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Crystalline phases at finite winding densities in a quantum link ladder
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Condensed matter physics of gauge theories coupled to fermions can exhibit a rich phase structure,
but are nevertheless very difficult to study in Monte Carlo simulations when they are afflicted by a
sign problem. As an alternate approach, we use tensor network methods to explore the finite density
physics of Abelian gauge theories without dynamical matter. As a concrete example, we consider
the U(1) gauge invariant quantum link ladder with spin- 1

2
gauge fields in an external electric field

which cause the winding electric fluxes to condense in the ground state. We demonstrate how the
electric flux tubes arrange themselves in the bulk giving rise to crystalline patterns, whose period
can be controlled by tuning the external field. We propose observables to detect the transitions in
ground state properties not only in numerical experiments, but also in future cold-atom realizations.
A systematic procedure for reaching the thermodynamic limit, as well as extending the studies from
ladders to extended geometries is outlined.

Introduction.– Finite chemical potentials are ex-
pected to give rise to novel phases and correlations other-
wise absent in the ground state of quantum field theories
or quantum many-body systems. Two physically relevant
examples are Quantum Chromodynamics (QCD) and the
Hubbard model. Markov Chain Monte Carlo (MCMC)
methods to solve QCD regulated on the lattice can ex-
plain properties of hadrons, such as their masses, binding
energies, and scattering cross-sections. At finite baryon
densities, µB , relevant for e.g., the description of the in-
terior of neutron stars or the very early universe, the
MCMC methods suffer from the infamous sign problem.
The Hubbard model, on the other hand, is a pedagogical
system to describe a variety of phases of strongly corre-
lated electrons. At finite doping, it is expected to host
high-temperature superconducting phases and provide a
model for many physically interesting materials. Once
again, the regime of non-zero doping is difficult to inves-
tigate numerically using Monte Carlo methods due to the
sign problem.

Finite density physics of scalar and fermionic theories
in various space-time dimensions have been extensively
investigated [1–7]. We extend such studies which dealt
with point particles to pure gauge theories without dy-
namical matter fields containing loop operators. The
simplest scenario is an U(1) Abelian lattice gauge theory
in a finite volume and in 2+1 dimensions, where gauge-
invariant winding electric flux strings can be excited by
coupling a chemical potential to each of the global U(1)
centre-symmetry generators. Each sector is labelled by a
set of integers (Z1,Z2), indicating the number of wind-
ings in a specified spatial direction. Moreover, these
sectors are topological in nature, and states in a given
winding number sector cannot be smoothly deformed to
another sector. Further, the electric flux tubes are non-

local extended excitations, unlike the point-like bosonic
or fermionic particles, and their properties at finite den-
sities could in principle be considerably different.

Flux tubes have been played a prominent role in the
description of various physical phenomena. Nielsen and
Olesen [8] introduced the field theory of a vortex-line
model, also identified with dual strings. These are flux
tubes, similar to the ones that occur in the theory of
type-II superconductors, and are responsible for most of
the low-energy physics in the strong coupling limit. Clas-
sical and semi-classical analysis involving electric fluxes
interacting with a gas of monopoles, giving rise to con-
finement have been discussed in [9, 10]. Non-abelian gen-
eralizations of such operators, called disorder operators,
were introduced by ’t Hooft to analyse the phases of non-
Abelian gauge theories [11].

We consider the condensed matter physics of these flux
tubes in 2+1-dimensional U(1) gauge theory. Previous
studies have used the path integral formulation by ei-
ther exploiting the dual representation of Abelian lattice
gauge theories [12, 13], or by using the multilevel algo-
rithm [14] and explored properties such as the profile of
the electric flux lines connecting static charges, or the
variation of the potential between two charges with in-
creasing the representation of the charges. Among other
things, this provides valuable insights about the attrac-
tive or repulsive nature of the flux tubes.

In this article, we use the Hamiltonian formulation
of a U(1) quantum link ladder (QLL) [15]. This the-
ory is known to have novel crystalline confined phases
which carry fractional electric flux excitations [16], pos-
sess anomalously localized excited states [17], and are the
building blocks of spin-ice compounds [18, 19]. While it
is known how to simulate the theory with an improved
cluster algorithm at zero and finite temperature [20], this
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cal potential is increased, the oscillations rise again with
a much faster rate, as already apparent from the earlier
observables.

Conclusions and Outlook.– In this Letter, we have ex-
plored the phenomenon of string condensation in an U(1)
Abelian lattice gauge theory realized as a spin-1/2 QLM.
We have demonstrated that our ladder system posses a
smooth thermodynamic limit for a fixed Ly. The sys-
tem starts to condense strings with the increase in µx,
and the system exhibits at least three different regimes
before saturation is reached. Through the profiles of the
horizontal and vertical electric fluxes, we have shown that
the winding strings arrange themselves in patterns which
behave distinctly in each of the three regimes. In the di-
lute regime, isolated string excitations can be identified,
while the half-filled regime is marked by an approximate
restoration of translation invariance. In the dense re-
gion, there is a dynamically generated length scale which
changes rapidly with µx before the system saturates. Our
observables are perfectly suited to be measured in cold
atom experiments of lattice gauge theory models [28–33].

There are several directions in which the analysis can
be extended. The most obvious is to repeat the calcu-
lation for larger ladders and study the different regimes
that manifest themselves. Other observables, such as the
central charge, and finite size scaling of correlation func-
tions could be useful in attempting to understand if there
is a phase transition between the different regimes. The
nature of the origin of the length scale in the dense re-
gion is also an open question, which might be understood
better from an effective field theory approach. Another
obvious question is if similar phenomena can also be ob-
served in QLMs in the spin-1 representation, which are
very similar to the lattice gauge theory formulation by
Wilson.
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flippable in the anti-clockwise fashion. Interestingly, this
observable shows a staggered behaviour between zero and

non-zero values for odd and even winding number of elec-
tric fluxes respectively. This is a clear indication of a co-
operative behaviour of the plaquettes across the lattice.


