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1. Introduction

Gauge-field configurations in a lattice theory with a mass gap have the stochastic locality property,

that is, gauge-invariant local fields at large physical separations are stochastically independent.

The master-field paradigm introduced by Lüscher [1] proposes to use stochastic locality to obtain

observable estimates from a single or at most a few representative gauge-field configurations on very

large lattices, making use of the invariance under translations of the theory and of volume averages.

As a first application of this paradigm, stochastic locality has been used to compute the

topological susceptibility at ) > )2 in master-field simulations of SU(3) Yang–Mills theory [2]. In

a theory with fermions such as QCD, numerical simulations are performed after integrating out

fermions exactly. Hadronic observables in QCD are expressed in terms of contractions of quark

propagators whose locality is not manifest. Moreover, the sheer size of the lattices requires stabilising

measures that have been studied in ref. [3]. These include a slight modification of the standard

$ (0)-improved lattice Dirac operator, replacing the HMC with the stochastic molecular dynamics

(SMD) algorithm, employing quadruple-precision lattice sums and uniform-norm stopping criteria

for the Dirac equation solver. Recent progress in master-field simulations has been presented at the

Lattice 2021 conference [4, 5] and at this conference [6]. In these proceedings we further develop

the position-space techniques introduced in ref. [5], by presenting an estimator for position-space

correlators that scales efficiently with the volume.

Estimation of observables on master fields is explained in details in ref. [1]. In summary, the

expectation value 〈O(G)〉 of a local field O(G) is obtained averaging over translations

⟪O(G)⟫ = 1

+

∑

I

O(G + I), 〈O(G)〉 = ⟪O(G)⟫ +$
(
+−1/2

)
, (1)

with the variance of this estimator given by

f2
⟪O⟫(G) =

〈
[⟪O(G)⟫ − 〈O(G)〉]2

〉
=

1

+

∑

H

〈O(H)O(0)〉2

=
1

+



∑

|H | ≤'
〈O(H)O(0)〉2 +$

(
e−<'

)
=

1

+



∑

|H | ≤'
⟪O(H)O(0)⟫2 +$

(
e−<'

)
+$

(
+−1/2

)
, (2)

where in the second line we first used the fact that the connected correlator of the local field O(G)
decays exponentially with spacetime separation, and then we applied again translation averages.

2. Position-space correlators

In this work we focus on correlation functions in position space

�%% (G) →
22
%

4c2

<c

|G |  1(<c |G |), (3a)

��%,` (G) →
2�2%

4c2

G`

|G |
<c

|G |  2(<c |G |), (3b)
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4c2
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−X`a
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 2(<c |G |) +

G`Ga
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(
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Table 1: Parameters of the master-field lattices used in this study (with 0 ≈ 0.094 fm and <c ≈ 270 MeV,

see also ref. [4]), together with information on the statistics used in the observable computation as explained

in section 3.

!/0 ! [fm] <c! =cnfg 1/0 |� | =shift 1shift/0 =point

A 96 9 12.5 5 48 8 512 12 4096

B 192 18 25 2 48 128 32 24 4096

where the subscript indicates the two-point function of either pseudoscalar densities % = D̄W53, axial

current �` = D̄W`W53 or nucleon spinor # = n012 (D)0�W531)D2, as a function of the source-sink

separation G.

In eqs. (3), the asympotic behaviour for G → ∞ of these correlators is given assuming the

symmetries of the continuum theory in an infinite volume. From position-space correlators one

can extract simple hadronic observables, including the masses <c and <# and the decay constant

5c = 2�/<c , as demonstrated in ref. [5].

Once computed on the lattice as discussed in the following section, these correlators as a

function of the four-dimensional source-sink separation G include lattice discretization effects that

break the rotational symmetry and depend on the direction of G. In this study, we limit ourselves to

the radial correlators �̊ (A) introduced in ref. [5] that are averaged over (3(A) = {G ∈ R4 : |G | = A},
the 3-sphere of radius A, and by construction depend only on the radial coordinate A = |G |. While

�̊%% (A) = �%% (G), for the �%-correlator ��%,` (G) we contract the open ` index with the only

available four-vector G` to obtain a scalar, �̊�% (A) = G`��%,` (G) → 2�2%
4c2 <c 2(<cA). In the case

of ���,`a there are two ways to obtain a scalar,

�̊
(1)
��

(A) = X`a���,`a (G), �̊
(2)
��

(A) = G`Ga���,`a (G), (4)

and similarly for the nucleon correlator that is a spinor, with /G = W`G`,

�̊
(1)
##

(A) ≡ tr�## (G), �̊
(2)
##

(A) ≡ tr /G�## (G). (5)

On the lattice, an estimator of these radial correlators is given by

�̊ (A) = 1

r4(A2)
∑

|G |=A
� (G) (6)

where r4 is defined in ref. [5].

We note that the symmetry of (3(A) is broken not only by 0 ≠ 0 but also by the finite size of the

hypercubic box and by the fact that we choose antiperiodic (instead of periodic) boundary conditions

in one of the four dimensions for quarks. However, as we show in section 5 these boundary effects

are not visible at the current level of precision on the master-field lattices in table 1 considered here,

differently from what we observed on smaller volumes [5].

3. Grid of point sources estimator

The simplest way to compute the correlators introduced in section 2 numerically is to solve the

Dirac equation on a point source, that is, a source spinor that is supported on a single lattice point,

and subsequently perform the suitable contractions of spinor and space-time indeces. A consequence
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of this naive strategy applied on gauge-field configurations with a large volume is that the effort for

each correlator point source scales proportionally with the volume, which is clearly not optimal.

Indeed, most of the resources are spent in computing the correlator at a distance from the source of

multiple correlation lengths, which has an exponentially suppressed contribution to the physics and

in most of the cases is completely dominated by noise.

Instead, we would like to exploit stochastic locality to define estimators that scale efficiently

with the volume and are suitable for master-field applications. Taking as an example the radial

correlators �̊ (A) introduced in section 2, let us assume that we are interested in physics that can be

extracted from correlators up to a maximum radial source-sink separation Amax. Ref. [1] sketches a

decomposition of the lattice in space-time domains, or blocks, that are physically large, such that all

the lattice points within an Amax distance from a source point at the centre of each block are within

the same block. This implies a block size 1 > 2Amax. Solving the Dirac equation in each block,

imposing Dirichlet boundary conditions at the block boundary of the gauge field, one can decouple

the computational cost of the estimator from the volume of the global lattice. However, this method

introduces boundary effects that can be large for sink points close to the boundaries [1, 7], see also

refs. [8, 9]. We leave the exploration of this direction for future work, and we focus here on a simpler

approach that does not require a dedicated correction computation.

We introduce a set of lattice points � that are separated (on average) by a physical distance

constant in the volume, such that the number of points |� | ∝ + , that is, it grows proportionally with

the volume. On these point we introduce stochastic sources that satisfy

〈
[8 (G)[†9 (H)

〉

[
= X8 9XGH � for G, H ∈ �, (7)

where � is the identity matrix in spin and colour space. By contracting at the sink with stochastic

noise corresponding to each coordinate H ∈ � one obtains |� | ∝ + samples of the quark propagator,

one for each H ∈ �, from a single global-lattice inversion that is$ (+) computationally. Each sample

has a spurious contribution of stochastic nature from source points G ≠ H, which is suppressed

by averaging the quark propagator over a number of sources =src and does not contribute to the

expectation value. Mesonic two-point functions that contract two quark propagators require =src ≥ 2

to obtain an unbiased estimator, that in the case of the pseudoscalar-density two-point function reads

��
%% (G; H) =

1

=src(=src − 1)
∑

8≠ 9

Re
[
k
†
8
(G + H)k 9 (G + H)[†9 (H)[8 (H)

]
, (8)

where k8 (G) =
∑

H �
−1(G; H)[8 (H) and the double sum over 8 ≠ 9 can be computed in $ (=src) cost.

In this approach, since |� | ∝ + , efficient scaling of the solutions of the Dirac equation is

achieved. Moreover, � implicitly realises a domain decomposition by labelling each lattice point

with the closest H ∈ �.1 Eq. (8) is in principle valid for any G and H, but if only (G, H) pairs that are

in the same domain are considered then one can compute efficiently all the |� | ∝ + contributions

with a single $ (+) pass over the whole lattice. This realises the optimal volume scaling for the

contractions too. It also lowers the required =src since the “correct” source H is always the closest to

the sink G and spurious contributions are further suppressed by the longer source-sink separation.2

1Up to points equidistant from two or more H ∈ � that require additional conditions to be assigned to a domain.

2These spurious contributions are only stochastic and do not modify the expectation value, although we note that they

can have different quantum numbers and decay slower than the correlator being estimated.
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1

Amax =
√

21/2

H ∈ �

G

Figure 1: Sketch of the estimator with a grid of point sources over a two-dimensional window of the lattice.

The set � of source points ∈ � is a regular grid with spacing 1 and even point only. A mesonic two-point

function is evaluated at sink point G that is in the domain defined by H ∈ � and within a distance Amax from H.

One of the spurious contributions from the “wrong” source is shown in light grey.

Moreover, it implies Amax = minG,H∈� |G − H |/2, that is, the minimum of the semidistance of points

in �. Therefore, � has to be sparse enough for correlators at the relevant radial separations A ≤ Amax

to be accessible.

We study this setup on two sets of a few master fields whose parameters are given in table 1.

The master fields in both sets are hypercubic boxes with equal extent in each dimension denoted

by !, such that the volume is + = !4. The ! = 1920 master fields denoted by B (=cnfg = 2) have

exactly 16 times, twice in each dimension, the volume of the ones with ! = 960 in set A (=cnfg = 5)

and otherwise identical parameters, and we can thus define equivalent �s on both sets and study the

volume scaling. We employ U(1) noise that satisfies eq. (7). The simplest choice for � is a regular

grid with spacing 1, which matches the domain decomposition proposed in ref. [1], with 1 = 480

being a suitable choice in our case. However, the definition of � is more flexible. In this work, we

employ a grid with only even (or equivalently odd) points, which results in Amax =
√

21/2 ≃ 33.940

instead of 1/2 = 240, at the cost of halving the number of points on the grid.3 The total number

of points is thus |� | = (!/1)4/2 that evaluates to 8 and 128 for A and B respectively. We fix

=src = 2 and with the current precision we do not observe deviations from the expected behaviour,

especially at A close to Amax, that can be attributed to spurious contributions. Further optimisation

such as systematically and exactly removing the closer spurious contributions, e.g. with hierarchical

probing [11], are not explored here.

The statistics obtained with a single source, e.g. eight points on each master field in A, is limited

by the need of balancing the density of � with a lower limit on the Amax suitable to extract long-range

physics. To increase the statistics we simply propose to recompute eq. (8) on =shift sources, each

time shifting � to have a distinct support. This is done four times for each direction in the case of A

and twice for each direction in B. An extra factor of two is obtained by pairing each even-only �

with the corresponding odd-only, leading to =shift = 512 and 32 for A and B respectively. Combined

with |� |, the final result is the same number of source points =point = 4096 for both volumes, on

3This results in a doubled |� |A4
max/+ density. Indeed, it corresponds to a �4 lattice (or equivalently �4 lattice) that

has the densest known packing of equal spheres in four dimensions [10].
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a regular grid with spacing 1shift = 120 and 240 for A and B respectively. Ignoring that on the A

lattices source points are on average twice as close and thus potentially more correlated than on B,

in our setup we have same statistics for each gauge field configuration for both A and B. Crucially,

thanks to the optimal volume scaling of the stochastic grid correlator, this matching statistic has

been obtained at an equivalent computational cost.

4. Master-field errors

The estimator in section 3 applied to the radial correlator leads to a collection of up to 4096

correlators for each master-field configuration on a regular grid of source points with spacing

1shift = !/8. Applying stochastic locality, the expectation value
〈
�̊ (A)

〉
is given up to volume-

suppressed corrections by the translation average

〈
�̊ (A)

〉
= ⟪�̊ (A)⟫ +$

(
+−1/2

)
=

1

+

∑

H∈�
�̊ (A; H) +$

(
+−1/2

)
(9)

where the H in �̊ (A; H) denotes the source point. The error of this estimator can be estimated applying

eq. (2) with O(H) = �̊ (A; H)

〈
[⟪�̊ (A)⟫ −

〈
�̊ (A)

〉
]2
〉
=

1

+



∑

|H | ≤'
⟪�̊ (A; H)�̊ (A; 0)⟫

2
+$

(
e−<'

)
+$

(
+−1/2

)
, (10)

where again the sum over the source coordinates H is performed over the grid of point sources.

Finding the optimal ' to truncate the sum in the r.h.s. has a clear analogy with the well-known Γ

method introduced by Wolff to deal with autocorrelation in Monte Carlo time and estimate an error

with less errors [12], and leads to a generalisation of the Madras–Sokal formula for the statistical

error of the error [13, 14]. This can be implemented in a resource efficient way by computing

the correlation between grid points with higher-dimensional fast Fourier transforms. The optimal

' depends on the observable. In particular, since each value of the correlator radial source-sink

separation A defines a distinct observable with different spacetime support, ' is a function of A.

Alternatively, one can apply a four-dimensional binning of the point sources in the grid into

blocks. For instance, blocks of size (240)4 bin 16 point sources on A and only one point source on

B according to the spacing 1shift in table 1, while blocks of size (480)4 bin 256 and 16 point sources

respectively. We tested these two bin sizes and observed that this leads to a stable error estimate. In

the following, we show results obtained in the more conservative case, that is, with blocks of size

(480)4.

We note that master-field error estimation can be combined with standard methods based on

an ensemble of gauge field configurations, e.g. with a five-dimensional variant of the Γ method in

spacetime coordinates and Monte Carlo time. Explorations in this direction can be found in ref. [15].

5. Numerical results

We computed <c , <# and 5c using position-space correlators on the sets of master fields

whose parameters are listed in table 1. The results for these hadronic observables are listed in table 2.

We employed the technique already studied in ref. [5] to extract the pion mass <c from the

long-distance behaviour in eq. (3a) of the position-space correlator �̊%% (A). In those proceedings
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simulations were performed on a dedicated HPC cluster at CERN. We gratefully acknowledge the computer

resources and the technical support provided by these institutions.
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