function of n is

clearly observed, and the normalized variance β ≡ M−1
= σ2(IV )/〈IV〉2, where M is a number

of speckle mode in the intensity is given by [22,51,52]

βV (Q,∆t) =
2β0

te

∫ te

0

(1 − t/te)|f (Q,∆t)|2dt. (4)

In case of the simple exponential decay function f (Q,∆t) = exp(−Γ∆t), Eq. (4) can be solved

analytically as

βV (Q,∆t) =
β0

2Γ2t2e
[2Γte − 1 + exp(−2Γte)]. (5)

Note that the Eq. (5) shows more moderate decay in contrast compared to the βC.

2.2.3. Double pulse XPCS

Double pulse speckle contrast β from the sum of two speckle patterns S(Q,∆t) = I(Q, t)+I(Q, t+∆t)

enables to quantify the level of displacements of colloidal particles within the delay time ∆t. The

contrast is given by the normalized variance of intensity distribution at a wavevector Q evaluated

as [28]

c2(Q,∆t) =
〈S2(Q,∆t)〉 − 〈S(Q,∆t)〉2

〈S(Q,∆t)〉2

=

β0

2
(1 + |f (Q,∆t)|2) + α,

(6)

where α is the shot noise.

For weak speckle patterns, the photon counting statistics should be accounted for. The

probability distribution of the number of photons per pixel k in a speckle pattern is described by

the negative binomial distribution function [53]

PNB(k) =
Γ(k +M)

Γ(M)Γ(k + 1)

(

1 +
M

〈k〉

)−k (

1 +
〈k〉

M

)−M

. (7)

In the negative binomial distribution, the normalized variance can be expressed as M−1
=

σ2(k)/〈k〉2 − 1/〈k〉 [4].

3. Result and discussion

Figure 2(a) shows the averaged intensity collected at the N1, N5, and N40, respectively. A total of

4700 bursts were employed to obtain a sufficient signal-to-noise ratio for N1 and N5, and 470

bursts were used for N40. The azimuthally integrated intensity profiles are shown in Fig. 2(b).
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The intensity profiles fall off as a function of Q. The particle formfactor ring is well pronounced

at Q = 0.09 nm−1 for N40, indicating a system of sufficiently dilute and non-interacting silica

particles. A single-sphere formfactor fit to the intensity profile obtained with N40 yields R =

65.2±0.3 nm and size polydispersity ∆R/R = 7.41 %.

Fig. 2. (a) 2D speckle pattern taken by SPARTA for N1, N5, and N40. (b) Corresponding

azimuthally integrated intensity profiles as a function of Q. The black dotted line represents

the formfactor fit, taking into account the sample polydispersity (∆R/R).

We divided the detector plane into regions of interest (ROI) that are limited by contours of

equivalent wavevector Q for further analysis.

Figure 3 shows g(2) obtained from N1, N5, and N40 using Eq. (1). The dashed lines represent

expected dynamics according to Eq. (3) where the initial contrast at ∆t → 0 is β0 = 0.2. A

considerably larger error in N1 is due to the lower photon count rates. Nevertheless, resolving a

single X-ray pulse in XPCS offers a 192 ns temporal resolution in this pulse pattern [19].

Figure 4 shows a square of ISF obtained from XPCS (g(2): filled markers) and DP-XPCS

(c(2): empty markers) in N40 for various Q values. The ISF from g(2) extracted from Eq. (1)

decays as a function of delay time representing the motion of silica particles. The obtained initial

contrast β0 from g(2) was employed to Eq. (6) to extract ISF and α from c(2). The black dashed

lines represent dynamics of Brownian motion in freely diffusing silica particles in water with the

relaxation rate Γ of 1315, 2578, and 4262 s−1 at Q = 0.02, 0.028, and 0.037 nm−1, respectively.

We calculated speckle contrast as a function of exposure time to obtain the X-ray speckle

visibility using the normalized variance. In contrast to the XPCS and DP-XPCS, the image

IV (Q, te) for XSVS is a result of the summation of all the memory cells between the corresponding

delay time. Figure 5 shows speckle visibility contrast as red squares for Q = 0.02 (a), 0.028 (b),

and 0.037 (c), respectively. Also, XPCS results are shown as blue circles at corresponding Q in

N40. The dotted and dashed lines for the XPCS and XSVS experiment are the fit using Eq. (3)

and Eq. (5), respectively. The extracted Γ as a function of wavevector transfer is in excellent

agreement for all three approaches in Fig. 6. This result shows that all the methods are well

suited for pulsed-based studies.

Dynamics measured via pulsed-based XPCS in a model colloidal model system of silica

particles in water mark an important step in adopting various pulse patterns of storage rings in

XPCS measurements. A higher coherent flux available with diffraction-limited storage rings

(DLSR) will extend the access to study weakly scattering, but very relevant systems [54]. The

possibility of employing a time structure of DLSRs paves the way to studying dynamics on

nanosecond to microsecond timescales bridging the experimental gap between 3rd generation
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Fig. 3. Intensity correlation functions as a function of delay time obtained from N1 (green-

square), N5 (orange-triangle), and N40 (blue-circle) for Q = 0.02 nm−1 (a) and 0.028 nm−1

(b). The dashed lines indicate the expected correlation functions using Eq. (3).

Fig. 4. The obtained intermediate scattering functions from XPCS (circle) and DP-XPCS

(square) for varying Q. The black dashed lines represent the expected curves of a single

exponential decay curve from Eq. (2).
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Fig. 5. Combined XPCS g(2)-1 and speckle visibility contrast βV at the wavevector transfer

Q of (a) 0.02 nm−1, (b) 0.028 nm−1, (c) 0.037 nm−1. The dashed and dotted lines are the fit

result using Eq. (3) and Eq. (5), respectively.

Fig. 6. Extracted Γ as a function of Q. The lines are the fitting results using Γ(Q) = D0Q2.
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synchrotron sources and XFEL sources in investigating more complex systems, in particular, fast

relaxation processes in glasses [11], atomic diffusion in metal alloys [55], soft matter [20] and

biological systems [56].

4. Conclusions

We have demonstrated pulsed XPCS at a synchrotron source by employing various pulse patterns

of PETRA III. The diffusion coefficients obtained from the three speckle correlation techniques,

i.e., XPCS, XSVS, and DP-XPCS, show very good agreement with the expected dynamics

of the colloidal system. The SPARTA detector capability of MHz frame rates has provided

a way of conducting such experiments with very short time resolutions, spanning the range

from 190 ns over microseconds to milliseconds to cover a fast but also wide range of times

in correlation functions. These studies will provide great potential for X-ray speckle-based

investigation for all synchrotron facilities operated by individual X-ray repetition rates and, in

particular, diffraction-limited storage rings.
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