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Abstract

We study a rich set of four-dimensional superconformal field theories (SCFTs) with both

central charges identical: a = c. These are constructed via the diagonal N = 2 or N = 1

gauging of the flavor symmetry G of a collection of N = 2 Argyres–Douglas theories of

type Dp(G), with or without adjoint chiral multiplets, in 2106.12579 and 2111.12092. We

compute superconformal indices of some theories where the rank of G is low, performing a

refined test for unitarity, and further determine the relevant and marginal operator content

in detail. We find that most of these theories flow to interacting SCFTs with a = c in the

infrared.
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1 Introduction

It is always a fruitful endeavor to study non-perturbative aspects of four-dimensional su-

perconformal field theories. From the non-perturbative perspective, it can be challenging

to determine the local operator spectrum, including subtle relations between operators and

the presence of renormalization group flows between different SCFTs. A systematic way to

tackle this problem is via utilizing the superconformal index [50, 59]. With this refined tool

in hand, we study the operator contents of a variety of 4d N = 1 and N = 2 superconformal

field theories with a = c.

In fact, a large class of 4d N = 2 SCFTs with identical central charges, a = c, are studied

in [47] via gauging the common flavor symmetry G of a collection of Dpi(G) Argyres–Douglas

theories. In a similar fashion, via gauging the common flavor symmetry in the N = 1 sense,

this construction has been further expanded to construct 4d N = 1 SCFTs with a = c in

[46].1 We find that almost all asymptotically-free or conformal gaugings, potentially with the

inclusion of adjoint-valued chiral matter, lead to 4d N = 1 SCFTs with a = c, if all of the pi
are coprime with the dual Coxeter number of G (h∨G). To verify that these infrared SCFTs

are indeed unitary interacting SCFTs, we must determine that there exists a non-anomalous

superconformal R-symmetry via the principle of a-maximization [42], and further that along

the flow into the infrared there are no operators that become free and give rise to such a

decoupled sector. Since free theories do not have a = c, their presence indicates that nor

would the interacting sector. In [46], it is confirmed that the Coulomb branch operators of

each Dpi(G) theory and the moment map operators do not cross the unitarity bound during

the flow. In this paper, we do a more refined check of unitarity of the 4d N = 1 theories

by determining their full superconformal indices, for the cases where the gauge group is of

sufficiently low rank.

In order to show that the 4dN = 1 SCFTs that we obtain in this manner truly are unitary

interacting SCFTs with a = c, we need a further check that goes beyond the operators in

the chiral ring. Certain unitarity constraints are not directly visible from the operators

in the chiral ring, but are reflected in the superconformal index [6, 29, 52]. We perform

this vital check in cases where the gauge group is low rank by computing the full N = 1

superconformal index. This relies on the known expressions for the superconformal indices

of the Dp(G) theories, for certain specific choices of p and G. In addition to determining

that the theory is interacting, the index also provides a wealth of information about the

operator content of the theory. When all fugacities are turned on, we can read off the precise

details of the relevant and marginal operators of the a = c theories. We refer to this process of

determining the operator content from the index as “operator spectroscopy.” We compute the

1Further 4d N = 2 SCFTs with a = c, arising from the class S perspective [34, 35], have recently appeared

in [44].
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indices for gaugings with both rational and irrational R-charges, including some of the N = 2

Γ̂(G) theories, and also for theories with additional adjoint chiral multiplets. In all cases,

we find that there does not exist any unitarity-violating term in the superconformal indices.

This procedure of operator spectroscopy enables us to determine interesting properties of

the theories, such as the structure of their conformal manifolds, and the superpotential

deformations that may trigger a flow to a new infrared SCFT. Intriguingly, we find that

many of these deformations preserve the a = c property, and we will explore the landscape

of such deformations in the upcoming paper [45].

In order to compute the superconformal indices for the N = 1 SCFTs that we consider,

we need to know the superconformal indices of the individual Dp(G) theories. Unfortunately,

the full superconformal indices for Dp(G) theories are unavailable in general. However, for

the D2(SU(3)) theories and the Dp(SU(2)) = (A1, Dp) theories, there are known N = 1

UV Lagrangian theories that have supersymmetry-enhancing flows to those N = 2 SCFTs

[2, 3, 9, 53, 54]. From this “Lagrangian description,” the superconformal indices can be

computed.2 As such, in this paper we focus on SCFTs that are constructed via a diagonal

N = 1 or N = 2 gauging of the common flavor symmetry of a collection of D2(SU(3)) and

Dp(SU(2)) theories.

The structure of the rest of the paper is as follows. In Section 2, we start by reviewing

the construction of the Γ̂(G) theories from [47] and the extension to the N = 1 SCFTs with

a = c that were discussed in [46]; these are the theories we explore throughout this paper.

In Section 3, we introduce the superconformal index and explain how the superconformal

index can detect the existence of non-unitary operators in the spectrum of the putative

infrared theory. We state in Section 4 the superconformal indices of the building block

Dp(G) theories that have been computed in the literature. We combine the Dp(G) indices to

study the D̂4(SU(3)) and Ê6(SU(2)) SCFTs in Section 5; this allows us to determine that

there are no non-unitary operators and to read off the exact operator content for low values

of the scaling dimension. In Section 6, we study the conformal manifolds for the N = 1

SCFTs with a = c obtained by conformal gauging of a collection of Dp(G) theories. In the

subsequent four sections, we apply the technique of operator spectroscopy to determine the

operator content of a variety of N = 1 SCFTs studied in [46]. We study theories built

out of D2(SU(3)) Argyres–Douglas SCFTs in Section 7; we explore theories built out of

the D3(SU(2)) theories in Section 8; in Section 9, we study gaugings involving D5(SU(2)),

together with the previously considered building blocks; in Section 10, we study theories

where the gauging also involves additional adjoint-valued chiral multiplets. To conclude, in

Section 11, we provide tables of the relevant and marginal operator content that we determine

from the technique of operator spectroscopy throughout this paper; we further provide some

2The Schur or Macdonald limit of the indices for a larger subset of Dp(G) theories is available in [4, 8, 13,

15, 16, 25, 31, 60, 61, 63, 66, 68].
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future applications of this knowledge of the operator content. We list in Appendix A the

fully flavor-refined indices for the theories we study in this paper.

2 SCFTs with a = c from N = 2 and N = 1 gaugings

In this paper, we exemplify the technique of operator spectroscopy in the context of the

N = 2 and N = 1 SCFTs with a = c that were discussed in [46, 47].3 The 4d N = 2 SCFTs

of interest are constructed out of the following building blocks: the Argyres–Douglas Dp(G)

theories [19, 20, 65, 69], the minimal (G,G) conformal matter theories [26, 55], and N = 2

vector multiplets. It was studied in [46] under what circumstances can one take a set of

such building blocks and gauge together all of the G flavor symmetries with N = 2 vector

multiplets such that one obtains a superconformal field theory.

To analyze this question, it is important to understand the physical properties of these

building blocks. The Dp(G) theories can be obtained from the class S perspective as com-

pactifications of the 6d (2, 0) SCFT of type G on a sphere with a regular maximal puncture

and an irregular puncture. The regular puncture provides the theory with a flavor symmetry

G with flavor central charge

kAD
G =

2(p− 1)

p
h∨G , (2.1)

where h∨G is the dual Coxeter number of G. The irregular puncture may also provide an

additional flavor symmetry factor, depending on p and G. We have summarized when these

extra flavor symmetries occur in Table 1.

G SU(N) SO(2N) E6 E7 E8

No additional symmetry (p,N) = 1 p /∈ 2Z+ p /∈ 3Z+ p /∈ 2Z+ p /∈ 30Z+

Table 1: The conditions required to be satisfied if the irregular puncture of the Dp(G) theory

does not contribute any flavor symmetry.

The minimal (G,G) conformal matter theories can be obtained from the class S perspec-

tive by starting from the 6d (2, 0) SCFT of type G and compactifying on a sphere with two

regular maximal punctures and one simple puncture.4 The regular punctures each contribute

34d SCFTs with a = c have also recently been discussed in [18, 23, 44].
4These theories are referred to as conformal matter as they, and their descendants via Higgs branch

renormalization group flows, also arise from the 6d (1, 0) theories known as minimal (G,G) conformal matter

[26] compactified on a torus. See [5, 27, 55, 56] and references therein for more details.
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a flavor symmetry G; both have the same flavor central charge

kL
G = kR

G = 2h∨G . (2.2)

There are additional Abelian flavor symmetries when G = SU(N), and an additional SU(2)

flavor symmetry when G = SU(2), though we shall not be concerned with those in this paper.

To obtain a conformal field theory, it is necessary for the one-loop β-function of the gauge

coupling for each introduced N = 2 vector multiplet to vanish: βG = 0. We assume that

an N = 2 vector multiplet is introduced that gauges the flavor symmetry of n copies of

Dpi(G) and m factors of the (G,G) minimal conformal matters which provide links between

two gauge nodes or from a gauge node to itself. Then the condition on the vanishing of the

one-loop β-function is, using the expressions for the flavor central charges in equations (2.1)

and (2.2),

βG = 0 ⇐⇒
n∑
i=1

2(pi − 1)

pi
h∨G + 2mh∨G = 4h∨G , (2.3)

where the RHS is the contribution from the introduced vector multiplet. It was shown in [46]

that there are only six solutions satisfying this equality for finite pi. The first four solutions

involve no copies of conformal matter, i.e., m = 0, and they can be written as the following

quivers, respectively, corresponding to D̂4(G), Ê6(G), Ê7(G), and Ê8(G) theories:

D̂4(G) : D2(G) G D2(G)

D2(G)

D2(G)

, Ê6(G) :
D3(G) G D3(G)

D3(G)

,

Ê7(G) :
D4(G) G D4(G)

D2(G)

, Ê8(G) :
D3(G) G D6(G)

D2(G)

.

(2.4)

When conformal matter is included we find that m ≤ 2, and the only two options are:

D2(G) G

D2(G)

, G . (2.5)

Here, a solid line that is not connected to anything on one side represents a (G,G) conformal

matter theory where only one of the G flavor symmetries has been gauged. To determine

all possibilities for superconformal theories that can be obtained by gauging together all of

the G flavor symmetries of a collection of such building blocks, we determine how each of
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these gauge nodes can be adjoined. Clearly the configurations in equation (2.4) cannot be

connected to any other gauge node, and the configurations with an open conformal matter

link can only be connected together in the following two ways

D2(G) G · · · G D2(G)

D2(G) D2(G)

,
G · · · G

G

. (2.6)

We refer to these theories as D̂N+3(G) and ÂN−1(G), respectively, where N is the number

of gauge nodes in the quiver. Thus, we can see that superconformal N = 2 quiver gauge

theories formed by gauging together copies of Dp(G) and (G,G) conformal matter have an

ADE-type classification, and we label them collectively as Γ̂(G) [46].

It turns out that a subset of the Γ̂(G) theories have identical central charges: a = c. These

cases occur when there are no (G,G) conformal matter theories involved in the gauging –

these are the configurations that were depicted in equation (2.4); i.e., when Γ = D4, E6, E7,

or E8.5 When gcd(pi, h
∨
G) = 1 then the central charges of the Dpi(G) building block become

ai =
1

48

(4pi − 1)(pi − 1)

pi
dim(G) , ci =

1

12
(pi − 1) dim(G) . (2.7)

In these circumstances, it is easy to see that the difference of the central charges of the gauged

theories are

48(c− a) = −2 dim(G) +
∑
i

(
4(pi − 1)− (4pi − 1)(pi − 1)

pi

)
dim(G)

= dim(G)

(
− 2 +

∑
i

(pi − 1)

pi

)
= 0 ,

(2.8)

where the first term comes from the vector multiplet and the last equality follows by applica-

tion of equation (2.3). We note that the gcd-condition between the pi and h∨G can be written

more succinctly as ∏
i

gcd(pi, h
∨
G) = 1 ⇐⇒ gcd(αΓ, h

∨
G) = 1 , (2.9)

where αΓ is the largest comark associated to the Dynkin diagram Γ. These a = c theories

have an interesting connection, in the Schur sector, to N = 4 super-Yang–Mills, which was

explored in [46] (see also [17, 38–40]), and to which we refer the reader for more details.

In [47], the authors considered an extension of the above analysis to gauging the building

blocks via an N = 1 vector multiplet instead of an N = 2 vector multiplet. In this case,

5These specific families of theories are sometimes known as the elliptic G-models [21]; for some of these

theories, aspects have been explored in [14, 17, 20, 22, 23, 27].
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we can also consider an additional building block: chiral multiplets transforming in a repre-

sentation R of G. The condition for the coupling of the introduced gauge node to be either

asymptotically-free or conformal is, schematically,

βG ≤ 0 ⇐⇒
∑
Dpi (G)s

2(pi − 1)

pi
h∨G +

∑
conformal
matters

2h∨G +
∑

chirals

I(R) ≤ 6h∨G , (2.10)

where the sums are over the different types of building blocks connected to that N = 1 gauge

node. Here we have used that the flavor central charge of a chiral multiplet in a representation

R of G is

kchiral
G = I(R) , (2.11)

where I(R) is the Dynkin index of R.

In this paper, we focus on the configurations that may permit identical central charges;

this means that we do not consider theories involving the conformal matter building blocks,

and the only chiral multiplets that we are allowed to include are adjoint-valued, as per the

analysis in [47]. Such gaugings can only involve a single gauge node and the condition on

the β-function in equation (2.10) becomes

βG ≤ 0 ⇐⇒
∑
Dpi (G)s

2(pi − 1)

pi
h∨G +

∑
chirals

2h∨G ≤ 6h∨G . (2.12)

It is straightforward to see that there can be at most six Dpi(G) theories and three adjoint-

valued chiral multiplets attached to the N = 1 gauge node [47]. The resulting quivers are all

of the form

Dp1(G) G Dp6(G)

na ≤ 3

· · ·

, (2.13)

where we denote gauge nodes with a background shading as N = 1 gauge nodes to differ-

entiate from the N = 2 gauge nodes (which are unshaded), and the dashed line indicates

na ≤ 3 adjoint chirals. The various combinations of pi and na were listed in [47], and we do

not repeat them here.

When the one-loop β-function for the gauge coupling vanishes (i.e., βG = 0) then the

gauge theory is conformal. If βG < 0, however, then we must consider the renormalization

group flow to the infrared fixed point of the gauged theory. This fixed point may or may not

realize an interacting SCFT. For example, the superconformal R-symmetry, as determined

via a-maximization [42], may be inconsistent or the infrared theory may involve a decoupled
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free sector. In [47], the analysis presented therein demonstrates that, if gcd(pi, h
∨
G) = 1 for

all of the pi involved in the gauging and there exists an interacting SCFT in the infrared

(without introducing new degrees of freedom such as flipper-fields), then the infrared SCFT

has identical central charges a = c. Interestingly, these conditions appear to be satisfied in

most cases where βG < 0 and one obtains vast families of 4d N = 1 SCFTs with a = c [47].

3 Unitarity and superconformal indices

The superconformal index counts short-multiplets up to recombination into long multiplets.

It admits a trace formula as follows: pick a pair of supercharges, Q, Q†, and consider the

index of the form

I(β;µ) = Tr(−1)F e−βδe−µiγi , (3.1)

where the trace is taken over the Hilbert space of the theory, F is the fermion number,

δ ≡ {Q,Q†}, γi are generators of the global symmetry algebras of the theory that commute

with Q,Q†, and µi are the corresponding chemical potentials. By the usual arguments

[50, 59, 67], the index only gets contributions from the states satisfying δ = 0, and thus

the index is independent of the fugacity β.

For the case of 4d N = 1 superconformal theory, the superconformal algebra is SU(2, 2|1)

which has the bosonic subgroup SO(4, 2) × U(1)R. There are two generators in the super-

conformal algebra that commute with Q, Q†. Choosing Q = Q̃−̇, we write the index (often

called the right-handed index) for a generic N = 1 SCFT as

I(t, y;v) = Tr(−1)F t3(R+2j2)y2j1
∏
i

vfii , (3.2)

where R is the U(1) R-charge, j1 and j2 are the Lorentz spins, and fi collectively denotes

the generators of the flavor symmetries of the theory. The trace is taken over the states with

scaling dimension ∆ satisfying

∆ =
3

2
R + 2j2 . (3.3)

The short superconformal multiplets that contribute to this right-handed superconformal

index, together with their contribution, are given in Table 2. It is convenient to define the

reduced superconformal index which is given by

Î = (1− t3y)(1− t3/y)(I − 1) . (3.4)

This form is useful since it removes the contributions from the conformal descendants.
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Despite the cancellations from the (−1)F factor, the superconformal index is still powerful

enough to determine part of the operator spectrum, in particular for the low-lying operators.

We study the spectrum of operators in great detail with the superconformal indices; more

specifically, we test the unitarity condition on the structure of the index that operators should

satisfy [6, 29]. This is important because it is possible for a “candidate” superconformal

theory to violate unitarity, which is not readily visible at the level of the chiral ring [52].

Furthermore, we investigate various chiral ring operators and observe chiral ring relations,

which lift some of the “classical” operators.

Short mult. CDI notation Unitarity condition Contribution to the index

Br(j1,0) LB1[j1, 0]
(r)
3
2
r

r ≥ 2
3(j1 + 1) (−1)2j1

t3rχ2j1+1(y)

(1− t3y)(1− t3/y)

Cr(j1,j2) LA`[j1, j2]
(r)

2+2j2+ 3
2
r

r > 2
3(j1 − j2) (−1)2j1+2j2+1 t

3(r+2j2+2)χ2j1+1(y)

(1− t3y)(1− t3/y)

Ĉ(j1,j2) A`A`[j1, j2]
( 2
3

(j1−j2))

2+j1+j2
– (−1)2j1+2j2+1 t

2j1+4j2+6χ2j1+1(y)

(1− t3y)(1− t3/y)

D(0,j2) B1A`[0, j2]
(− 2

3
(j2+1))

1+j2
– − t4j2+4

(1− t3y)(1− t3/y)

D(j1≥ 1
2
,0) A1B1[j1, 0]

( 2
3

(j1+1))

1+j1
– (−1)2j1

t2j1+2χ2j1+1(y)− t2j1+5χ2j1(y)

(1− t3y)(1− t3/y)

D(0,0) A2B1[0, 0]
( 2
3

)

1 –
t2

(1− t3y)(1− t3/y)

Table 2: List of N = 1 short multiplets that contribute to the right-handed index, the

unitarity conditions they satisfy, and their contributions to the right-handed index. The 4d

N = 1 short multiplet contributions to the superconformal index appear in [32]. Note that

the spins j1, j2 are integer-quantized in [24], whereas they are half-integer-quantized here.

Here we introduce some terms that, if they were to appear in the superconformal index,

would indicate that unitarity of the theory is violated. Any term of the form

tλχ2j1+1(y) (λ < 2 + 2j1) , (3.5a)

(−1)2j1+1tλχ2j1+1(y) (2 + 2j1 ≤ λ < 6 + 2j1) , (3.5b)

reveals the existence of non-unitary operators [6, 29]. Here χ2j1+1(y) indicates the character

of the 2j1 + 1 representation of the Lorentz SU(2)1. For small values of j1, we provide the

form of the terms which are thus required to be absent below for convenience:

• tλ, λ < 2,

9



• −tλ, 2 ≤ λ < 6,

• tλχ2(y), λ < 7,

• tλχ3(y), λ < 4,

• −tλχ3(y), 4 ≤ λ < 8.

For a sample of the theories with a = c that we construct by gauging Dp(G) theories, we

confirm that they indeed pass this refined unitarity test. In particular, we checked explicitly

for those with low rank G by verifying that their superconformal indices do not contain any

terms violating unitarity. This goes beyond the study of the chiral operators from [46].

4 Superconformal indices of N = 2 Dp(G) theories

To determine the superconformal indices of the N = 1 gaugings that we consider in this

paper, we first collect the superconformal indices of some individual Dp(G) theories. We

define the superconformal index of an N = 2 SCFT as

I = Tr(−1)F t2(∆+j2)y2j1v2R−r , (4.1)

where R, r denote the Cartan generators of the SU(2)R × U(1)r symmetry. The index gets

contributions only from the the states satisfying6

∆− 2j2 − 2R− r/2 = 0. (4.2)

In particular, we consider D2(SU(3)), D3(SU(2)), and D5(SU(2)) theories.7 The (re-
duced) N = 1 superconformal indices of these theories are given following [2, 53]:

ÎD2(SU(3)) = t3v−3 + t4
(
v2χsu3,8 − v−1χ2(y)

)
+ t5v + t6

(
v−6 − χsu3,8(z1, z2)− 1

)
+ t7χ2(y)

(
v2 − v−4

)
+ t8

(
2v−2 + v4χsu3,27(z1, z2)

)
+ t9

(
v−9 − v−3 − χ2(y)

)
+O

(
t10
)
,

(4.3a)

ÎD3(SU(2)) = t8/3v−8/3 − t11/3v−2/3χ2(y) + t4v2χsu2,3(z) + t14/3v4/3 + t16/3v−16/3

− t6 (χsu2,3(z) + 1))− t19/3v−10/3χ2(y) + t7v2χ2(y) + t22/3v−4/3

+ t8
(
v4χsu2,5(z) + v−2 + v−8

)
− t26/3v−8/3 − t9

(
1 + v−6

)
+O

(
t
28
3

)
,

(4.3b)

ÎD5(SU(2)) = t12/5v−12/5 + t16/5v−16/5 − t17/5v−2/5χ2(y) + t4v2χsu2,3(z)− t21/5v−6/5χ2(y)

+ t22/5v8/5 + t24/5v−24/5 + t26/5v4/5 + t28/5v−28/5 − t29/5v−14/5χ2(y)

− t6 (χsu2,3(z) + 1) +O(t32/5) ,

(4.3c)

6Our normalization of U(1)r is chosen such that the Coulomb branch operators have scaling dimension

∆ = −r/2.
7These theories are often referred to under different names. In particular, D2(SU(3)) = (A1, D4),

D3(SU(2)) = (A1, A3) = (A1, D3), and D5(SU(2)) = (A1, D5).
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where χ2j1+1(y) is the character for the 2j1 + 1-dimensional representation of the SU(2)1

factor of the Lorentz group, χsuN ,R(z1, · · · , zN−1) is the character of the representation R of

SU(N), v is associated to the U(1) flavor symmetry

F = −r + 2R , (4.4)

coming from the decomposition of the N = 2 R-symmetry, and z1, · · · zN−1 are the fugacities

of the SU(N) flavor symmetry.8

To introduce and explain the concept of operator spectroscopy, such as in [6, 58], we

first explain how the relevant and marginal operator content of the Dp(G) SCFTs can be

determined from the indices in equation (4.3). We can already see some interesting and

noteworthy information from these expressions. For example, the moment map operator µ

contributes to the index as t4v2. We can see that D2(SU(3)), D3(SU(2)), and D5(SU(2)) each

have no operator Trµ2, as there is no t8v4 term appearing in either index; these operators

are lifted from the spectrum due to a chiral ring relation (also known as the Joseph relation)

µ2
∣∣∣
I2

= 0 . (4.5)

Here, the Joseph ideal I2 is defined via

Sym2(adj) = [2 · adj]⊕ I2 , (4.6)

where [2 · adj] denotes the representation that has highest weight being twice of the Dynkin

indices for the adjoint representation. It is well-known that this relation is true for all the

N = 2 theories with Higgs branch given as the one-instanton moduli space for G, which

is identical to the minimal nilpotent orbit of G. In fact, for those theories the only non-

vanishing part of the k−fold product of the moment map operator is in the representation

[k ·adj], which can be deduced from the universal formula for the Higgs branch Hilbert series

[10, 41, 48, 49, 64] or Hall–Littlewood index [33, 36]

IHL(τ) =
∞∑
k=0

χ[k·adj]τ
2k , (4.7)

where the moment map µ contributes χ[adj]τ
2. In particular, the index shows, for all k, that

Trµk = 0 , (4.8)

for the Dpodd(SU(2)) and D2(SU(3)) theories since their Higgs branches are the SU(2) and

SU(3) (centered) one-instanton moduli spaces, respectively. In fact, the relation in equation

8The U(1) flavor symmetries are normalized differently from [53]. Our v corresponds to their v−2.
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(4.8) holds for all the Dp(G) theories with (p, h∨) = 1 since their Higgs branches are given

by a nilpotent orbit.

Additional relations among the BPS operators (beyond the Higgs branch operators) in

the Argyres–Douglas theories can be deduced [62, 70]. To do this, it is useful to rewrite the

superconformal indices of the above N = 2 SCFTs in terms of their short multiplet contents.

For the theories we consider, we have

ID2(SU(3)) = PE
[
χadjB̂1 + E− 3

2
+ Ĉ0(0,0) − B̂2(1 + χadj)− B1,−2(0,0)

− χadjB1,− 3
2

(0,0) − C 1
2
,−1( 1

2
,0) − Ĉ1(0,0)χadj +O(t11)

]
,

(4.9)

ID3(SU(2)) = PE
[
χadjB̂1 + E− 4

3
+ Ĉ0(0,0) − B̂2 − B1,− 5

3
(0,0)

− χadjB1,− 4
3

(0,0) − C 1
2
,− 5

6
( 1
2
,0) − Ĉ1(0,0)χadj +O(t10)

]
,

(4.10)

ID5(SU(2)) = PE
[
χadjB̂1 + E− 6

5
+ E− 8

5
+ Ĉ0(0,0) − B1,− 8

5
(0,0)χadj − B̂2

− B1,− 7
5

(0,0) − B1,− 9
5

(0,0) − B1,− 11
5

(0,0) +O(t9)
]
.

(4.11)

Here, the PE stands for the plethystic exponential and we used various symbols for the short

multiplets (in the notation of [28]) to denote their indices [33]. See Table 3 for details. In the

expressions (4.9) (4.10), and (4.11), the multiplets with the positive sign can be thought of

as generators and the ones with minus sign as relations. For example, the B̂1 is a conserved

current multiplet for the SU(2) or SU(3) flavor symmetry. We see there is a term B̂2 with

negative sign, which translates to the Joseph relation, in equation (4.5), for the Higgs branch

operators. The index also allows us to study relations beyond the Schur sector, as discussed

in [62, 70]. See also [11] for a detailed study on the operator spectrum of minimal Argyres–

Douglas theory.

The Er multiplet contains the Coulomb branch operator u with dimension ∆ = −r, which

is the top component in this multiplet.9 In terms of N = 1 multiplets, it decomposes as

E−r → B r
3

(0,0) ⊕ B r+1
3

(0, 1
2

) ⊕ B r+2
3

(0,0) . (4.12)

The N = 1 superconformal primary of the first multiplet is u, and that of the next two

are Qu and Q2u, respectively, where Q is the N = 2 supercharge which is not the N = 1

supercharge.

9As we are considering the right-handed index, we are sensitive to the anti-holomorphic E-multiplets;

equation (4.12) describes the decomposition of the E-multiplet, however we will generally abuse notation and

write the E , and its superconformal primary, without the bars.
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Short mult. CDI notation Contribution to the index

B̂R B1B1[0; 0](R;0) −t2+4Rv2(R−1) + t4Rv2R

(1− t3y)(1− t3/y)

B1,r(0,0) LB1[0; 0](1,−r) − t
4−2rv2r(t2 − v2)(1 + t2v4 − tv2χ2(y))

(1− t3y)(1− t3/y)

ĈR(0,0) A`A`[0; 0](R;0) t6+4Rv2R−2(t2−v2)(1−tv2χ2(y))
(1−t3y)(1−t3/y)

CR,r(j1,0) LA`[j1; 0](R;−r) (−1)2j1t6−2r+4Rv2(R+r−1)(t2 − v2)(1 + t2v2 − tv2χ2(y))χ2j1(y)

(1− t3y)(1− t3/y)

Er LB1[0; 0](0;−r) t−2rv2r(1 + t2v4 − tv2χ2(y))

(1− t3y)(1− t3/y)

Table 3: List of N = 2 short multiplets that appear in the indices in equations (4.9), (4.10),

and (4.11), and their contributions to the index [33]. We denote the charge from the U(1)

R-symmetry as r and the charge from the SU(2) R-symmetry as R.

5 N = 2 SCFTs: D̂4(SU(3)) and Ê6(SU(2)) theories

Before studying the spectrum of various N = 1 superconformal field theories with a = c,

we first look into the spectrum of N = 2 SCFTs of type Γ̂(G) considered in [47]. With the

building blocks in hand, we study the D̂4(SU(3)) theory and the Ê6(SU(2)) theory. The

D̂4(SU(3)) theory can be constructed via gauging four copies of D2(SU(3)), whereas the

Ê6(SU(2)) theory can be constructed with three copies of D3(SU(2)):

D̂4(SU(3)) : SU(3)D2(SU(3)) D2(SU(3))

D2(SU(3))

D2(SU(3))

, (5.1a)

Ê6(SU(2)) :
SU(2)D3(SU(2)) D3(SU(2))

D3(SU(2))

. (5.1b)

The superconformal indices are computed utilizing the expression

IN=2 =
1

|WG|

∮
[dz]G IGvec(z)

n∏
i=1

IDpi (G)(t, y; z, v), (5.2)
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where IGvec(z) denotes the index for the vector multiplet (for gauge group G) given as

IGvec(z) = PE

[
−t3y − t3/y + 2t6 + t2v−2 − t4v2

(1− t3y)(1− t3/y)
χG,adj(z)

]
, (5.3)

and where [dz]G is the integration measure for G:

[dz]G =
r∏
i=1

dzi
2πizi

∏
α∈Roots

(1− zα) . (5.4)

Here, |WG| is the dimension of Weyl group of G, r is the rank of G, and the product is over all

roots of G. Furthermore, z denotes the fugacities of G, and PE is the plethystic exponential.

5.1 D̂4(SU(3)) theory

Applying the formula in equation (5.2), we find that the reduced index of D̂4(SU(3)) is

ÎD̂4(SU(3)) = 4t3v−3 + t4
(
v−4 − 4v−1χ2(y)

)
+ t5

(
4v − v−2χ2(y)

)
+ 11t6v−6

+ t7
(
4v−7 + χ2(y)

(
v2 − 17v−4

))
+ t8

(
v−8 + 27v−2 + 2v4 − 8v−5χ2(y) + 6v−2χ3(y)

)
+ t9

(
4v−3 + 24v−9 + χ2(y)

(
−16 + 5v−6

)
+ 4v−3χ3(y)

)
+O(t10).

(5.5)

Let us explain some of the operator spectrum that we observe from the index:

• 4t3v−3: This term comes from the Coulomb branch operators (i.e., the N = 2 chiral

operators) ui of dimension 3/2 in each of the four D2(SU(3)) theories.

• t4v−4: It is associated to the operator Trφ2, where φ is the adjoint chiral in the N = 2

vector multiplet.

• 4t5v1: It arises from the N = 2 super-descendants of the Coulomb branch operators

in the first bullet point. These are Q2ui, where Q is the N = 2 supercharge of each

D2(SU(3)) theory with non-zero j2 and non-trivial N = 2 U(1) R-charge.

• 11t6v−6: This term comes from ten marginal operators of the form uiuj and another

one given by Trφ3. The operators of the form Trφµi are absent due to the F-term

relation and the chiral ring relation in equation (4.8).

All relevant and marginal operators, including those with non-zero j1, are listed in Table 4.

For an N = 2 theory, we can take the Macdonald limit [33], which is defined as (t3y)→ 0

while (t3/y) = q and T = tv2y are held fixed. Then, the Macdonald index is given as

IMac = Tr(−1)F q∆−RTR−r/2 , (5.6)
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where the trace is taken over the operators with ∆−2j2−2R−r/2 = 0 and j1 +j2 +r/2 = 0.

We compute the Macdonald index of the D̂4(SU(3)) theory to be

IMac
D̂4(SU(3))

= 1 + (T + 2T 2)q2 + (T − T 3)q3 + (T + T 2 + 2T 4)q4

+ (T + T 2 − T 4 − T 5)q5 + (T + 2T 2 + 2T 3 + 2T 6)q6

+ (T + 2T 2 + 2T 3 − 2T 4 − 2T 5 − T 7)q7

+ (T + 3T 2 + 3T 3 − T 4 − 2T 5 + 2T 8)q8

+ (T + 3T 2 + 4t3 − 2T 4 − 4T 5 − T 6 − T 9)q9 +O
(
q10
)
.

(5.7)

We further take the Schur limit (T → 1) from the Macdonald index to obtain the Schur

index, which is defined as

ISchur = Tr (−1)F q∆−R . (5.8)

We compute the Schur index of D̂4(SU(3)) as

ISchur
D̂4(SU(3))

= 1 + 3q2 + 4q4 + 7q6 + 6q8 +O
(
q10
)
, (5.9)

which matches with the known result [47]. The Schur sector of any N = 2 SCFT is captured

by its vertex operator algebra (VOA) [7]. It would be interesting to directly construct the

VOA for the Γ̂(G) theories to gain further access on this theory.

5.2 Ê6(SU(2)) theory

We compute the reduced index of Ê6(SU(2)) theory and find it as

ÎÊ6(SU(2)) = 3t
8
3v−

8
3 − 3t

11
3 v−

2
3χ2(y) + t4v−4 + 3t

14
3 v

4
3 − t5v−2χ2(y) + 6t

16
3 v−

16
3

− 9t
19
3 v−

10
3 χ2(y) + t

20
3

(
3v−

20
3 + 3v−

2
3χ3(y)

)
+ t7v2χ2(y)

+ t
22
3

(
12v−

4
3 + 3v−

4
3χ3(y)

)
− 6t

23
3 v−

14
3 χ2(y) + t8

(
v−2 + 11v−8

)
+ t

25
3

(
3v−

16
3 − 6v

2
3

)
χ2(y) + 3t

26
3 v−

8
3χ3(y)− t9

(
1 + 19v−6

)
χ2(y)

+O(t10).

(5.10)

Let us explain some of the important operators that can be read off from the index:

• 3t8/3v−8/3: It arises from the Coulomb branch operator of dimension 3/2 in each N = 2

D3(SU(2)) theory, ui.

• t4v−4: It comes from Trφ2 where φ is the scalar in the N = 2 vector multiplet.

• 3t14/3v4/3: Super-partners of the Coulomb branch operators of each D2(SU(3)): Q2ui.
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• 6t16/3v−16/3: This term comes from products of Coulomb branch operators: uiuj.

All of the relevant and marginal operators, including those with a non-zero j1, are listed in

Table 4. We can also take the Macdonald limit of equation (5.10) to get the Macdonald index

of Ê6(SU(2)) theory, which is

IMac
Ê6(SU(2))

= 1 + Tq2 + Tq3 + (T − T 3)q4 + (T − T 3)q5 + (T + T 2)q6

+ (T + T 2 − T 3 − T 4)q7 + (T + 2T 2 − T 3 − T 4)q8 +O
(
q9
)
.

(5.11)

We can further take the Schur limit to obtain

ISchur
Ê6(SU(2))

= 1 + q2 + q3 + 2q6 + q8 +O
(
q9
)
. (5.12)

This result matches with the known result [17, 47]. The associated vertex operator algebra

(VOA) for this theory is given by the A(6) algebra of [30] and studied in detail in [14, 17]. It

would be interesting to reproduce the Macdonald index we presented above from the VOA

as was done in other AD theories [1, 61, 66, 68].

We can also consider the Hall–Littlewood limit of the superconformal index and thus

determine the operators which exist in that sector (quite often identical to the set of Higgs

branch operators) of the spectrum of the theory; for a = c theories (and beyond), this limit

has been investigated thoroughly in [44]. The Hall–Littlewood indices for D̂4(SU(2N + 1))

theories, which can be realized as genus-zero class S theories with Z2 twist lines, demonstrated

the presence of operators belonging to D-type multiplets. This demonstrated that, in contrast

to a common belief, the Higgs branch Hilbert series is different from the Hall–Littlewood

index, even for genus-zero class S theories. Among the Γ̂(G) theories, the Hall–Littlewood

indices indeed agrees with Higgs branch Hilbert series when Γ = E6, E7, E8; however, when

Γ = D4, they do not agree.

6 Conformal manifolds and conformal gaugings

The superconformal index allows us to use the technique of operator spectroscopy to de-

termine the low-scaling-dimension operator content of the theories that we consider. These

SCFTs are constructed by gauging together a collection of N = 2 Dp(G) theories via an

N = 1 or N = 2 vector multiplet. Understanding the operator content of the individual

Dp(G) theories provides a strong start: this we do by studying the reduced superconformal

indices in Section 4. However, upon gauging there are many subtleties to take into account;

the R-charges of the operators from each Dp(G) theory are shifted through a-maximization,

and non-trivial chiral ring relations amongst the operators of the gauged theory can rule

out naively expected operators. For this reason, the superconformal index is a vital tool to

determine both that the gauged theories are unitary and to extract the operator spectrum.
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However, in this section, we consider a slightly simpler class of theories obtained via

N = 1 gauging of a collection of Dpi(G) such that the one-loop β-function of the introduced

gauge coupling vanishes. Such pi were enumerated in [46]. For these theories, we now explore

the exactly marginal operators, and thus the structure of the N = 1 conformal manifold, that

can be determined via the study of the spectrum of Coulomb branch scaling dimensions of

each individual Dpi(G). When doing N = 1 conformal gauging, it is important to verify that

there exists at least one exactly marginal operator, otherwise the gauged theory does not, in

fact, give rise to an interacting SCFT [37, 51]. These can be determined independently of

the superconformal index, and we verify that the superconformal index for the single N = 1

conformal gauging that we determine (see Section 7.4) matches the counting done in this

section. We focus on theories with a = c, and thus it is necessary that gcd(pi, h
∨
G) = 1

for each pi. Analysis of all of the possible conformal gaugings in [46] leads us to conclude

that G = SU(N) is a necessary condition for a = c. There are eighteen different conformal

gaugings, and they contain the following possibilities for p:

p ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 20, 24, 42} . (6.1)

We refer to [46] for the complete list of combinations. To determine which products of

Coulomb branch operators are marginal, we actually only need to know the Coulomb branch

operators which have ∆ < 2. If Dp(SU(N)) is such that N > p, then the spectrum of

Coulomb branch operators, with ∆ < 2, contains one operator with each of the following

scaling dimensions:

∆≤2 =

{
p+ 1

p
,
p+ 2

p
, · · · , 2p− 1

p

}
, (6.2)

as can be observed from the general formula for the Coulomb branch scaling dimensions of

Dp(G):

C(p,G) =

{
j − h∨G

p
s
∣∣∣ j − h∨G

p
s > 1 , j ∈ Cas(G) , s = 1, · · · , p− 1

}
. (6.3)

Here, Cas(G) are the degrees of the fundamental Casimir invariants of G.

The number of marginal operators formed by the product of two Coulomb branch oper-

ators

uaub , (6.4)

of a Dp(N > p) theory is given by

#marginal(Dp(SU(N > p))) =

⌈
p− 1

2

⌉
. (6.5)

Next, we consider marginal operators formed from the product of two different Coulomb

branch operators belonging to two different Argyres–Douglas theories: Dp1(SU(N)) and
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Dp2(SU(N)). We consider N > p2 ≥ p1, and let ` = gcd(p1, p2) denote the greatest common

divisor. It is straightforward to see that the number of such marginal operators is

`− 1 . (6.6)

Combining these two results we can determine the number of marginal operators, formed

from the product of two Coulomb branch operators of the Dp(G) building blocks, of the

N = 1 gauged theory. We find

# marginal operators =
∑
pi,pj>i

(gcd(pi, pj)− 1) +
∑
pi

⌈
pi − 1

2

⌉
, (6.7)

where we assume that the pi are increasing p1 ≤ · · · ≤ p6 and that the gauge group is

SU(N > p6). Furthermore, the total number of U(1) flavor currents in the gauged theory is

the number of pi > 1 minus one, and thus we can see from equation (6.7) that the number

of exactly marginal operators in the theory after the conformal gauging is non-zero.

It remains for us to consider the number of marginal operators that exist when N < p.

There is a small finite number of such cases and in each the number of marginal operators

on the Coulomb branch can be determined exhaustively. We have verified that, in all cases,

the number of exactly marginal operators is strictly positive. Thus, all conformal (N = 1)-

gaugings of the common G flavor symmetry of a collection of Dpi(G) theories gives rise to an

interacting N = 1 SCFT.

7 N = 1 gaugings of multiple D2(SU(3))

Next, we turn to the analysis of the superconformal index for strictly N = 1 theories. We

begin by considering the four theories that are built out of between three and six copies of

the D2(SU(3)) theory via N = 1 gauging. The quiver diagrams of these theories are

SU(3)D2(SU(3)) D2(SU(3))

D2(SU(3))

, SU(3)D2(SU(3)) D2(SU(3))

D2(SU(3))

D2(SU(3))

,

SU(3)

D2(SU(3))

D2(SU(3))

D2(SU(3)) D2(SU(3))

D2(SU(3)) , SU(3) D2(SU(3))

D2(SU(3))D2(SU(3))

D2(SU(3))

D2(SU(3)) D2(SU(3))

.
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The index of the theory arising from gauging of n copies of the Dpi(G) theory via an N = 1

vector multiplet is given by the integral

I =
1

|WG|

∮
[dz]GI

G
vec(z)

n∏
i=1

IDpi (G)(t, y; z, vit
3εi) , (7.1)

where z denotes fugacities of the introduced gauge group G, v denotes those of the flavor

symmetries, |WG| is the dimension of Weyl group of G, [dz]G is the integration measure

(defined in equation (5.4)) and IGvec is the index for the N = 1 vector multiplet with gauge

group G which is given by

IGvec(z) = PE

[
−t3y − t3/y + 2t6

(1− t3y)(1− t3/y)
χG,adj(z)

]
, (7.2)

and PE is the plethystic exponential.

The vit
3εi term in the indices of the Dpi(G) theories arises from the mixing between the

UV R-symmetry and Abelian flavor symmetries which forms the superconformal R-charge:

U(1)IR
R = U(1)R + εiFi . (7.3)

In addition, there always exists one particular linear combination of the Fi that is anomalous.

It follows that all vi shall satisfy a corresponding relation; in turn, vi can be redefined into

fugacities of the anomaly-free flavor symmetries. For example, when considering three copies

of D2(SU(3)) gauged together, the diagonal U(1) generated by F1 +F2 +F3 is anomalous and

only the axial U(1)s generated by F1−F2 and F2−F3 remain as non-anomalous symmetries

of the gauged theory. The diagonal U(1) anomaly imposes the condition that∏
i

vi = 1 , (7.4)

and the index recombines into fugacities of the two axial U(1)s,

ṽi = v−1
i vi+1 . (7.5)

In this section we typically turn off the fugacities of the U(1)s, i.e.,

ṽi = 1, (7.6)

as the way in which they enter the index is not of key importance for the purposes of

determining unitarity or the spectrum of relevant/marginal operators. As usual, we refer to

the version of the index obtained in this way as the unrefined index. In Appendix A, we list

the full, refined, expressions for completeness.
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7.1 Gauging 3 copies of D2(SU(3))

We first compute the reduced index of the theory with three copies of D2(SU(3)) glued

together via N = 1 gauging. The coefficients εi of the flavor mixing to the infrared R-charges

are determined solely by the anomaly-free condition as:

εi = −1

3
, i = 1, 2, 3 , (7.7)

where we note that no operator crosses the unitarity bound along the flow into the infrared.

From the mixing parameters, we can determine the R-charge of the various relevant operators

after the gauging. We find

R(µi) =
2

3
, R(ui) = 2 , R(Qi) = −1

3
, (7.8)

for the R-charges of the moment maps, the Coulomb branch operators, and the leftover

N = 2 supercharges. Computing the reduced unrefined index from the integral in equation

(7.1), we find

Î(2,2,2) = 6t4 − 3t5χ2(y) + 3t6 − 3t7χ2(y) + 12t8 − 11t9χ2(y) +O(t10) . (7.9)

The first term 6t4 comes from the operators of the form Trµiµj 6=i and the Q2ui. The ui where

i = 1, 2, 3 denotes the single Coulomb branch operator in each of the D2(SU(3)) building

blocks, each with scaling dimension ∆ = 3
2
; Q2ui is a superconformal descendant in theN = 2

theory, however the E-multiplet decomposes as in equation (4.12) when the gauging breaks

the symmetry to N = 1, and Q2ui corresponds to the primary of an N = 1 multiplet. The

three marginal operators that contribute to the t6 term correspond to the Coulomb branch

operators, ui. In fact, there are two more marginal operators

Trµ1µ2µ3 , Trµ3µ2µ1 , (7.10)

that are neutral under both Abelian flavor symmetries F1−F2 and F2−F3. The contributions

from these operators are canceled precisely by the negative contributions from the two U(1)

current multiplets. We do not find the other operators of the form Trµiµjµk as they are

lifted by a chiral ring relation between the adjoint part of µ2 in the D2(SU(3)) theories, as

we discuss around equation (4.5). There are some other operators which we might expect to

contribute to the index in equation (7.9), and for which we now discuss the expected reason

for their absence. There are three operators involving the moment maps and the gaugino:

Trλµi. We would expect these operators to contribute to the index as

− t5(v2
1 + v−2

1 v2
2 + v−2

2 )χ2(y) , (7.11)

where we have restored the U(1)2 flavor symmetry fugacities.10 However, we can see that

the superconformal index of the D2(SU(3)) theory, which is written in equation (4.3), has a

10We emphasize that these are the fugacities associated to the non-anomalous axial U(1) symmetries – for

convenience, we have slightly abused notation by dropping the tildes compared to equation (7.5).
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term t7χ2(y)v2, which, after gauging, contributes to the t5χ2(y) term as in equation (7.11),

where the overall coefficient is instead +1. We expect that these operators pair up to form

long multiplets after gauging, and thus they no longer contribute to the index, which is only

sensitive to (certain) short multiplets, as discussed. We note that it is necessary to go to the

flavor-fugacity-refined index to see that it is the Trλµi operators that recombine into long

multiplets, and not the Qui operators.

To determine the superconformal multiplets that generate the ring of short multiplets,

and the relations among them in this ring, it is often helpful to take the plethystic logarithm

of the superconformal index. We again reduce by multiplying by (1−t3y)(1−t3/y) to remove

the contribution from conformal descendants, which renders the generators and ring relations

more clearly. We define the reduced plethystic log of the superconformal index as

Ĩ ≡ (1− t3y)(1− t3/y) PLog[I] . (7.12)

As expected, PLog is the plethystic logarithm, that is, the inverse of plethystic exponential.

For the theory we are discussing here, we find

Ĩ(2,2,2) = 6t4 − 3t5χ2(y) + 3t6 − 3t7χ2(y)− 9t8 + 7t9χ2(y) +O(t10) . (7.13)

In fact, one can identify which short multiplets belonging to the 4d N = 1 superconformal

algebra contribute to each term of the superconformal index up to some low order in t. The

contribution of each 4d N = 1 short multiplet to the superconformal index is summarized in

Appendix A of [32], which we repeat with our notational conventions in Table 2 of this paper.

Up to tr<8 order, we identify which short multiplets contribute to the reduced plethystic

logarithm as follows:

Ĩ(2,2,2) = 6B 4
3

(0,0) + 3B 5
3

( 1
2
,0) + 5B2(0,0) + 2Ĉ(0,0) + 3B 7

3
( 1
2
,0) +O(t8) . (7.14)

However, the problem of determining the multiplet spectrum from the superconformal index

does not have a unique solution; in this case, an ambiguity first arises at the order of O(t8).

There are four possible short multiplets

C− 1
3

(0,1), C 2
3

(0,0), D(0,1), −B 8
3

(0,0) (7.15)

that may contribute to the −9t8 term from the index. Since D(0,1) comes from the higher-

spin free field [24], it is absent for any interacting theory. Despite that we cannot give a

full-proof rigorous argument, we give a heuristic reasoning why we think that there are no

C-type multiplets. This is because we find that from the refined index (see equation (A.1))

by turning on all the flavor fugacities, we see that the t8 term naturally arises from the

products of B 4
3

(0,0), while the OPE of B 4
3

(0,0) × B 4
3

(0,0), the B 8
3

(0,0) multiplet appears but the
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C− 1
3

(0,1), C 2
3

(0,0) multiplets are not present. As the six operators that contribute at order t4

are of the form

Q2ui and Trµiµj 6=i (i, j ∈ {1, 2, 3}), (7.16)

we would naively expect that there exist 21 operators at order t8:

(Q2ui)(Q
2uj), (Q2ui) Trµjµk 6=j, (Trµiµj 6=i)

2. (7.17)

However, we know that (Q2ui)
2 from each D2(SU(3)) theory are absent, and we expect that

(Q2ui) Trµjµk 6=j only exists if i, j, and k are all distinct, since otherwise it would behave

like a mixed Coulomb–Higgs operator of one of the D2(SU(3)) building blocks. Altogether,

this gives 9 relations at order t8, which is reflected in the −9t8 term in the plethystic log.

Therefore, we claim that the −9t8 term appears in the index comes entirely from −B 8
3

(0,0).

Hence, while naively there would be 6× 7/2 = 21 B 8
3

(0,0) multiplets in the theory, there are

only 12 of them present.

7.2 Gauging 4 copies of D2(SU(3))

In an analogous manner, we find that the reduced index of the theory constructed via gluing

four copies of D2(SU(3)) by N = 1 gauging is

Î(2,2,2,2) = t
9
2 (8− 4χ2(y)) + 3t6 + t9 (46− 35χ2(y) + 6χ3(y)) +O(t

21
2 ) . (7.18)

There are six marginal operators of the form Trµiµj, where we recall that the Trµ2
i operators

are projected out by the chiral ring relation of D2(SU(3)), and there are three non-anomalous

U(1) flavor symmetries from Fi −Fi+1; thus, we expect that the contribution to the t6 term

is 6 − 3 = 3, which agrees with equation (7.18). The t7χ2(y)v2 term in the index of each

D2(SU(3)) contributes to the index of the gauged theory as the term 4t6χ2(y); similarly

to the gauging of three copies of D2(SU(3)), this is canceled by the contribution from the

four operators of the form Trλµi. There are eight relevant operators, among which four of

them are the Coulomb branch operators of each individual D2(SU(3)) theory. The other four

relevant operators are the N = 2 superpartners of the Coulomb branch operators of each

D2(SU(3)) theory before gauging.

We write the reduced plethystic log of the index as

Ĩ(2,2,2,2) = t
9
2 (8− 4χ2(y)) + 3t6 − 3t9χ2(y) +O(t

21
2 ) . (7.19)

At low orders in t, the superconformal multiplets generating the chiral ring can be determined

unambiguously from the index, and we find that it can be written as

Ĩ(2,2,2,2) = 8B 3
2

(0,0) + 4B 3
2

( 1
2
,0) + 6B2(0,0) + 3Ĉ(0,0) +O(t9) . (7.20)
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In this expression, each of the listed short multiplets provides a shorthand for the plethystic

logarithm of the contribution of that multiplet to the superconformal index, as summarized

in Table 2. Thus it is easy to see that the spectrum of low-scaling dimension multiplets listed

here reproduces the plethystic log in equation (7.19).

7.3 Gauging 5 copies of D2(SU(3))

At this point we expect that the reader is familiar with the procedure of using the expression

in equation (7.12) to determine the reduced superconformal index. Then, without further

ado, we find the reduced index of the theory comprised of five copies of D2(SU(3)) glued

together by N = 1 gauging as

Î(2,2,2,2,2) = 5t
18
5 − 5t

21
5 χ2(y) + 5t

24
5 − 4t6 + 25t

36
5 − 25t

39
5 χ2(y) + t

42
5 (40 + 10χ3(y))

− 21t9χ2(y)− 20t
48
5 +O(t10) .

(7.21)

There are no marginal operators in this theory and four U(1) flavor symmetries contributing

(−4) at the t6 order. There are ten relevant scalar operators, where five of them are the

Coulomb branch operators in the individual D2(SU(3)) theories and they contribute to the

5t
18
5 term in the index. The other five relevant scalar operators correspond to the 5t

24
5 term,

and they arise from the N = 2 superdescendants of the Coulomb branch operators from

each D2(SU(3)) theory. The contributions of all of the relevant and marginal operators are

summarized in Table 4.

To find the generators and relations of the chiral ring, we determine that the reduced

plethystic log of the index is

Ĩ(2,2,2,2,2) = 5t
18
5 − 5t

21
5 + 5t

24
5 − 4t6 + 10t

36
5 + 4t9 − 15t

48
5 +O(t

51
5 ) . (7.22)

Up to t6 order, we find that the following N = 1 supermultiplets contribute to the index:

Ĩ(2,2,2,2,2) = 5B 6
5

(0,0) + 5B 7
5

( 1
2
,0) + 5B 8

5
(0,0) + 4Ĉ(0,0) +O(t

36
5 ) . (7.23)

7.4 Gauging 6 copies of D2(SU(3))

Finally, we consider the SCFT obtained via the conformal N = 1 gauging of the SU(3) flavor

symmetry of six copies of the D2(SU(3)) theory. The reduced superconformal index of the

resulting SCFT is

Î(2,2,2,2,2,2) = 6t3 − 6t4χ2(y) + 6t5 + 16t6 − 36t7χ2(y) + t8 (72 + 15χ3(y))

+ t9(26− 16χ2(y)) +O(t10) .
(7.24)

There are five U(1) flavor symmetries in this theory, each of which has a current contributing

(−1) to the t6 term in the index. There are 21 marginal operators obtained from the product
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of pairs of Coulomb branch operators: uiuj. All of the relevant operators contributing to this

index are the six Coulomb branch operators and their N = 2 superpartners. For each of these

gaugings of D2(SU(3)) theories, we have summarized the relevant and marginal operators

that contribute to the index in Table 4.

Although it begins to become ambiguous, we can perform the operator spectroscopy also

for the low R-charge irrelevant operators. We explore such an analysis in this example by

explaining the operators that contribute to the t7 and t8 terms that appear in the index in

equation (7.24). At t7, there are 36 operators of the form uiQuj that contribute the complete

−36χ2(y). Putatively, at t7, there also exist the operators Trλµi, however, as discussed

in Section 7.1, these recombine with the operators contributing χ2(y)t7 in each D2(SU(3))

theory to form long multiplets in the gauged theory; thus they do not contribute to the

superconformal index. At t8 the contributing operators are uiQ
2uj, QuiQuj|1, Trµiµj 6=i,

and QuiQuj 6=i|3, where we observe from the D2(SU(3)) superconformal index in equation

(4.3) that the putative operators QuQu|3 do not exist. The contributions from all of these

operators reproduce the t8 term in the index in equation (7.24).

We further find that the reduced plethystic log of the index is

Ĩ(2,2,2,2,2,2) = 6t3 − 6t4χ2(y) + 6t5 − 5t6 − 15t8 − 5t9χ2(y) +O(t10) , (7.25)

and we can also determine the short N = 1 multiplets that contribute up to order t8 as

follows:

Ĩ(2,2,2,2,2,2) = 6B1(0,0) + 6B 4
3

( 1
2
,0) + 6B 5

3
(0,0) + 5Ĉ(0,0) +O(t8) . (7.26)

It is straightforward to see that the superconformal primaries of the B1(0,0) multiplets are the

ui, of the B 4
3

( 1
2
,0) multiplets are the Qui, and of the B 5

3
(0,0) multiplets are the Q2ui. The five

Ĉ(0,0) multiplets, which have scalar fields as their superconformal primaries, contain the five

U(1) flavor currents. This matches precisely with the known decompositions of the N = 2

E-type multiplets into N = 1 superconformal multiplets, as given in equation (4.12).

8 N = 1 gaugings of multiple D3(SU(2))

Next, we turn to the study of a simple class of theories with G = SU(2). We consider several

theories built out of between two and four copies of the D3(SU(2)) theory via N = 1 gauging.

As in the previous section, this construction will generally give rise to non-Lagrangian theories

as p and N , i.e., 3 and 2, are coprime. Each index demonstrates the absence of non-unitary

contributions and the relevant and marginal operators that contribute to these three indices

are summarized in Table 5.
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8.1 Gauging 2 copies of D3(SU(2))

Two copies of D3(SU(2)) can be glued together via N = 1 gauging to give rise to a theory

with the following quiver diagram:

SU(2)D3(SU(2)) D3(SU(2)) .

The reduced index of this theory with two copies of D3(SU(2)) can be computed again by

an application of the integral formula given in equation (7.1). We find that

Î(3,3) = 3t3 − 2t
9
2χ2(y) + 3t6 − 2t

15
2 χ2(y) + t9 (3 + 2χ2(y)) +O

(
t
21
2

)
. (8.1)

The operators associated to each of these terms can be determined straightforwardly, as

described in the previous section, and we do not belabor the point here; the operators are

summarzied in Table 5. After taking the plethystic log and removing the contributions from

the conformal descendants, then we can see that it is written as

Ĩ(3,3) = 3t3 − 2t
9
2χ2(y)− 3t6 + 4t

15
2 χ2(y)− t9(1 + χ5(y)) +O(t

21
2 ) . (8.2)

From this expression we can perform the N = 1 multiplet spectroscopy unambiguously up

to order t6, and we find that the reduced plethystic log can be written as

Ĩ(3,3) = 3B1(0,0) + 2B 3
2

( 1
2
,0) − 2B2(0,0) + Ĉ(0,0) +O(t

15
2 ) , (8.3)

where we note again that we have abused notation and wrote the name of the supermultiplet

as a shorthand for the contribution to the reduced plethystic log of the superconformal index

from that multiplet, as summarized in Table 2.

The term −2B2(0,0) comes from two separate contributions: firstly, we get +2 from the

two Coulomb branch operators (u1, u2) in each D3(SU(2)). The other (negative) contribution

to this term comes from non-trivial relations between the chiral primaries in the operator

product expansion of B1(0,0)×B1(0,0). More precisely, the superconformal primaries belonging

to the 6B2(0,0) multiplets appearing in the OPE 3B1(0,0) ×sym 3B1(0,0) are, naively

(Q2u1)(Q2u1), (Q2u2)(Q2u2), (Q2u1) Trµ1µ2, (Q
2u2) Trµ1µ2, (Q

2u1)(Q2u2), (Trµ1µ2)2 .

The first four are lifted by the chiral ring relations. This is deduced by looking at the refined

index, given in equation (A.5). Hence, these chiral ring relations contribute −4B2(0,0). Thus,

we end up with −2B2(0,0).
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8.2 Gauging 3 copies of D3(SU(2))

Now we consider the theories constructed from three copies of the D3(SU(2)) theory via

N = 1 gauging, whose quiver diagram is given by

SU(2)D3(SU(2)) D3(SU(2))

D3(SU(2))

.

The reduced index of three copies of D3(SU(2)) glued together by N = 1 gauging is

Î(3,3,3) = t4 (6− 3χ2(y)) + t6 + t8 (21− 15χ2(y) + 3χ3(y)) + t9 (1− χ2(y)) +O(t10) . (8.4)

We can see that Î(3,3,3) evinces a one-dimensional conformal manifold, and the relevant and

marginal operators are listed in Table 5. We also list the reduced plethystic log and express

the short multiplets that contribute to the index at low orders:

Ĩ(3,3,3) = t4(t− 3χ2(y)) + t6 + t8(−6 + 3χ2(y)) + t9(1− χ2(y)) +O(t10) (8.5)

= 6B 4
3

(0,0) + 3B 4
3

( 1
2
,0) + 3B2(0,0) + 2Ĉ(0,0) +O(t8) . (8.6)

8.3 Gauging 4 copies of D3(SU(2))

We further consider the theories constructed with four copies of the D3(SU(2)) theory glued

via N = 1 gauging. The corresponding quiver diagram is

SU(2)D3(SU(2)) D3(SU(2))

D3(SU(2))

D3(SU(2))

,

and the reduced index of the theory thus obtained is

Î(3,3,3,3) = 4t3 − 4t
15
4 χ2(y) + 4t

9
2 + 7t6 − 16t

27
4 χ2(y)

+ t
15
2 (28 + 6χ3(y)) + t

33
4 (4− 12χ2(y)) + t9 (14 + 5χ2(y))

− t
39
4 (20 + 28χ2(y) + 16χ3(y)) +O(t10) .

(8.7)

We compute the reduced plethystic log of the index Ĩ(3,3,3,3) in order to exhibit the generators

and relations of the chiral ring:

Ĩ(3,3,3,3) = 4t3 − 4t
15
4 χ2(y) + 4t

9
2 − 3t6 + 2t

15
2 + t

33
4 (4 + 4χ2(y))

− t9(4 + χ2(y))− 4t
33
4 +O(t

41
4 ) .

(8.8)
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We can also identify every short multiplet containing relevant and marginal operators that

contributes to the superconformal index as follows:

Ĩ(3,3,3,3) = 4B1(0,0) + 4B 5
4

( 1
2
,0) + 4B 3

2
(0,0) + 3Ĉ(0,0) +O(t

15
2 ) . (8.9)

As expected, this is consistent with the decomposition of the N = 2 E-type multiplets

containing the low-scaling dimension Coulomb branch operators of each of the D3(SU(2))

building blocks, as in equation (4.12), combined with the non-anomalous U(1) flavor currents

that survive from the N = 2 R-symmetry after N = 1 gauging.

9 N = 1 SCFT constructions with D5(SU(2))

In this section, we consider examples where the gauging involves at least one copy of the

D5(SU(2)) theory. This is the theory with the largest value of p for which the superconformal

index can be computed in a reasonable timeframe. The first example, in Section 9.1, is the

first instance where we determine the index for gaugings involving differing pi, and as such

we find that the superconformal R-symmetry involves a mixing with irrational coefficients.

In the second example, we consider gauging together two copies of D5(SU(2)). The resulting

operators spectroscopy in these two cases is summarized in Table 6.

9.1 Gauging 2 copies of D3(SU(2)) and one D5(SU(2))

We consider the theory composed via gluing two copies of D3(SU(2)) and a single D5(SU(2))

together, via (N = 1)-gauging, which can be depicted as

SU(2)D3(SU(2)) D3(SU(2))

D5(SU(2))

.

(9.1)

We find the reduced superconformal index of this theory is

Î(3,3,5) = t3.05814 − t3.50969χ2(y) + 3t3.96124 − 2t3.99031χ2(y) + 2t4.01938

+ t4.07752 − t4.52907χ2(y) + t4.98062 − 2t6 + t6.05814 + t6.11627 +O(t6.48062) .
(9.2)

This theory is an example where the mixing coefficients εi are irrational, and thus the theory

has irrational charges, as seen from the irrational powers of t; however, we can see that

all the terms that appear are consistent with unitarity. For this theory, we study some of

the operators that contribute to the superconformal index. Recall that each copy of the

D3(SU(2)) theory has a single Coulomb branch operator, which we call u1 and u2, and the

D5(SU(2)) theory has two Coulomb branch operators, u3 and v3. We find that u3 contributes
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to the t3.05814 term; u1 and u2 contribute to the t3.96124 term; and v3 provides the t4.07752 term.

All other relevant terms are provided by the N = 2 superdescendants of these four Coulomb

branch operators. There are two U(1) flavor currents, and no marginal operators, that

contribute to the t6 term. Finally, we can see that Trµ1µ2, which is an irrelevant operator,

contributes to the t6.05814 term.

Up to O(t6.05814) the reduced index is identical with reduced plethystic log of the index

since the first composite operator appears at O(t6.11627). Every relevant operator captured by

the superconformal index is actually a superconformal primary operator of a B-type N = 1

superconformal multiplet. Here, we exhibit the short multiplets that are captured by the

index up to order t6:

Ĩ(3,3,5) =B1.01938(0,0) + B1.16990( 1
2
,0) + 3B1.32041(0,0) + 2B1.33010( 1

2
,0) + 2B1.33979(0,0)

+ B1.35917(0,0) + B1.50969( 1
2
,0) + B1.66021(0,0) + 2Ĉ(0,0) +O(t6.05814) .

(9.3)

These supermultiplets and their associated primary operators are listed in Table 6.

9.2 Gauging 2 copies of D5(SU(2))

Another theory we consider which involves the D5(SU(2)) building block is the theory ob-

tained via gauging two copies of the D5(SU(2)) theory. The resulting SCFT can be written

as the quiver

SU(2)D5(SU(2)) D5(SU(2)) . (9.4)

By computing the superconformal index we can verify that there are no terms that violate

unitarity and thus confirm that we obtain an interacting SCFT with a = c in the infrared.

The reduced index of this theory is

Î(5,5) = 2t3 − 2t
15
4 χ2(y) + 5t

9
2 − 2t

21
4 χ2(y) + 2t6 − 2t

27
4 χ2(y) +O(t7) , (9.5)

which has rational exponents, as expected since the mixing coefficients are themselves ra-

tional. We call the two Coulomb branch operators of D5(SU(2)) as u and v, and they

have dimensions 6/5 and 8/5, respectively. In the gauged theory, we know that there ex-

ist two marginal operators that come from v1 and v2. There also exists a marginal operator

Q2u1Q
2u2, however we can see from the superconformal index of the D5(SU(2)) theory, given

in equation (4.3), that the putative (Q2ui)
2 operators do not contribute to the index. There

is a single non-anomalous U(1) flavor symmetry. The current for this flavor symmetry and

the three marginal operators contribute to the coefficient 3 − 1 = 2 of the t6 term. The

relevant terms in the index are contributed to by the following operators: t3 is Q2ui, t
15/4

is Qui, t
9/2 is ui, Q

2vi, and Trµ1µ2, and finally t21/4 is Qvi. We summarize this operator

content, together with the relevant and marginal operators in terms of N = 1 superconformal

multiplets, as determined from the reduced plethystic logarithm, in Table 6.
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10 N = 1 theories with adjoint chirals

We have now determined the superconformal indices for a variety of the infrared SCFTs

with a = c that we constructed in [46]. We now turn to examples where, in addition

to the gauged Dp(G) theories, we also include one or two extra adjoint chiral multiplets.

The superconformal index of this SCFT can be determined using the expression for the

superconformal index of the Dp(G) theory, as in equation (4.3), and the known expression

for the index of a weakly-coupled chiral multiplet. A chiral multiplet in the representation

(adj,R) of a flavor symmetry G× F̃ has index

Iadjoint chiral = PE

[
t3RφχF̃ ,R(v)− t6−3RφχF̃ ,R(v)

(1− t3y)(1− t3/y)
χG,adj(z)

]
, (10.1)

where Rφ is the R-charge of adjoint chiral φ, z denotes the G flavor fugacity that will be

gauged together with Dp(G), and v stands for the fugacities of the other flavor symmetry F̃

collectively.

10.1 Gauging 2 copies of D2(SU(3)) with an adjoint chiral

As a first example, consider the SCFT constructed via the (N = 1)-gauging of two copies of

the D2(SU(3)) theory, together with an additional adjoint chiral multiplet φ:

SU(3)D2(SU(3)) D2(SU(3))
.

(10.2)

The reduced index of this theory is straightforwardly worked out from the superconformal

indices of the building blocks, and we find

Îna=1
(2,2),8 = t2.5359 + 3t3.80385 − 3t4.26795χ2(y) + 4t4.73205 + t5.0718

− t5.5359χ2(y) + 3t6.33975 +O(t6.80385) .
(10.3)

Here we utilized the notation na to denote the number of adjoint chiral multiplets. We can

see that the index for this theory contains no unitarity-violating terms, demonstrating that it

does indeed flow to an infrared SCFT with a = c. The relevant and marginal operators that

each of the terms in the index arise from are listed in Table 4; similarly, it is straightforward

to use the reduced plethystic logarithm to determine the N = 1 superconformal multiplets

that contribute to the index at low orders, and these are also contained in Table 4.

10.2 Gauging 1 copy of D3(SU(2)) with two adjoint chirals

Next, we consider an example of a gauging involving two additional adjoint chiral multiplets,

corresponding to the quiver
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SU(2)D3(SU(2)) . (10.4)

We find that the reduced index of this theory, constructed with a D3(SU(2)) gauged together

with two adjoint chiral multiplets φ1 and φ2 attached, is

Îna=2
(3),3,3 =t2.74273 + t3.68568(3− χ2(y)) + t4.62864 − 2t4.84284χ2(y) + t5.48545

+ 2t5.7858 − 4t6 + t6.42841(3− χ2(y)) +O(t7.62864) .
(10.5)

We can see that this index contains no unitarity violating terms, and thus we have a good

infrared SCFT with a = c, as expected from the analysis of a subset of the protected operators

in [46]. The flavor symmetry of this theory is U(1)×SU(2), which can be seen in the t6 term

− 4t6 → −(1 + χsu2,3(v))t6 , (10.6)

if we revive the SU(2) flavor fugacity, v. The flavor symmetry is the anomaly-free part

of the classical U(1) × U(1) × SU(2) flavor symmetry, where the first U(1) is the flavor

remnant of N = 2 R-symmetry, and the remaining U(1) × SU(2) is the symmetry rotating

the two adjoint chirals φ1,2. The relevant and marginal operators that contribute to the

superconformal index are listed in Table 5, and we now briefly describe their identification.

Under the superconformal R-symmetry the R-charges of the adjoint chirals, the moment

map, and the single Coulomb branch operator of the Argyres–Douglas theory are

R(φ1) = R(φ2) =
87−

√
354

111
∼ 0.61428 ,

R(µ) =
11 + 2

√
354

37
∼ 1.31432 ,

R(u) =
252− 8

√
354

111
∼ 0.914242 .

(10.7)

If we consider operators built out of these objects then we find that the following are relevant

scalar operators

Trφ2
1 , Trφ1φ2 , Trφ2

2 , Trµφ1 , Trµφ2 , u , u2 . (10.8)

Each operator contributes a term t3R, where R is the R-charge of the operator, to the su-

perconformal index, and thus we can see the following contributions: the Coulomb branch

operator u to t2.74273, the three Trφiφj to t3.68568, the two Trµφi to t5.7858, and the u2 to

t5.48545. The theory has no marginal operators. The four operators Trφiφjφk would a priori
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appear to be relevant operators, however they are absent in this specific case due to the

absence of a cubic Casimir for G = SU(2). In [45], we consider G = SU(N) and study

the SCFTs obtained by renormalization group flows triggered by both the relevant opera-

tors in equation (10.8) and the cubic operators, when they exist. These operators organize

themselves into N = 1 superconformal multiplets, and the specific multiplets that contain

the relevant and marginal operators can easily be determined from the plethystic log; we

summarize the operators and their associated superconformal multiplets in Table 5.

10.3 Gauging 1 copy of D5(SU(2)) with two adjoint chirals

We consider another example of a gauging with two adjoint chiral multiplets where the

D3(SU(2)) from the previous section is replaced with the D5(SU(2)) Argyres–Douglas theory.

The ultraviolet depiction of the resulting N = 1 SCFT is given by the following quiver

SU(2)D5(SU(2)) . (10.9)

Using the by-now-familiar techniques, we find that the reduced superconformal index of the

infrared SCFT is

Îna=2
(5),3,3 = t2.42423 + t3.23231 − t3.40404χ2(y) + 3t3.80808 − t4.21212χ2(y) + t4.38384

+ t4.84847 − 2t4.90404χ2(y) + t5.19192 + t5.65654 − t5.82827χ2(y) + 2t5.88384

− 4t6 +O
(
t6.23231

)
.

(10.10)

The theory has the same U(1)×SU(2) flavor symmetry as the theory studied in the previous

subsection. We can figure out the relevant and marginal operators that contribute to the

index with the data of the infrared R-charges of each fields. The R-charges of the adjoint

chiral multiplets, the moment map, and the Coulomb branch operator of the D5(SU(2))

theory are

R(φ1) = R(φ2) =
82−

√
298

102
∼ 0.634680 ,

R(µ) =
49 + 5

√
298

102
∼ 1.32660 ,

R(u) =
31−

√
298

17
∼ 0.808078 .

(10.11)

We find that there are no terms corresponding to operators that violate the unitarity bound,

thus we expect the IR theory in this example indeed has identical central charges. The full

spectrum of relevant and marginal operators we find from index, and the N = 1 multiplets

to which they belong, are listed in Table 6.
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10.4 Gauging 0 copies of Dp(G) with two adjoint chirals

Throughout this paper, and in our previous work [46], we focus on 4d N = 1 SCFTs that

are built out of a diagonal gauging of Argyres–Douglas Dp(G) theories, together with the

possible inclusion of adjoint-valued chiral multiplets. In fact, such a construction can lead

to N = 1 theories with a = c even if the number of Argyres–Douglas theories included as

building blocks is zero! In this section, we consider the Lagrangian theory obtained formally

by gauging the G flavor symmetries of zero copies of any Dp(G) theory, together with two

adjoint chiral multiplets. This is thus simply a quiver gauge theory with a gauge node G and

two adjoint chiral multiplets:

G . (10.12)

The reader can easily confirm that this theory has a = c, for any value of G. It has an SU(2)

flavor symmetry whose fundamental representation rotates the two adjoint chiral multiplets,

φ1 and φ2, while the classical U(1) that rotates their phase is anomalous. We consider

G = SU(3), and then the reduced index of this theory can be determined utilizing the

formula in equation (10.1). The result is simply written as

Îna=2
adj,adj = t3χsu2,3(v) + t

9
2 (χsu2,4(v)− χsu2,2(v)χ2(y))

+ t6 (χsu2,5(v)− χsu2,3(v) + 2− χsu2,3(v)χ2(y)) +O
(
t
15
2

)
,

(10.13)

where we have refined the index by the fugacity v of the SU(2) flavor symmetry. The theory

contains seven relevant scalar operators

Trφ2
1 , Trφ1φ2 , Trφ2

2 , Trφ3
1 , Trφ2

1φ2 , Trφ1φ
2
2 , Trφ3

2 , (10.14)

where the first three transform in the 3 of the SU(2) flavor, and the latter four transform in

the 4. There are seven marginal scalar operators(
Trφ2

1

)2
,Trφ2

1 Trφ1φ2,Trφ2
1 Trφ2

2, (Trφ1φ2)2 ,Trφ1φ2 Trφ2
2,
(
Trφ2

2

)2
,Tr[φ1, φ2]2 . (10.15)

Among these seven marginal operators, four of them are exactly marginal and span a four-

dimensional conformal manifold.

It turns out that G = SU(3) is particularly special due to the absence of an independent

quartic Casimir for that Lie algebra. When we have a larger gauge symmetry, we have more

marginal operators. For example when G = SU(4), the reduced index is

Îna=2
adj,adj = t3χsu2,3(v) + t

9
2 (χsu2,4(v)− χsu2,2(v)χ2(y))

+ t6 (2χsu2,5(v)− χsu2,3(v) + 2− χsu2,3(v)χ2(y)) +O
(
t
15
2

)
.

(10.16)
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As we can see, there is an additional set of scalar marginal operators transforming in the 5

of the SU(2) flavor. These are the operators

Trφ4
1 , Trφ3

1φ2 , Tr{φ1, φ2}2 , Trφ1φ
3
2 , Trφ4

2 . (10.17)

These operators exist for the a = c infrared SCFTs that have ultraviolet description as

SU(N) with two adjoint-valued chiral multiplets, for any N > 3. The landscape formed by

superpotential deformations to new N = 1 SCFTs triggered by the operators in equations

(10.14), (10.15), and (10.17) has been studied in [43].

11 Summary and future directions

We have determined the superconformal indices for a wide variety of theories, and we have

also discussed in some cases how we can analyze the computed indices to determine the

low-dimension operator content of the theory; hence we are effectively performing operator

spectroscopy. We have verified that there is no unitary violating operator up to certain order,

further supporting that our a = c theories constructed are unitary interacting SCFTs. We

now summarize the operators that contribute to the relevant and marginal terms up to t≤6

for the indices of all of the Dp(G) gaugings discussed throughout this paper. (See Tables 4,

5, and 6.)

The relevant and marginal operators typically fall into a few fixed categories. The first

kind of operators that appear are those that arise from the N = 2 E-type supermultiplets

that contain the Coulomb branch operators. Let Q denote the N = 2 supercharge which

has non-zero j2. The states Qu and Q2u are super-descendants of the Coulomb branch

operator u. After N = 1 gauging, Q is no longer a supercharge of the theory, and the states

u, Qu, and Q2u are no longer related by supersymmetry; the are independent operators.

Nevertheless, these states, and products of these states, regularly contribute relevant and

marginal operators to the spectrum of these a = c SCFTs.

The second category of operators are those constructed out of the fields of the weakly-

coupled content of the gauged theory. We variously include N = 2 vector multiplets, N = 1

vector multiplets, and N = 1 chiral multiplets. The fields with which we are concerned are

the scalar field φ inside of the N = 1 chiral multiplet and the gaugino λ inside of the N = 1

vector multiplet. When the gauging involves an N = 2 vector multiplet, as in the Γ̂(G)

theories, one introduces both an N = 1 vector and chiral multiplet, and the supercharge Q,

charged under j2, relates the gaugino and the scalar as λ = Qφ.

Finally, there are operators constructed out of the moment-maps of each Dp(G), µ. Typ-

ically, the Joseph ideal in equation (4.6) removes operators containing µk, and thus all con-

tributions from the moment-maps involve products of moment maps from different Dp(G)
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origins. All non-cancelling contributions to the indices turn out to be formed either out of

products of these three categories of operators, or else out of operators belonging to the flavor

current multiplets.

In Table 4, we list the relevant and marginal operator content, and how they contribute to

the index, of the D̂4(SU(3)) theory, the four theories obtained by (N = 1)-gauging of between

three and six copies of D2(SU(3)), and the infrared theory obtained by (N = 1)-gauging of

two copies of D2(SU(3)) together with a single additional adjoint chiral multiplet. Similarly,

in Table 5, we write the operator content for the Ê6(SU(2)) theory, the (N = 1)-gaugings of

three and four D3(SU(2)) theories, and finally the theory obtained via the (N = 1)-gauging

of the SU(2) flavor symmetry of a single D3(SU(2)) together with two additional adjoint-

valued chiral multiplets. Lastly, in Table 6, we write the relevant and marginal operators,

the N = 1 superconformal multiplets that they belong to, and how they contribute to the

index for each of the gauged theories that we consider involving a D5(SU(2)) building block.

We want to emphasize that the operator spectroscopy done in this paper has set the

foundations to further study an even broader landscape of 4d SCFTs with a = c. In partic-

ular, we are exploring the landscape of 4d N = 1 SCFTs with a = c by investigating if any

superpotential deformation maintaining the a = c property exists. In view of the analysis

done in [43] on the superpotential deformations for SQCD with fundamental and adjoint

chiral multiplets, we perform a similar analysis, and we find that the resulting 4d N = 1

SCFTs often preserve the a = c property [45].

Another important expectation is that analyzing the operator spectrum, as we have done

in this paper, should be helpful for constructing potential supergravity dual theories to these

4d SCFTs with a = c. The fact that a = c holds at finite N , where N is the rank of the gauge

algebra, requires a remarkable cancellation in the contributions to the subleading orders in

any putative AdS5 dual. Determining the precise mechanism which sources this cancellation

is the subject of ongoing work. In the current paper, we have computed the superconformal

indices only for low-rank theories; this is because the full index of the higher-rank Dp(G)

theories are yet unavailable. It would be interesting to find a method to compute the index

for arbitrary rank and look for the large N behavior of the index, which should be helpful

for understanding the holographic dual of these theories.11 The operator spectrum of these

SCFTs, which we analyzed via their superconformal indices, provides constraints on the form

of the supergravity duals, as these protected operators, and the renormalization group flows

that they trigger, must be replicated in their holographic dual theories.

11For the case of N = 2 Γ̂(G) theories, the Schur index is available for arbitrary N [12, 38, 40, 57].
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Index Term Positive Negative Total
N = 1

Multiplets

ÎD̂4(SU(3))

t3v−3 ui – 4 4B1(0,0)
t4v−1χ2(y) – Qui −4 4B 4

3 (0,
1
2 )

t5v Q2ui – 4 4B 5
3 (0,0)

t4v−4 Trφ2 – 1 B 4
3 (0,0)

t5v−2χ2(y) – QTrφ2 −1 B 5
3 (0,

1
2 )

t6 Q2 Trφ2 1×(stress-tensor multiplet) 0 B2(0,0) + Ĉ(0,0)
t6v−6 uiuj , Trφ3 – 11 11B2(0,0)

Î(2,2,2)

t4 Trµiµj 6=i, Q
2ui – 6 6B 4

3 (0,0)

t5χ2(y) – Qui −3 3B 5
3 (0,

1
2 )

t6
ui, Trµ1µ2µ3

2×(flavor current) 3 5B2(0,0) + 2Ĉ(0,0)
Trµ1µ3µ2

Î(2,2,2,2)

t9/2 ui, Q
2ui – 8 8B 3

2 (0,0)

t9/2χ2(y) – Qui −4 4B 3
2 (0,

1
2 )

t6 Trµiµj 6=i 3×(flavor current) 3 6B2(0,0) + 3Ĉ(0,0)

Î(2,2,2,2,2)

t18/5 ui – 5 5B 6
5 (0,0)

t21/5χ2(y) – Qui −5 5B 7
5 (0,

1
2 )

t24/5 Q2ui – 5 5B 8
5 (0,0)

t6 – 4×(flavor current) −4 4Ĉ(0,0)

Î(2,2,2,2,2,2)

t3 ui – 6 6B1(0,0)
t4χ2(y) – Qui −6 6B 4

3 (0,
1
2 )

t5 Q2ui – 6 6B 5
3 (0,0)

t6 uiuj 5×(flavor current) 16 21B2(0,0) + 5Ĉ(0,0)

Îna=1
(2,2),8

t2.5359 Trφ2 – 1 B0.8453(0,0)
t3.80385 ui, Trφ3 – 3 3B1.26795(0,0)

t4.26795χ2(y) – Qui, Trλφ −3 3B1.42265(0, 12 )
t4.73205 Trµiφ, Q2ui – 4 4B1.57735(0,0)
t5.0718

(
Trφ2

)2
– 1 B1.6906(0,0)

t5.5359χ2(y) – Trλφ2 −1 B1.8453(0, 12 )
t6 Trµiφ

2 2×(flavor current) 0 2B2(0,0) + 2Ĉ(0,0)

Table 4: We present relevant and marginal contributions to the indices associated to theories

achieved via various ways of gauging copies of D2(SU(3)). For an explanation of the notation

for the operators, see the main text. The positive/negative columns summarize the operators

that contribute either positively or negatively to the index, and we sum those contributions

in the final column, which is the the coefficient of the term in the index. The “flavor current”

at order t6 refers to the leading order contribution from the supermultiplet containing the

flavor current; this contribution comes from a fermionic component.
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Index Term Positive Negative Total
N = 1

Multiplets

ÎÊ6(SU(2))

t8/3v−8/3 ui – 3 3B 8
9 (0,0)

t11/3v−2/3χ2(y) – Qui −3 3B 11
9 (0, 12 )

t14/3v4/3 Q2ui – 3 3B 14
9 (0,0)

t16/3v−16/3 uiuj – 6 6B 8
3 (0,0)

t4v−4 Trφ2 – 1 B 4
3 (0,0)

t5v−2χ2(y) – QTrφ2 −1 B 5
3 (0,

1
2 )

t6 Q2 Trφ2 1×(stress-tensor multiplet) 0 B2(0,0) + Ĉ(0,0)

Î(3,3)

t3 Q2ui, Trµ1µ2 – 3 3B1(0,0)
t9/2χ2(y) – Qui −2 2B 3

2 (0,
1
2 )

t6
ui, (Trµ1µ2)2

1×(flavor current) 3 4B2(0,0) + Ĉ(0,0)
(Q2u1)(Q2u2)

Î(3,3,3)

t4 ui, Q
2ui – 6 6B 4

3 (0,0)

t4χ2(y) – Qui −3 3B 4
3 (0,

1
2 )

t6 Trµiµj 6=i 2×(flavor current) 1 3B2(0,0) + 2Ĉ(0,0)

Î(3,3,3,3)

t3 ui – 4 4B1(0,0)
t15/4χ2(y) – Qui −4 4B 5

4 (0,
1
2 )

t9/2 Q2ui – 4 4B 3
2 (0,0)

t6 uiuj 3×(flavor current) 7 10B2(0,0) + 3Ĉ(0,0)

Îna=2
(3),3,3

t2.74273 u – 1 B0.91424(0,0)
t3.68568χ2(y) – Qu −1 B1.22856(0, 12 )
t4.62864 Q2u – 1 3B1.54288(0,0)
t3.68568 Trφiφj – 3 B1.22856(0,0)

t4.84284χ2(y) – Trλφi −2 2B1.61428(0, 12 )
t5.48545 u2 – 1 B1.82848(0,0)
t5.7858 Trµφi – 2 2B1.9286(0,0)
t6 – 4×(flavor current) −4 4Ĉ(0,0)

Table 5: We write the relevant and marginal contributions to the indices associated to the

theories obtained via various ways of gauging copies of D3(SU(2)). The notation is as de-

scribed in Section 11. Again, the positive/negative columns summarize the operators that

contribute positively/negatively to the index. The total column is the sum of the positive and

negative contributions and provides the coefficient of the associated term in the index. The

“flavor current” at order t6 refers to the leading order contribution from the supermultiplet

containing the flavor current; this contribution comes from a fermionic component.
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Index Term Positive Negative Total
N = 1

Multiplets

Î(3,3,5)

t3.05814 u3 – 1 B1.01938(0,0)
t3.50969χ2(y) – Qu3 −1 B3.50970(0, 12 )
t3.96124 u1, u2, Q2u3 – 3 3B1.3204(0,0)

t3.99031χ2(y) – Qu1, Qu2 −2 2B1.3301(0, 12 )
t4.01938 Q2u1, Q2u2 – 2 2B1.33979(0,0)
t4.07752 v3 – 1 B1.35917(0,0)

t4.52907χ2(y) – Qv3 −1 B1.50969(0, 12 )
t4.98062 Q2v3 – 1 B1.6602(0,0)
t6 – 2×(flavor current) −2 2Ĉ(0,0)

Î(5,5)

t3 Q2ui – 2 2B1(0,0)
t15/4χ2(y) – Qui −2 2B 5

4 (0,
1
2 )

t9/2 ui, Q
2vi, Trµ1µ2 – 5 5B 3

2 (0,0)

t21/4 – Q2vi −2 2B 7
4 (0,

1
2 )

t6 vi, Q
2u1Q

2u2 1×(flavor current) 2 3B2(0,0) + Ĉ(0,0)

Îna=2
(5),3,3

t2.42423 u – 1 B0.80808(0,0)
t3.23231 v – 1 B1.0774(0,0)

t3.40404χ2(y) – Qu −1 B1.13468(0, 12 )
t3.80808 Trφ21, Trφ1φ2, Trφ22 – 3 3B1.26936(0,0)
t4.21212χ2 – Qv −1 B1.40404(0, 12 )
t4.38384 Q2u – 1 B1.46128(0,0)
t4.84847 u2 – 1 B1.61616(0,0)

t4.90404χ2(y) – Trλφ1, Trλφ2 −2 2B1.63468(0, 12 )
t5.19192 Q2v – 1 B1.73064(0,0)
t5.65654 uv – 1 B1.8855(0,0)

t5.82827χ2(y) – uQu −1 B1.9428(0, 12 )
t5.88384 Trµφ1, Trµφ2 – 2 2B1.96128(0,0)
t6 – 4×(flavor current) −4 4Ĉ(0,0)

Table 6: In this table, we summarize the superconformal indices, and the associated op-

erator spectroscopy, for the gaugings discussed in Sections 9, 10.3, and 10.4. Again, the

positive/negative columns summarize the operators that contribute positively/negatively to

the index. The total column is the sum of the positive and negative contributions and pro-

vides the coefficient of the associated term in the index. The “flavor current” at order t6

refers to the leading order contribution from the supermultiplet containing the flavor current;

this contribution comes from a fermionic component.
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A Superconformal indices with flavor fugacities

In this appendix, we list the superconformal indices that were worked out throughout this

paper, in a refined way where all of the fugacities for the flavor symmetries are turned on.

The expressions tend to be rather cumbersome, as the flavor symmetry is generically just

U(1)N , for some N , however we write them here for both completeness and future reference.

We emphasize that throughout this appendix, we are considering the flavor-fugacity-refined

version of the reduced superconformal index, defined as in equation (3.4).

The refined and reduced index of three D2(SU(3)) gauged together by an N = 1 SU(3)

vector multiplet is

Î(2,2,2) = t4
(
v2

1 + v−1
1 + v−2

1 v2
2 + v2 + v1v

−1
2 + v−2

2

)
− t5χ2(y)

(
v1 + v−1

1 v2 + v−1
2

)
+ t6

(
−2 + v3

1 + v−3
1 v3

2 + v−3
2

)
− t7χ2(y)(v−2

1 + v2
1v
−2
2 + v2

2)

+ t8(v−4
1 + 2v−1

1 + v2
1 + v4

1v
−4
2 + v−2

2 + 2v1v
−1
2 + 2v2 + v−2

1 v2
2 + v4

2) +O
(
t9
)
.

(A.1)

In comparison with the unrefined index in equation (7.9), we have here two fugacities v1 and

v2 associated to the two U(1) flavor symmetries generated by F2 −F1 and F3 −F2. We can

see that equation (7.9) is recovered when we take v1 = v2 = 1, as required. Next, we write

down the reduced index of four D2(SU(3)) theories glued by N = 1 gauging, with the three

fugacities vi for the three U(1) flavor symmetries Fi+1 −Fi. The refined index is

Î(2,2,2,2) = t
9
2

((
v−1

1 + v3
1 + v1v

−1
2 + v−3

1 v3
2 + v−3

3 + v2v
−1
3 + v3 + v−3

2 v3
3

)
−χ2(y)

(
v1 + v−1

1 v2 + v−1
2 v3 + v−1

3

))
+ t6

(
−3 + v−2

2 + v2
2 + v2

1v
−2
3 + v−2

1 v2
2v
−2
3 + v−2

1 v2
3 + v2

1v
−2
2 v2

3

)
+O

(
t9
)
.

(A.2)

Similarly, the refined index for five D2(SU(3)) glued together involves four fugacities vi
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associated to the four non-anomalous U(1) flavor symmetries, Fi+1 −Fi; we find

Î(2,2,2,2,2) = t
18
5

(
v3

1 + v−3
1 v3

2 + v−3
2 v3

3 + v−3
3 v3

4 + v−3
4

)
− t

21
5 χ2(y)

(
v1 + v−1

1 v2 + v−1
2 v3 + v−1

3 v4 + v−1
4

)
+ t

24
5

(
v−1

1 + v1v
−1
2 + v2v

−1
3 + v3v

−1
4 + v4

)
− 4t6 +O

(
t
36
5

)
.

(A.3)

Finally, the refined index of the conformal N = 1 gauging of six copies of D2(SU(3)) is

Î(2,2,2,2,2,2) = t3
(
v3

1 + v−3
1 v3

2 + v−3
2 v3

3 + v−3
3 v3

4 + v−3
4 v3

5 + v−3
5

)
− t4χ2(y)

(
v1 + v−1

1 v2 + v−1
2 v3 + v−1

3 v4 + v−1
4 v5 + v−1

5

)
+ t5

(
v−1

1 + v1v
−1
2 + v2v

−1
3 + v3v

−1
4 + v4v

−1
5 + v5

)
+ t6(−5 + v6

1 + v3
2 + v−6

1 v6
2 + v−3

1 v3
3 + v3

1v
−3
2 v3

3 + v−6
2 v6

3 + v−3
4

+ v−3
2 v3

4 + v3
1v
−3
3 v3

4 + v−3
1 v3

2v
−3
3 v3

4 + v−6
3 v6

4 + v−6
5 + v3

1v
−3
5

+ v−3
1 v3

2v
−3
5 + v−3

2 v3
3v
−3
5 + v−3

3 v3
4v
−3
5 + v−3

3 v3
5 + v3

1v
−3
4 v3

5

+ v−3
1 v3

2v
−3
4 v3

5 + v−3
2 v3

3v
−3
4 v3

5 + v−6
4 v6

5) +O
(
t7
)
.

(A.4)

The fugacities vi are again associated to the five U(1) flavor symmetries, which are generated

by Fi+1 −Fi.

Next, we turn our attention to the refined indices involving the gauging of D3(SU(2))

theories. The refined index of two D3(SU(2)) gauged together, with a fugacity v for the

flavor U(1) generated by F2 −F1, is

Î(3,3) = t3
(

1 + v
4
3 + v−

4
3

)
− t

9
2χ2(y)

(
v

2
3 + v−

2
3

)
+ t6

(
1 + v

8
3 + v−

8
3

)
− t

15
2 χ2(y)

(
v2 + v−2

)
+ t9

(
1 + v4 + v−4 + χ2(y)

(
v

4
3 + v−

4
3

))
+O

(
t
21
2

)
.

(A.5)

Similarly, the refined index of three D3(SU(2)) gauged together via the diagonal of the SU(2)

flavor symmetries is

Î(3,3,3) = t4
(
v
− 4

3
1 + v

8
3
1 + v

− 8
3

2 + v
4
3
1 v
− 4

3
2 + v

4
3
2 + v

− 8
3

1 v
8
3
2 − χ2(y)

(
v

2
3
1 + v

− 2
3

2 + v
− 2

3
1 v

2
3
2

))
+ t6

(
v2

1 + v−2
2 + v−2

1 v2
2 − 2

)
+O

(
t8
)
,

(A.6)

where, again, we have introduced two fugacities vi for the two non-anomalous U(1) flavor

symmetries generated by Fi+1−Fi. When four copies of the D3(SU(2)) SCFT are (N = 1)-

gauged together via their common flavor symmetry, we find that the refined index, with three
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fugacities vi standing for the three U(1) flavor symmetries associated to Fi+1 −Fi, is

Î(3,3,3,3) = t3
(
v

8
3
1 + v

− 8
3

1 v
8
3
2 + v

− 8
3

2 v
8
3
3 + v

− 8
3

3

)
− t

15
4 χ2(y)

(
v

2
3
1 + v

− 2
3

1 v
2
3
2 + v

− 2
3

2 v
2
3
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− 2
3

3

)
+ t

9
2

(
v
− 4

3
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4
3
1 v
− 4

3
2 + v

4
3
2 v
− 4

3
3 + v

4
3
3

)
+ t6

(
− 3 + v

16
3
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3
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8
3
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− 16
3

1 v
16
3

2

+ v
− 16

3
3 + v

8
3
1 v
− 8

3
3 + v

− 8
3

1 v
8
3
2 v
− 8

3
3 + v

− 8
3

1 v
8
3
3 + v

8
3
1 v
− 8

3
2 v

8
3
3 + v

− 16
3

2 v
16
3

3

)
+O

(
t
27
4

)
.

(A.7)

We have now written the flavor-fugacity-refined reduced superconformal indices for all

the 4d N = 1 SCFTs arising from either asymptotically-free or conformal gaugings of the

diagonal of the flavor symmetry of a collection of either D2(SU(3)) or D3(SU(2)) theories.

We now include the refined indices for some more sporadic examples of the N = 1 SCFTs

with a = c that were determined in [46]. The refined index for the infrared SCFT arising

from the N = 1 gauging of the SU(2) flavor symmetries of two copies of D3(SU(2)) and one

copy of D5(SU(2)) is

Î(3,3,5) = t3.05814v12
2 − t3.50969χ2(y)v2

2 + t3.96124
(
v

8
3
1 + v

− 8
3

1 + 1
)
v−8

2

− t3.99031χ2(y)
(
v

2
3
1 + v

− 2
3

1

)
v−2

2 + t4.01938
(
v

4
3
1 + v

− 4
3

1

)
v4

2 + t4.07752v16
2

− t4.52907χ2(y)v6
2 + t4.98062v−4

2 − 2t6 +O
(
t6.05814

)
.

(A.8)

There are two U(1) flavor symmetries which do not have an ABJ anomaly, and to which we

associated the fugacities v1 and v2. These correspond to the U(1)s generated by, respectively,

−F1+F2 and 3F1+3F2−5F3; here F1,2 are the flavor U(1)s arising from the two D3(SU(2))s

and F3 is the flavor U(1) coming from the D5(SU(2)). We can also consider the refined index

of the theory arising from two D5(SU(2)) gauged together, where there is one flavor fugacity

v standing for the anomaly-free U(1) symmetry generated by −F1 + F2. This index is

Î(5,5) = t3
(
v

8
5 + v−

8
5

)
− t

15
4 χ2(y)

(
v

2
5 + v−

2
5

)
+ t

9
2

(
1 + v
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4
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5

)
− t

21
4 χ2(y)

(
v

6
5 + v−

6
5

)
+ t6

(
v

16
5 + v−

16
5

)
+O

(
t
27
4

)
.

(A.9)

Next, we include an example where we are not only gauging a collection of Argyres–Douglas

theories, by also where we include additional chiral matter multiplets charged under the

introduced gauge node. In particular, the refined reduced index for the theory obained via

gauging two D2(SU(3)) theories together by N = 1 gauging with one additional adjoint

chiral multiplet φ is

Îna=1
(2,2),8 = t2.5359v−2

2 + t3.80385
(
v3

1 + 1 + v−3
1

)
v−3

2 − t4.26795χ2(y)
(
1 + v1 + v−1

1

)
v−1

2

+ t4.73205
(
v2

1 + v1 + v−1
1 + v−2

1

)
v2 + t5.0718v−4

2 − t5.5359χ2(y)v−2
2

+ t6
(
v2

1 + v−2
1 − 2

)
+O

(
t6.33975

)
.

(A.10)
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The two fugacities v1 and v2 are for the two flavor U(1) generated by−F1+F2 and F1+F2−T ,

where T is the classical U(1) symmetry that rotates the phase of φ. As another example

involving adjoint-valued chiral multiplets, we consider the refined index for one D3(SU(2))

where the SU(2) flavor symmetry is gauged together with two adjoint chirals φ1 and φ2. There

is an SU(2) × U(1) flavor symmetry; the SU(2) rotates the two chirals and the remaining

non-anomalous U(1) is T − 3F , where the T is the generator of the U(1) factor in the U(2)

that classically rotates the two adjoint chiral multiplets. The fugacity for the Cartan of

SU(2) is v1 and that for the U(1) is v2. Altogether, the refined reduced index is

Îna=2
(3),3,3 = t2.74273v8

2 + t3.68568
(
χsu2,3(v1)v2

2 − χ2(y)v2
2

)
+ t4.62864v−4

2

− t4.84284χ2(y)χsu2,2(v1)v2 + t5.48545v16
2 + t5.78580χsu2,2(v1)v−5

2

− t6 (χsu2,3(v1) + 1) +O
(
t6.42841

)
.

(A.11)

From all of these refined indices we find that the charges of the operators under the U(1)

flavor symmetries, as read off from the fugacities, matches the identification of operators

using operator spectroscopy. Finally, we consider the refined index for one D5(SU(2)) whose

flavor SU(2) is gauged and coupled to two adjoint chirals φ1 and φ2. Similar to the previous

example of D3(SU(2)) gauged with two adjoint chirals, this theory also has SU(2) × U(1);

two adjoint chirals are rotated into each other by an SU(2) flavor symmetry, and there is

also a non-anomalous U(1) that is 5T −4F where T rotates the phases of adjoint chirals. We

turn on fugacities v1 and v2, which are associated to the SU(2) and U(1) flavor symmetries,

respectively. The refined index of this theory is given by

Îna=2
(5),3,3 = t2.42423v

48
5

2 + t3.23231v
64
5

2 − t3.40404χ2(y)v
8
5
2 + t3.80808χsu2,3(v1)v10
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− 32
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2 − t4.90404χ2(y)χsu2,2(v1)v5
2
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− 16
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2 − t5.82827χ2(y)v
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2 + t5.88384χsu2,2(v1)v−3
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(
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.
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