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Abstract

We study a rich set of four-dimensional superconformal field theories (SCFTs) with both
central charges identical: a = ¢. These are constructed via the diagonal N =2 or N’ =1
gauging of the flavor symmetry G of a collection of N' = 2 Argyres—Douglas theories of
type D,(G), with or without adjoint chiral multiplets, in 2106.12579 and 2111.12092. We
compute superconformal indices of some theories where the rank of G is low, performing a
refined test for unitarity, and further determine the relevant and marginal operator content
in detail. We find that most of these theories flow to interacting SCFTs with a = ¢ in the
infrared.
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1 Introduction

It is always a fruitful endeavor to study non-perturbative aspects of four-dimensional su-
perconformal field theories. From the non-perturbative perspective, it can be challenging
to determine the local operator spectrum, including subtle relations between operators and
the presence of renormalization group flows between different SCFTs. A systematic way to
tackle this problem is via utilizing the superconformal index [50, 59]. With this refined tool
in hand, we study the operator contents of a variety of 4d A" =1 and N/ = 2 superconformal
field theories with a = c.

In fact, a large class of 4d AN/ = 2 SCFTs with identical central charges, a = ¢, are studied
in [47] via gauging the common flavor symmetry G of a collection of D, (G) Argyres-Douglas
theories. In a similar fashion, via gauging the common flavor symmetry in the N' = 1 sense,
this construction has been further expanded to construct 4d N' = 1 SCFTs with a = ¢ in
[46].! We find that almost all asymptotically-free or conformal gaugings, potentially with the
inclusion of adjoint-valued chiral matter, lead to 4d N/ = 1 SCFTs with a = ¢, if all of the p;
are coprime with the dual Coxeter number of G (hY). To verify that these infrared SCFTs
are indeed unitary interacting SCF'T's, we must determine that there exists a non-anomalous
superconformal R-symmetry via the principle of a-maximization [42], and further that along
the flow into the infrared there are no operators that become free and give rise to such a
decoupled sector. Since free theories do not have a = ¢, their presence indicates that nor
would the interacting sector. In [46], it is confirmed that the Coulomb branch operators of
each D,,(G) theory and the moment map operators do not cross the unitarity bound during
the flow. In this paper, we do a more refined check of unitarity of the 4d N' = 1 theories
by determining their full superconformal indices, for the cases where the gauge group is of
sufficiently low rank.

In order to show that the 4d A/ = 1 SCFTs that we obtain in this manner truly are unitary
interacting SCFTs with a = ¢, we need a further check that goes beyond the operators in
the chiral ring. Certain unitarity constraints are not directly visible from the operators
in the chiral ring, but are reflected in the superconformal index [6, 29, 52]. We perform
this vital check in cases where the gauge group is low rank by computing the full N' = 1
superconformal index. This relies on the known expressions for the superconformal indices
of the D,(G) theories, for certain specific choices of p and G. In addition to determining
that the theory is interacting, the index also provides a wealth of information about the
operator content of the theory. When all fugacities are turned on, we can read off the precise
details of the relevant and marginal operators of the a = ¢ theories. We refer to this process of
determining the operator content from the index as “operator spectroscopy.” We compute the

YFurther 4d A = 2 SCFTs with a = ¢, arising from the class S perspective [34, 35], have recently appeared
in [44].



indices for gaugings with both rational and irrational R-charges, including some of the N = 2
f(G) theories, and also for theories with additional adjoint chiral multiplets. In all cases,
we find that there does not exist any unitarity-violating term in the superconformal indices.
This procedure of operator spectroscopy enables us to determine interesting properties of
the theories, such as the structure of their conformal manifolds, and the superpotential
deformations that may trigger a flow to a new infrared SCFT. Intriguingly, we find that
many of these deformations preserve the a = ¢ property, and we will explore the landscape
of such deformations in the upcoming paper [45].

In order to compute the superconformal indices for the N' =1 SCFTs that we consider,
we need to know the superconformal indices of the individual D,(G) theories. Unfortunately,
the full superconformal indices for D,(G) theories are unavailable in general. However, for
the Dy(SU(3)) theories and the D,(SU(2)) = (A4, D,) theories, there are known N = 1
UV Lagrangian theories that have supersymmetry-enhancing flows to those N' = 2 SCFTs
[2, 3, 9, 53, 54]. From this “Lagrangian description,” the superconformal indices can be
computed.? As such, in this paper we focus on SCFTs that are constructed via a diagonal
N =1 or N = 2 gauging of the common flavor symmetry of a collection of Dy(SU(3)) and
D,(SU(2)) theories.

The structure of the rest of the paper is as follows. In Section 2, we start by reviewing
the construction of the f(G) theories from [47] and the extension to the AV =1 SCFTs with
a = c that were discussed in [46]; these are the theories we explore throughout this paper.
In Section 3, we introduce the superconformal index and explain how the superconformal
index can detect the existence of non-unitary operators in the spectrum of the putative
infrared theory. We state in Section 4 the superconformal indices of the building block
D,(G) theories that have been computed in the literature. We combine the D,(G) indices to
study the D,(SU(3)) and Fg(SU(2)) SCFTs in Section 5; this allows us to determine that
there are no non-unitary operators and to read off the exact operator content for low values
of the scaling dimension. In Section 6, we study the conformal manifolds for the N' = 1
SCFTs with a = ¢ obtained by conformal gauging of a collection of D,(G) theories. In the
subsequent four sections, we apply the technique of operator spectroscopy to determine the
operator content of a variety of N/ = 1 SCFTs studied in [46]. We study theories built
out of Dy(SU(3)) Argyres—Douglas SCFTs in Section 7; we explore theories built out of
the D3(SU(2)) theories in Section 8; in Section 9, we study gaugings involving D5(SU(2)),
together with the previously considered building blocks; in Section 10, we study theories
where the gauging also involves additional adjoint-valued chiral multiplets. To conclude, in
Section 11, we provide tables of the relevant and marginal operator content that we determine
from the technique of operator spectroscopy throughout this paper; we further provide some

2The Schur or Macdonald limit of the indices for a larger subset of D, (G) theories is available in [4, 8, 13,
15, 16, 25, 31, 60, 61, 63, 66, 68].



future applications of this knowledge of the operator content. We list in Appendix A the
fully flavor-refined indices for the theories we study in this paper.

2 SCFTs with a = ¢ from N = 2 and N = 1 gaugings

In this paper, we exemplify the technique of operator spectroscopy in the context of the
N =2 and N =1 SCFTs with a = ¢ that were discussed in [46, 47].> The 4d N' = 2 SCFTs
of interest are constructed out of the following building blocks: the Argyres-Douglas D,(G)
theories [19, 20, 65, 69], the minimal (G, G) conformal matter theories [26, 55], and N = 2
vector multiplets. It was studied in [46] under what circumstances can one take a set of
such building blocks and gauge together all of the G' flavor symmetries with N' = 2 vector
multiplets such that one obtains a superconformal field theory.

To analyze this question, it is important to understand the physical properties of these
building blocks. The D,(G) theories can be obtained from the class S perspective as com-
pactifications of the 6d (2,0) SCFT of type G on a sphere with a regular maximal puncture
and an irregular puncture. The regular puncture provides the theory with a flavor symmetry
G with flavor central charge

2(p—1
e = 2Ly (2.)

where h} is the dual Coxeter number of G. The irregular puncture may also provide an
additional flavor symmetry factor, depending on p and GG. We have summarized when these
extra flavor symmetries occur in Table 1.

G | SU(N) SO(@2N)  Es jol Eq

No additional symmetry ‘ (p,N)=1 p¢2Z, p¢3Zy p¢2Z, p¢30Z4

Table 1: The conditions required to be satisfied if the irregular puncture of the D,(G) theory
does not contribute any flavor symmetry.

The minimal (G, G) conformal matter theories can be obtained from the class S perspec-
tive by starting from the 6d (2,0) SCFT of type G and compactifying on a sphere with two
regular maximal punctures and one simple puncture.* The regular punctures each contribute

34d SCFTs with a = ¢ have also recently been discussed in [18, 23, 44].

4These theories are referred to as conformal matter as they, and their descendants via Higgs branch
renormalization group flows, also arise from the 6d (1,0) theories known as minimal (G, G) conformal matter
[26] compactified on a torus. See [5, 27, 55, 56] and references therein for more details.



a flavor symmetry G; both have the same flavor central charge
ki = ke = 2hY, . (2.2)

There are additional Abelian flavor symmetries when G = SU(N), and an additional SU(2)
flavor symmetry when G = SU(2), though we shall not be concerned with those in this paper.

To obtain a conformal field theory, it is necessary for the one-loop S-function of the gauge
coupling for each introduced N = 2 vector multiplet to vanish: Sz = 0. We assume that
an N = 2 vector multiplet is introduced that gauges the flavor symmetry of n copies of
D,,(G) and m factors of the (G, G) minimal conformal matters which provide links between
two gauge nodes or from a gauge node to itself. Then the condition on the vanishing of the

one-loop [-function is, using the expressions for the flavor central charges in equations (2.1)
and (2.2),

" 2p =1
Ba=0 < > @p—‘)hé + 2mhy, = 4hY, | (2.3)

i=1 ¢
where the RHS is the contribution from the introduced vector multiplet. It was shown in [46]
that there are only six solutions satisfying this equality for finite p;. The first four solutions

involve no copies of conformal matter, i.e., m = 0, and they can be written as the following
quivers, respectively, corresponding to Dy(G), Es(G), E7(G), and Eg(G) theories:

Dy (G)
Ds3(G)
ﬁ4 G): D(G) Do(G) | EG G): ,
“ ) D3(G) %G} Dy(G)
Dy(G) (2.4)
Dy(G) Dy(G)

~ ~

E7(G) : , Es(G) - .
PG e D p6) @ i)

When conformal matter is included we find that m < 2, and the only two options are:

Dy(G)

: —)— . (2.5)
Dy(G) %}

Here, a solid line that is not connected to anything on one side represents a (G, G) conformal
matter theory where only one of the G flavor symmetries has been gauged. To determine
all possibilities for superconformal theories that can be obtained by gauging together all of
the G flavor symmetries of a collection of such building blocks, we determine how each of

5



these gauge nodes can be adjoined. Clearly the configurations in equation (2.4) cannot be
connected to any other gauge node, and the configurations with an open conformal matter
link can only be connected together in the following two ways

DyG) DG
, . (2.6)
Dy(G) %} @ D,(G) @ -©

We refer to these theories as Dy,3(G) and Ay_1(G), respectively, where N is the number
of gauge nodes in the quiver. Thus, we can see that superconformal N = 2 quiver gauge
theories formed by gauging together copies of D,(G) and (G, G) conformal matter have an

~

ADE-type classification, and we label them collectively as I'(G) [46].

It turns out that a subset of the f(G) theories have identical central charges: a = c¢. These
cases occur when there are no (G, G) conformal matter theories involved in the gauging —
these are the configurations that were depicted in equation (2.4); i.e., when I' = Dy, Eg, Ex,
or Es.> When ged(p;, h) = 1 then the central charges of the D,,(G) building block become

1 (4pi —1)(pi

~1) 1
a; — E ; dlm(G) s C; = E

(pi — 1) dim(G) . (2.7)

In these circumstances, it is easy to see that the difference of the central charges of the gauged
theories are

(4p; — 1)(p; — 1)
bi

48(c — a) = —2dim(G) + Z (4(pi —1)—

:de%(—2+2;g%iQ>=0>

where the first term comes from the vector multiplet and the last equality follows by applica-

tion of equation (2.3). We note that the ged-condition between the p; and hY, can be written
more succinctly as

chd(pi, hi)=1 <= ged(ar,hf) =1, (2.9)

where ar is the largest comark associated to the Dynkin diagram I'. These a = ¢ theories
have an interesting connection, in the Schur sector, to N/ = 4 super-Yang-Mills, which was
explored in [46] (see also [17, 38-40]), and to which we refer the reader for more details.

In [47], the authors considered an extension of the above analysis to gauging the building
blocks via an N' = 1 vector multiplet instead of an N’ = 2 vector multiplet. In this case,

5These specific families of theories are sometimes known as the elliptic G-models [21]; for some of these
theories, aspects have been explored in [14, 17, 20, 22, 23, 27].
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we can also consider an additional building block: chiral multiplets transforming in a repre-
sentation R of G. The condition for the coupling of the introduced gauge node to be either
asymptotically-free or conformal is, schematically,

Ba <0 <= Z hv+ > 2nG+ ) I(R) <6hy, (2.10)

Dy, (G)s conformal chirals
¢ matters

where the sums are over the different types of building blocks connected to that AV = 1 gauge
node. Here we have used that the flavor central charge of a chiral multiplet in a representation
Rof G is

kgl — [(R), (2.11)

where I(R) is the Dynkin index of R.

In this paper, we focus on the configurations that may permit identical central charges;
this means that we do not consider theories involving the conformal matter building blocks,
and the only chiral multiplets that we are allowed to include are adjoint-valued, as per the
analysis in [47]. Such gaugings can only involve a single gauge node and the condition on
the f-function in equation (2.10) becomes

7)hv + > 2k < 6hY,. (2.12)

Ba<0 = > o

Dp, (@)s chirals

It is straightforward to see that there can be at most six D,,(G) theories and three adjoint-
valued chiral multiplets attached to the N'= 1 gauge node [47]. The resulting quivers are all

of the form
Ng <3

D,,(G) 7?:% D,.(C) - (2.13)

where we denote gauge nodes with a background shading as A/ = 1 gauge nodes to differ-
entiate from the A = 2 gauge nodes (which are unshaded), and the dashed line indicates
n, < 3 adjoint chirals. The various combinations of p; and n, were listed in [47], and we do
not repeat them here.

When the one-loop S-function for the gauge coupling vanishes (i.e., f¢ = 0) then the
gauge theory is conformal. If S5 < 0, however, then we must consider the renormalization
group flow to the infrared fixed point of the gauged theory. This fixed point may or may not
realize an interacting SCFT. For example, the superconformal R-symmetry, as determined
via a-maximization [42], may be inconsistent or the infrared theory may involve a decoupled



free sector. In [47], the analysis presented therein demonstrates that, if ged(p;, hY) = 1 for
all of the p; involved in the gauging and there exists an interacting SCF'T in the infrared
(without introducing new degrees of freedom such as flipper-fields), then the infrared SCFT
has identical central charges a = c¢. Interestingly, these conditions appear to be satisfied in
most cases where g < 0 and one obtains vast families of 4d N =1 SCFTs with a = ¢ [47].

3 Unitarity and superconformal indices

The superconformal index counts short-multiplets up to recombination into long multiplets.
It admits a trace formula as follows: pick a pair of supercharges, @, Q', and consider the
index of the form

[(B; ) = Te(=1)Fem e, (3.1)

where the trace is taken over the Hilbert space of the theory, F' is the fermion number,
§ ={Q,Q'}, v; are generators of the global symmetry algebras of the theory that commute
with @, Qf, and p; are the corresponding chemical potentials. By the usual arguments
[50, 59, 67], the index only gets contributions from the states satisfying 6 = 0, and thus
the index is independent of the fugacity .

For the case of 4d N' = 1 superconformal theory, the superconformal algebra is SU(2, 2|1)
which has the bosonic subgroup SO(4,2) x U(1)g. There are two generators in the super-
conformal algebra that commute with @, Q. Choosing Q = @;, we write the index (often
called the right-handed index) for a generic N'=1 SCFT as

I(t,y;) = Te(=1) 22220 TT ol (3.2)

(2

where R is the U(1) R-charge, j; and js are the Lorentz spins, and f; collectively denotes
the generators of the flavor symmetries of the theory. The trace is taken over the states with
scaling dimension A satisfying

A= gR+2j2. (3.3)

The short superconformal multiplets that contribute to this right-handed superconformal
index, together with their contribution, are given in Table 2. It is convenient to define the
reduced superconformal index which is given by

I=(1—-£y)1—£/y)I-1). (3.4)

This form is useful since it removes the contributions from the conformal descendants.



Despite the cancellations from the (—1)% factor, the superconformal index is still powerful
enough to determine part of the operator spectrum, in particular for the low-lying operators.
We study the spectrum of operators in great detail with the superconformal indices; more
specifically, we test the unitarity condition on the structure of the index that operators should
satisfy [6, 29]. This is important because it is possible for a “candidate” superconformal
theory to violate unitarity, which is not readily visible at the level of the chiral ring [52].
Furthermore, we investigate various chiral ring operators and observe chiral ring relations,
which lift some of the “classical” operators.

Short mult. CDI notation Unitarity condition Contribution to the index
_ _ ) L P xe541(y)
B, LB, 0" > 2 1 —1)20 1+
7(j1,0) 1[.717 ]%r Tz 3(]1+ ) ( ) (1—t3y)(1—t3/y)
3(r+2j2+2) y .
oy yRTRIG) 20 y2it2pt X2i1+1(Y)
Crrgn) LAl Gl (o, 05, r> 5l —d2) (Z1)7 (1=t3y)(1 —t3/y)
~ — . . CGGi-42) 271124 1t2j1+4j2+6X2j1+1(y)
Cii, i AA; 3 - —1)21+252+
(j1.52) e Aglins d2la 4, (=1) (1—t3y)(1—1t3/y)
10 (-2 =+
Do B1 A5[0, 3 - —
(0,52) 144[0, j2] 1 45, (1—83y)(1—t3/y)
= = . (2G1+1) 2j P12 x25, 11 (y) — 1 x4, (y)
D,. A1B=[71.0];3" _ —1)25
(j1>4,0) 1Byli1, 01145, (=1) (1—3y)(1 — t3/y)
~ =0 @ ¢
D 0,0 A2 B7[0,0]; -

(1-t3y)(1—-13/y)

Table 2: List of A/ = 1 short multiplets that contribute to the right-handed index, the
unitarity conditions they satisfy, and their contributions to the right-handed index. The 4d
N =1 short multiplet contributions to the superconformal index appear in [32]. Note that
the spins ji, jo are integer-quantized in [24], whereas they are half-integer-quantized here.

Here we introduce some terms that, if they were to appear in the superconformal index,
would indicate that unitarity of the theory is violated. Any term of the form

x2j41(y) (A <2+ 25), (3.5a)
(D) %541 (y) 2+ 20 SA<6+2)1), (3.5b)

reveals the existence of non-unitary operators [6, 29]. Here x4, +1(y) indicates the character
of the 271 4 1 representation of the Lorentz SU(2);. For small values of j;, we provide the
form of the terms which are thus required to be absent below for convenience:

o N A<2,



o —t', 2<)\<6,
o tx2(y), A<T,
o xa(y), <4,
o —tMys(y), 4<A<8.

For a sample of the theories with a = ¢ that we construct by gauging D,(G) theories, we
confirm that they indeed pass this refined unitarity test. In particular, we checked explicitly
for those with low rank G by verifying that their superconformal indices do not contain any
terms violating unitarity. This goes beyond the study of the chiral operators from [46].

4 Superconformal indices of N' = 2 D,(G) theories

To determine the superconformal indices of the N' = 1 gaugings that we consider in this
paper, we first collect the superconformal indices of some individual D,(G) theories. We
define the superconformal index of an N/ = 2 SCFT as

I = Tr(—1)F2(AT5)q 20 2R=r (4.1)

?

where R,r denote the Cartan generators of the SU(2)g x U(1), symmetry. The index gets
contributions only from the the states satisfying®

A —2jy— 2R —1/2=0. (4.2)
In particular, we consider Dy(SU(3)), D3(SU(2)), and D5(SU(2)) theories.” The (re-
duced) N = 1 superconformal indices of these theories are given following [2, 53]:

TDQ(SU(Z%)) =t 4+ ¢! (U2X5u3,8 - U_1X2(y)) + 70 4 1 (U_G — Xouz,8(21,22) — 1)
+ t7xz(y) (112 — v74) + 8 (21}72 + U4X5u3727(2’1, zz)) +¢9 (vfg —v 3 — X2(y)) (4.3a)

+0 (¢,
Tpy sty = 1530753 — V30285 () + 1402 Xy 5(2) + 114/304/3 1 116/3,16/3
— 15 (Xaup.3(2) + 1)) = 950715 (y) + tT0Px2(y) + 12230~/ (4.3b)

+ 8 (U4X5u2’5(z) 4o 2 4 U—S) _ 426/3,,-8/3 _ 49 (1 n v_G) L0 (1%) ’

ID5(SU(2)) _ 7512/51)712/5 + t16/5U716/5 - t17/5vf2/5X2(y) + t47)2X5u2,3(Z) o t21/5vf6/5X2(y)
L 422/508/5 4 (2452475 | y26/5,4/5 | y28/5,=28/5 _ 429/5,,~14/5, (1) (4.3¢)

— 1% (Xaw.3(2) + 1) + O(t32/7),

6Qur normalization of U(1), is chosen such that the Coulomb branch operators have scaling dimension
A=—r/2

"These theories are often referred to under different names. In particular, Do(SU(3)) = (A1, D),
Dg(SU(?)) = (Al,Ag) = (Al,D3)7 and D5(SU(2)) = (A17D5).
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where Y24, +1(y) is the character for the 2j; + 1-dimensional representation of the SU(2),
factor of the Lorentz group, xeuy.r(21,- - ,2v—1) is the character of the representation R of
SU(N), v is associated to the U(1) flavor symmetry

F=—-r+2R, (4.4)

coming from the decomposition of the N' = 2 R-symmetry, and zy, - - - zy_; are the fugacities
of the SU(N) flavor symmetry.®

To introduce and explain the concept of operator spectroscopy, such as in [6, 58], we
first explain how the relevant and marginal operator content of the D,(G) SCFTs can be
determined from the indices in equation (4.3). We can already see some interesting and
noteworthy information from these expressions. For example, the moment map operator p
contributes to the index as t*v?. We can see that Dy (SU(3)), D3(SU(2)), and D5(SU(2)) each
have no operator Tr u?, as there is no t3v? term appearing in either index; these operators
are lifted from the spectrum due to a chiral ring relation (also known as the Joseph relation)

2
—0. 4.5
s (4.5)

Here, the Joseph ideal Z, is defined via
Sym?*(adj) = [2-adj] ® I, (4.6)

where [2 - adj] denotes the representation that has highest weight being twice of the Dynkin
indices for the adjoint representation. It is well-known that this relation is true for all the
N = 2 theories with Higgs branch given as the one-instanton moduli space for G, which
is identical to the minimal nilpotent orbit of G. In fact, for those theories the only non-
vanishing part of the k—fold product of the moment map operator is in the representation
[k -adj], which can be deduced from the universal formula for the Higgs branch Hilbert series
[10, 41, 48, 49, 64] or Hall-Littlewood index [33, 36]

]HL(T) = ZX[k-adj]TQk ) (4-7)
k=0

where the moment map p contributes X[adj]’TQ. In particular, the index shows, for all k, that
Trpb =0, (4.8)

for the D,,_,,(SU(2)) and D,(SU(3)) theories since their Higgs branches are the SU(2) and
SU(3) (centered) one-instanton moduli spaces, respectively. In fact, the relation in equation

8The U(1) flavor symmetries are normalized differently from [53]. Our v corresponds to their v=2.

11



(4.8) holds for all the D,(G) theories with (p,hY) = 1 since their Higgs branches are given
by a nilpotent orbit.

Additional relations among the BPS operators (beyond the Higgs branch operators) in
the Argyres—Douglas theories can be deduced [62, 70]. To do this, it is useful to rewrite the
superconformal indices of the above N’ = 2 SCFTs in terms of their short multiplet contents.
For the theories we consider, we have

Ip,su@) = PE :Xadj1§1 + E,g + CAo(o,o) - EZ<1 + Xadj) — B1772(070) (4.9)
- Xadjgl,fg(o,o) - E%,fl(;o) - a(O,O)Xadj + O(tn)] ; |

Ip,su(e)) = PE :Xadjgl + 2_% + CAO(O,O) — B, — El,—g(o,o) (4.10)
—XadaiB1 100 =~ C1 ~5(20) ~ Crr0.0)Xaj + O(tm)} ) |

Ipy(su(z) = PE :Xadjgl - zf% * g*% + Co0) - Elvf%(ovo)XadJ - B, (4.11)

- B1,—§(0,0) - El,—g(o,o) - El,—%(O,O) + O(tg)} :

Here, the PE stands for the plethystic exponential and we used various symbols for the short
multiplets (in the notation of [28]) to denote their indices [33]. See Table 3 for details. In the
expressions (4.9) (4.10), and (4.11), the multiplets with the positive sign can be thought of
as generators and the ones with minus sign as relations. For example, the BAl is a conserved
current multiplet for the SU(2) or SU(3) flavor symmetry. We see there is a term By with
negative sign, which translates to the Joseph relation, in equation (4.5), for the Higgs branch
operators. The index also allows us to study relations beyond the Schur sector, as discussed
in [62, 70]. See also [11] for a detailed study on the operator spectrum of minimal Argyres—
Douglas theory.

The £, multiplet contains the Coulomb branch operator « with dimension A = —r, which
is the top component in this multiplet.” In terms of A/ = 1 multiplets, it decomposes as

& — Eg(o,o) D E%(o,%) D E%ﬂ(o,o) : (4.12)

The N = 1 superconformal primary of the first multiplet is u, and that of the next two
are Qu and Q%u, respectively, where ) is the A/ = 2 supercharge which is not the N = 1
supercharge.

9As we are considering the right-handed index, we are sensitive to the anti-holomorphic E-multiplets;
equation (4.12) describes the decomposition of the £-multiplet, however we will generally abuse notation and
write the &, and its superconformal primary, without the bars.
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Short mult.  CDI notation Contribution to the index

_2+4R)2(R-1) | 4R, 2R
(=80~ &/y)
tA72rp2r (12 — 02) (1 + t20* — tw?xa(y))
- (1—t3y)(1—t3/y)

- . 6+4R2R—2 (42 _12)(] — 02
Cr(0,0) AEAZ[O;O](R’O) t (l—gy)(l—)g/yt) x2(y))

(—1)2j1t6_2r+4R02(R+r_1)(t2 _ UQ)(l + 202 — t02X2(y))ij1(y)
(1= ty)(1-13/y)
2o (1 + 20! — to?xa(y))
(1—8y)(1—t/y)

Table 3: List of A/ = 2 short multiplets that appear in the indices in equations (4.9), (4.10),
and (4.11), and their contributions to the index [33]. We denote the charge from the U(1)
R-symmetry as r and the charge from the SU(2) R-symmetry as R.

~

Br B, B7[0; 0] (F:0)

Bi(0.0) LB7[0; 0"

Crr(ro)  LAgjr; 0]

&, LB71[0; 0]

5 N =2 SCFTs: D,(SU(3)) and E¢(SU(2)) theories

Before studying the spectrum of various A/ = 1 superconformal field theories with a = ¢,
we first look into the spectrum of N =2 SCFTs of type f(G) considered in [47]. With the
building blocks in hand, we study the 134(SU(3)) theory and the Eg(SU(2)) theory. The
154(5 U(3)) theory can be constructed via gauging four copies of Dy(SU(3)), whereas the
E¢(SU(2)) theory can be constructed with three copies of Ds(SU(2)):

D,(SU(3))

Dy(SU3)) = D2ASUM3)) —(SUB) )— Da(SU3)) | (5.1a)
D,(SU(3))

A Dy(SU(2))

Es(SU(2)) . (5.1b)

Ds(SU(2)) SU(2) D5(5U(2))

The superconformal indices are computed utilizing the expression

1 n
In= = Wal ]{[dZ]G IO | RENEI R ERD] (5.2)
=1
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where IS () denotes the index for the vector multiplet (for gauge group G) given as

—t3y — 3y + 210 + 2072 — th?
(1 —=t3y)(1—/y)

and where [dz]q is the integration measure for G:

XG.adj(2)| (5.3)

vec

16 (z):PE{

T

o] =[] @z I @—=. (5.4)

2miz;
a€Roots

Here, |W¢| is the dimension of Weyl group of G, r is the rank of GG, and the product is over all
roots of GG. Furthermore, z denotes the fugacities of GG, and PE is the plethystic exponential.

5.1 D,(SU(3)) theory

Applying the formula in equation (5.2), we find that the reduced index of D,(SU(3)) is

~

I, su@) = AP0+t (v = Ao e (y)) + 10 (4o — v %x2(y)) + 11070

+ 7 (407" + xa(y) (0¥ = 1707Y))

+ 1% (v + 27072 + 20" — 80 xa(y) + 60 x3(y))

+ 17 (407% + 24077 + xa(y) (=16 +507°%) + 40 x3(y)) + O(t").

(5.5)

Let us explain some of the operator spectrum that we observe from the index:

e 4t3v=3: This term comes from the Coulomb branch operators (i.e., the N = 2 chiral
operators) u; of dimension 3/2 in each of the four Dy(SU(3)) theories.

o tiy~*: It is associated to the operator Tr ¢?, where ¢ is the adjoint chiral in the A" = 2
vector multiplet.

o 4t5v': Tt arises from the N' = 2 super-descendants of the Coulomb branch operators
in the first bullet point. These are Q?u;, where Q is the N' = 2 supercharge of each
D,(SU(3)) theory with non-zero j and non-trivial N' =2 U(1) R-charge.

e 11t% 7% This term comes from ten marginal operators of the form u;u; and another
one given by Tr¢3. The operators of the form Tr ¢u,; are absent due to the F-term
relation and the chiral ring relation in equation (4.8).

All relevant and marginal operators, including those with non-zero j;, are listed in Table 4.

For an N/ = 2 theory, we can take the Macdonald limit [33], which is defined as (t*y) — 0
while (#3/y) = ¢ and T = tv?®y are held fixed. Then, the Macdonald index is given as

IMac — Tr(_l)FqA—RTR—r/Z ’ (56)
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where the trace is taken over the operators/\with A—2jo,—2R—r/2=0and j; +j2+7r/2 =0.
We compute the Macdonald index of the D4(SU(3)) theory to be
I3 vy = L+ (T +2T%)¢* + (T = T°)¢* + (T + T + 2T")¢"
+(T+T?=T*—T5¢" + (T + 21? + 2T° + 2T°%)¢°
+ (T +27% +27° — 2T* — 2T° — T")q" (5.7)
+ (T 4 3T% + 373 — T* — 2T° + 27%)¢®
+ (T +3T7 4+ 4> = 2T* —4T° —= T° = T°)¢" + O (¢"*) .

We further take the Schur limit (77 — 1) from the Macdonald index to obtain the Schur
index, which is defined as

ISchur — Tr (_1)FqA—R ) (58)
We compute the Schur index of 1/54(SU(3)) as

Schur 2 4 6 8 10
I3, su@y = L3¢ +4¢° +7¢° +6¢° + O (¢") . (5.9)

which matches with the known result [47]. The Schur sector of any ' = 2 SCFT is captured
by its vertex operator algebra (VOA) [7]. It would be interesting to directly construct the
VOA for the I'(G) theories to gain further access on this theory.

5.2 E¢(SU(2)) theory
We compute the reduced index of Eg(SU(2)) theory and find it as

Ig,s0(2) = 313075 — 3t5 0 S xa(y) + 10t + 3505 — P 2xa(y) + 6L 0TS

10 20

— 9t?v_7x2(y) +t3 (31)_% + 3U_%X3<y)> + t"v?x2(y)

+ % (12078 + 307 xa(y) ) — 60 Faly) +£° (v 4+ 1107 (5.10)
+ 5 (31;*? = 6v%> Xa(y) + 35 075 xs(y) — 17 (14 1907°) xa(y)
+O(t').

Let us explain some of the important operators that can be read off from the index:

e 3t3/3y~8/3: Tt arises from the Coulomb branch operator of dimension 3/2 in each N = 2
D;(SU(2)) theory, u;.

o t*v~* It comes from Tr ¢ where ¢ is the scalar in the A = 2 vector multiplet.

e 3t14/3¢4/3: Super-partners of the Coulomb branch operators of each Dy(SU(3)): Q%u;.
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e 6t16/39716/3; This term comes from products of Coulomb branch operators: wu;u;.

All of the relevant and marginal operators, including those with a non-zero j;, are listed in
Table 4. We can also take the Macdonald limit of equation (5.10) to get the Macdonald index
of Eg(SU(2)) theory, which is
Mac _ 2 3 3\ 4 3\ 5 2\ .6
Iosvey = 1T Ta +Tq +(T-T) + (T —-T°)¢"+ (T +T%)q (5.11)
+(T+T* =TT +(T+2I* -T° -TY*+ O (¢°) .

We can further take the Schur limit to obtain

Schur o 2 3 6 S 9
Iitevey =1+ @+ +2¢° + ¢ + 0 (") . (5.12)

This result matches with the known result [17, 47]. The associated vertex operator algebra
(VOA) for this theory is given by the A(6) algebra of [30] and studied in detail in [14, 17]. Tt
would be interesting to reproduce the Macdonald index we presented above from the VOA
as was done in other AD theories [1, 61, 66, 68].

We can also consider the Hall-Littlewood limit of the superconformal index and thus
determine the operators which exist in that sector (quite often identical to the set of Higgs
branch operators) of the spectrum of the theory; for a = ¢ theories (and beyond), this limit
has been investigated thoroughly in [44]. The Hall-Littlewood indices for Dy(SU(2N + 1))
theories, which can be realized as genus-zero class S theories with Z, twist lines, demonstrated
the presence of operators belonging to D-type multiplets. This demonstrated that, in contrast
to a common belief, the Higgs branch Hilbert series is different from the Hall-Littlewood
index, even for genus-zero class S theories. Among the f(G) theories, the Hall-Littlewood
indices indeed agrees with Higgs branch Hilbert series when I' = Ejg, E7, Eg; however, when
I' = Dy, they do not agree.

6 Conformal manifolds and conformal gaugings

The superconformal index allows us to use the technique of operator spectroscopy to de-
termine the low-scaling-dimension operator content of the theories that we consider. These
SCFTs are constructed by gauging together a collection of N' = 2 D,(G) theories via an
N =1 or N = 2 vector multiplet. Understanding the operator content of the individual
D,(G) theories provides a strong start: this we do by studying the reduced superconformal
indices in Section 4. However, upon gauging there are many subtleties to take into account;
the R-charges of the operators from each D,(G) theory are shifted through a-maximization,
and non-trivial chiral ring relations amongst the operators of the gauged theory can rule
out naively expected operators. For this reason, the superconformal index is a vital tool to
determine both that the gauged theories are unitary and to extract the operator spectrum.
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However, in this section, we consider a slightly simpler class of theories obtained via
N =1 gauging of a collection of D,,(G) such that the one-loop S-function of the introduced
gauge coupling vanishes. Such p; were enumerated in [46]. For these theories, we now explore
the exactly marginal operators, and thus the structure of the A" = 1 conformal manifold, that
can be determined via the study of the spectrum of Coulomb branch scaling dimensions of
each individual D,,(G). When doing ' = 1 conformal gauging, it is important to verify that
there exists at least one exactly marginal operator, otherwise the gauged theory does not, in
fact, give rise to an interacting SCFT [37, 51]. These can be determined independently of
the superconformal index, and we verify that the superconformal index for the single N' = 1
conformal gauging that we determine (see Section 7.4) matches the counting done in this
section. We focus on theories with a = ¢, and thus it is necessary that ged(p;, hé:) = 1
for each p;. Analysis of all of the possible conformal gaugings in [46] leads us to conclude
that G = SU(N) is a necessary condition for a = c¢. There are eighteen different conformal
gaugings, and they contain the following possibilities for p:

pe{2,3,4,56,7,8,9,10,12,15, 18, 20, 24, 42} . (6.1)

We refer to [46] for the complete list of combinations. To determine which products of
Coulomb branch operators are marginal, we actually only need to know the Coulomb branch
operators which have A < 2. If D,(SU(N)) is such that N > p, then the spectrum of
Coulomb branch operators, with A < 2, contains one operator with each of the following

+1 p+2 2p—1
ASQZ{p 7p PE b }7 (62>
p p P

as can be observed from the general formula for the Coulomb branch scaling dimensions of

D,(G):

scaling dimensions:

. hG . R .
C(p,G) = j—?s‘]—?s>1,]GCaS(G),s:l,---,p—l : (6.3)

Here, Cas(G) are the degrees of the fundamental Casimir invariants of G.

The number of marginal operators formed by the product of two Coulomb branch oper-

ators
UqUp (64)

of a Dy(N > p) theory is given by

#marginal(D,(SU(N > p))) = F%l-‘ . (6.5)

Next, we consider marginal operators formed from the product of two different Coulomb
branch operators belonging to two different Argyres-Douglas theories: D,, (SU(N)) and
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D,,(SU(N)). We consider N > py > py, and let ¢ = ged(p1, p2) denote the greatest common
divisor. It is straightforward to see that the number of such marginal operators is

(1. (6.6)

Combining these two results we can determine the number of marginal operators, formed
from the product of two Coulomb branch operators of the D,(G) building blocks, of the
N =1 gauged theory. We find

# marginal operators = Z (ged(pi,ps) — 1) + Z [pl -‘ (6.7)
PiPi>i
where we assume that the p; are increasing p; < --- < pg and that the gauge group is

SU(N > pg). Furthermore, the total number of U(1) flavor currents in the gauged theory is
the number of p; > 1 minus one, and thus we can see from equation (6.7) that the number
of exactly marginal operators in the theory after the conformal gauging is non-zero.

It remains for us to consider the number of marginal operators that exist when N < p.
There is a small finite number of such cases and in each the number of marginal operators
on the Coulomb branch can be determined exhaustively. We have verified that, in all cases,
the number of exactly marginal operators is strictly positive. Thus, all conformal (N = 1)-
gaugings of the common G flavor symmetry of a collection of D,,(G) theories gives rise to an
interacting N’ =1 SCFT.

7 N =1 gaugings of multiple D2(SU(3))

Next, we turn to the analysis of the superconformal index for strictly N' = 1 theories. We
begin by considering the four theories that are built out of between three and six copies of
the Dy(SU(3)) theory via N' = 1 gauging. The quiver diagrams of these theories are

Dy(SU(3))
Dy(SU(3))
. DuSU)) Do(SU(3)) |
D,(SU(3)) @ D,(SU(3))
Dy(SU(3))
Dy(SU(3)) Da(SU(3)) Dal(SU(3))
Du(SU(3)) ﬁ% Do(SU) , DoSU)) Du(SU(3))
Do(SU(3))  Do(SU(3)) D,(SU(3)) D2(SU(3))
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The index of the theory arising from gauging of n copies of the D,,(G) theory via an N' =1
vector multiplet is given by the integral

[dz] I (t 3¢ 7.1
|WG” % Z G vec H Dy, (G) yYs; 2,0 ) ( )

where z denotes fugacities of the introduced gauge group GG, v denotes those of the flavor
symmetries, |Wg| is the dimension of Weyl group of G, [dz]s is the integration measure
(defined in equation (5.4)) and I¢_ is the index for the N' = 1 vector multiplet with gauge

vec

group GG which is given by

—ty — 1% )y + 21°

1% (2) = PE - t@/)XGaM( 2)| | (7.2)

vec

and PE is the plethystic exponential.
The v;t3 term in the indices of the D,,(G) theories arises from the mixing between the
UV R-symmetry and Abelian flavor symmetries which forms the superconformal R-charge:

UWE =U1)g+eFi. (7.3)

In addition, there always exists one particular linear combination of the F; that is anomalous.
It follows that all v; shall satisfy a corresponding relation; in turn, v; can be redefined into
fugacities of the anomaly-free flavor symmetries. For example, when considering three copies
of Dy(SU(3)) gauged together, the diagonal U(1) generated by JF; + F2+ F3 is anomalous and
only the axial U(1)s generated by F; — F» and F; — F3 remain as non-anomalous symmetries
of the gauged theory. The diagonal U(1) anomaly imposes the condition that

H v, =1, (7.4)

and the index recombines into fugacities of the two axial U(1)s,
Ui = v iy (7.5)
In this section we typically turn off the fugacities of the U(1)s, i.e.,
=1, (7.6)

as the way in which they enter the index is not of key importance for the purposes of
determining unitarity or the spectrum of relevant /marginal operators. As usual, we refer to
the version of the index obtained in this way as the unrefined index. In Appendix A, we list
the full, refined, expressions for completeness.
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7.1 Gauging 3 copies of Dy(SU(3))

We first compute the reduced index of the theory with three copies of Dy(SU(3)) glued
together via N' = 1 gauging. The coefficients ¢; of the flavor mixing to the infrared R-charges
are determined solely by the anomaly-free condition as:
1
€ =-3: 1=1,2,3, (7.7)
where we note that no operator crosses the unitarity bound along the flow into the infrared.
From the mixing parameters, we can determine the R-charge of the various relevant operators

after the gauging. We find

2 1
R(ui) = 37 R(u;)) =2, R(Q:)= T3 (7.8)
for the R-charges of the moment maps, the Coulomb branch operators, and the leftover
N = 2 supercharges. Computing the reduced unrefined index from the integral in equation

(7.1), we find
f(g,m) = 6t* — 3t7xa(y) + 3t° — 3t xa(y) + 12t° — 11t%x2(y) + O(t'?) . (7.9)

The first term 6¢* comes from the operators of the form Tr y; =i and the Q*u;. The u; where
i = 1,2,3 denotes the single Coulomb branch operator in each of the Dy(SU(3)) building
blocks, each with scaling dimension A = %; Q%u; is a superconformal descendant in the N = 2
theory, however the E-multiplet decomposes as in equation (4.12) when the gauging breaks
the symmetry to N' = 1, and Q%u; corresponds to the primary of an N' = 1 multiplet. The
three marginal operators that contribute to the t® term correspond to the Coulomb branch
operators, u;. In fact, there are two more marginal operators

Tr papiopis s Tr papiopin (7.10)

that are neutral under both Abelian flavor symmetries F; —F, and JF>—F3. The contributions
from these operators are canceled precisely by the negative contributions from the two U(1)
current multiplets. We do not find the other operators of the form Tr ;1,41 as they are
lifted by a chiral ring relation between the adjoint part of y? in the Dy(SU(3)) theories, as
we discuss around equation (4.5). There are some other operators which we might expect to
contribute to the index in equation (7.9), and for which we now discuss the expected reason
for their absence. There are three operators involving the moment maps and the gaugino:
Tr Ap;. We would expect these operators to contribute to the index as

— (v} + o705 + vy ) x2(y) (7.11)

where we have restored the U(1)? flavor symmetry fugacities.!® However, we can see that
the superconformal index of the Dy(SU(3)) theory, which is written in equation (4.3), has a

10We emphasize that these are the fugacities associated to the non-anomalous axial U(1) symmetries — for
convenience, we have slightly abused notation by dropping the tildes compared to equation (7.5).
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term ¢7y2(y)v?, which, after gauging, contributes to the #°x2(y) term as in equation (7.11),
where the overall coefficient is instead +1. We expect that these operators pair up to form
long multiplets after gauging, and thus they no longer contribute to the index, which is only
sensitive to (certain) short multiplets, as discussed. We note that it is necessary to go to the
flavor-fugacity-refined index to see that it is the Tr A\y; operators that recombine into long
multiplets, and not the Qu; operators.

To determine the superconformal multiplets that generate the ring of short multiplets,
and the relations among them in this ring, it is often helpful to take the plethystic logarithm
of the superconformal index. We again reduce by multiplying by (1 —#3y)(1—t3/y) to remove
the contribution from conformal descendants, which renders the generators and ring relations
more clearly. We define the reduced plethystic log of the superconformal index as

I=(1—t%)(1—t/y) PLog[l]. (7.12)

As expected, PLog is the plethystic logarithm, that is, the inverse of plethystic exponential.
For the theory we are discussing here, we find

7(272,2) = 6t* — 3t°xa(y) + 3t° — 3t x2(y) — 9° + Tt'x2(y) + O(tY). (7.13)

In fact, one can identify which short multiplets belonging to the 4d N/ = 1 superconformal
algebra contribute to each term of the superconformal index up to some low order in t. The
contribution of each 4d N = 1 short multiplet to the superconformal index is summarized in
Appendix A of [32], which we repeat with our notational conventions in Table 2 of this paper.
Up to t"<8 order, we identify which short multiplets contribute to the reduced plethystic
logarithm as follows:

29

T222) = 6Ba g+ 3Bs 1.0y + 5Ba00) + 2C(00) + 3Bz (1.0) + O(t*) . (7.14)

However, the problem of determining the multiplet spectrum from the superconformal index
does not have a unique solution; in this case, an ambiguity first arises at the order of O(t?).
There are four possible short multiplets

87%(0,1)7 E%(QO)’ Doy _Eg(o,o) (7.15)

that may contribute to the —9¢® term from the index. Since D1y comes from the higher-
spin free field [24], it is absent for any interacting theory. Despite that we cannot give a
full-proof rigorous argument, we give a heuristic reasoning why we think that there are no
C-type multiplets. This is because we find that from the refined index (see equation (A.1))
by turning on all the flavor fugacities, we see that the t® term naturally arises from the
products of 33(070), while the OPE of Bg(o,o) X Bg(o,oy the B%(QO) multiplet appears but the
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5_%@,1),5; (0,0 multiplets are not present. As the six operators that contribute at order t
are of the form

Q%ui and  Trpupe (4,7 € {1,2,3}), (7.16)

we would naively expect that there exist 21 operators at order ¢%:

(Qui)(Q%wy),  (Q%wi) Trpyjpngy,  (Tr piptyzs)®. (7.17)

However, we know that (Q%u;)? from each Dy(SU(3)) theory are absent, and we expect that
(Q%u;) Tr pjupz; only exists if 4, j, and k are all distinct, since otherwise it would behave
like a mixed Coulomb-Higgs operator of one of the Dy(SU(3)) building blocks. Altogether,
this gives 9 relations at order t®, which is reflected in the —9¢% term in the plethystic log.
Therefore, we claim that the —9¢® term appears in the index comes entirely from —Bg 0,0)-
Hence, while naively there would be 6 x 7/2 = 21 B% (0,0) multiplets in the theory, there are
only 12 of them present.

7.2 Gauging 4 copies of D, (SU(3))

In an analogous manner, we find that the reduced index of the theory constructed via gluing
four copies of Dy(SU(3)) by N = 1 gauging is

T 9
t2

I2222) = (8 —4x2(y)) + 30 +t° (46 — 35x2(y) + 6xs(y)) + O(t%) . (7.18)

There are six marginal operators of the form Tr y;/1;, where we recall that the Tr 2 operators
are projected out by the chiral ring relation of Dy(SU(3)), and there are three non-anomalous
U(1) flavor symmetries from F; — F;;1; thus, we expect that the contribution to the 5 term
is 6 — 3 = 3, which agrees with equation (7.18). The t"y2(y)v? term in the index of each
D, (SU(3)) contributes to the index of the gauged theory as the term 4t%y»(y); similarly
to the gauging of three copies of Dy(SU(3)), this is canceled by the contribution from the
four operators of the form Tr A\y;. There are eight relevant operators, among which four of
them are the Coulomb branch operators of each individual Dy(SU(3)) theory. The other four
relevant operators are the A/ = 2 superpartners of the Coulomb branch operators of each
Dy(SU(3)) theory before gauging.

We write the reduced plethystic log of the index as

l\.’)\@

7(2,2,2,2) t2(8 — 4dxa(y)) + 3t° — 3t'xa(y) + O(t%) : (7.19)

At low orders in t, the superconformal multiplets generating the chiral ring can be determined
unambiguously from the index, and we find that it can be written as

1(2222 8B: + 4B: +652 0,0) +3C(oo +0(t"). (7.20)

2.0 3(
2 ( 2

£
27
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In this expression, each of the listed short multiplets provides a shorthand for the plethystic
logarithm of the contribution of that multiplet to the superconformal index, as summarized
in Table 2. Thus it is easy to see that the spectrum of low-scaling dimension multiplets listed
here reproduces the plethystic log in equation (7.19).

7.3 Gauging 5 copies of Dy(SU(3))

At this point we expect that the reader is familiar with the procedure of using the expression
in equation (7.12) to determine the reduced superconformal index. Then, without further
ado, we find the reduced index of the theory comprised of five copies of Dy(SU(3)) glued
together by N’ = 1 gauging as

Ti20922) = 5t —5t5 xa(y) + 5t — 418 4+ 2565 — 25t5 xa(y) + 5 (40 + 10xs(y))

s (7.21)
— 21t%a(y) — 20t 5 + O(t').

There are no marginal operators in this theory and four U(1) flavor symmetries contributing
(—4) at the t® order. There are ten relevant scalar operators, where five of them are the
Coulomb branch operators in the individual Dy (SU(3)) theories and they contribute to the
5t% term in the index. The other five relevant scalar operators correspond to the 5t5 term,
and they arise from the N' = 2 superdescendants of the Coulomb branch operators from
cach Dy(SU(3)) theory. The contributions of all of the relevant and marginal operators are
summarized in Table 4.

To find the generators and relations of the chiral ring, we determine that the reduced
plethystic log of the index is
I20202) = 5t5 —5ts +5t5 —4t° 4 10t5 +4t° — 1565 + Ot ). (7.22)
Up to t% order, we find that the following N/ = 1 supermultiplets contribute to the index:

’]\:(2’272,272) - 5?%(070) + 5?%(%70) + 51_/))%(0’0) + 46\(0,0) + O(t%) . (723)

7.4 Gauging 6 copies of D, (SU(3))

Finally, we consider the SCFT obtained via the conformal ' = 1 gauging of the SU(3) flavor
symmetry of six copies of the Dy(SU(3)) theory. The reduced superconformal index of the
resulting SCFT is

T222222) = 6% — 6t xa(y) + 6t° 4+ 16t° — 3617 x2(y) + ° (72 + 15xa(y))

(7.24)
+12(26 — 16x2(y)) + O(t").

There are five U(1) flavor symmetries in this theory, each of which has a current contributing
(—1) to the t® term in the index. There are 21 marginal operators obtained from the product
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of pairs of Coulomb branch operators: u;u;. All of the relevant operators contributing to this
index are the six Coulomb branch operators and their N’ = 2 superpartners. For each of these
gaugings of Dy(SU(3)) theories, we have summarized the relevant and marginal operators
that contribute to the index in Table 4.

Although it begins to become ambiguous, we can perform the operator spectroscopy also
for the low R-charge irrelevant operators. We explore such an analysis in this example by
explaining the operators that contribute to the ¢ and t® terms that appear in the index in
equation (7.24). At t7, there are 36 operators of the form u;Qu; that contribute the complete
—36x2(y). Putatively, at t7, there also exist the operators Tr Au;, however, as discussed
in Section 7.1, these recombine with the operators contributing ya(y)t" in each Dy(SU(3))
theory to form long multiplets in the gauged theory; thus they do not contribute to the
superconformal index. At ® the contributing operators are u;Q*u;, Qu;Quj|1, Tr fuifijzi,
and Qu;Quj.i|s, where we observe from the D,(SU(3)) superconformal index in equation
(4.3) that the putative operators QuQul|s do not exist. The contributions from all of these
operators reproduce the ¢ term in the index in equation (7.24).

We further find that the reduced plethystic log of the index is

1(2727272’272) = 6t3 — 6t4X2(y) + 6t5 — 5t6 — 15t8 — 5t9X2<y) + O(tlo) y (725)

and we can also determine the short N' = 1 multiplets that contribute up to order t% as
follows:

1(272,2727272) = 681(070) + 6?%(110) + 6?%(070) + 55([)70) ‘l’ O(ts) . (726)

2

It is straightforward to see that the superconformal primaries of the 31(0,0) multiplets are the
u;, of the Eg(é,o) multiplets are the Qu;, and of the Eg (0,0) multiplets are the Q*u;. The five

~

C(0,0) multiplets, which have scalar fields as their superconformal primaries, contain the five
U(1) flavor currents. This matches precisely with the known decompositions of the N' = 2
E-type multiplets into N' = 1 superconformal multiplets, as given in equation (4.12).

8 N = 1 gaugings of multiple D3(SU(2))

Next, we turn to the study of a simple class of theories with G = SU(2). We consider several
theories built out of between two and four copies of the D3(SU(2)) theory via N = 1 gauging.
As in the previous section, this construction will generally give rise to non-Lagrangian theories
as p and N, i.e., 3 and 2, are coprime. Each index demonstrates the absence of non-unitary
contributions and the relevant and marginal operators that contribute to these three indices
are summarized in Table 5.
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8.1 Gauging 2 copies of D5(SU(2))

Two copies of D3(SU(2)) can be glued together via A = 1 gauging to give rise to a theory
with the following quiver diagram:

Dy(SU(2)) Dy (SU(2))

The reduced index of this theory with two copies of D3(SU(2)) can be computed again by
an application of the integral formula given in equation (7.1). We find that

Tisgy = 3 = 2t3xay) + 3 — 25 xaly) + 4 3+ 20) +O (15) . (81

The operators associated to each of these terms can be determined straightforwardly, as
described in the previous section, and we do not belabor the point here; the operators are
summarzied in Table 5. After taking the plethystic log and removing the contributions from
the conformal descendants, then we can see that it is written as

f(s,s) = 3t° — 215%)(2(9) —3t° + 415%)(2(9) — (1 + xs(y) + O(té_l) : (8.2)

From this expression we can perform the A" = 1 multiplet spectroscopy unambiguously up
to order t%, and we find that the reduced plethystic log can be written as

~ — — — o 15
1(373) = 361(070) + 26%(%70) - 262(070) + C(Qp) + O(t 2 ) , (83)

where we note again that we have abused notation and wrote the name of the supermultiplet
as a shorthand for the contribution to the reduced plethystic log of the superconformal index
from that multiplet, as summarized in Table 2.

The term —2@2(070) comes from two separate contributions: firstly, we get +2 from the
two Coulomb branch operators (uq,uz) in each D3(SU(2)). The other (negative) contribution
to this term comes from non-trivial relations between the chiral primaries in the operator
product expansion of El(o,o) X El(O,O)- More precisely, the superconformal primaries belonging
to the 6?2(070) multiplets appearing in the OPE 3?1(070) X sym 3?1(070) are, naively

(Q%u1)(Q%wy), (Q%u2)(Q%uz), (Q%uy) Tr iy prg, (Q%u2) Tr puy o, (Q%ur ) (Q%ua), (Tr papun)? .

The first four are lifted by the chiral ring relations. This is deduced by looking at the refined
index, given in equation (A.5). Hence, these chiral ring relations contribute —4?2(070). Thus,
we end up with —2@2(070).

25



8.2 Gauging 3 copies of D;(SU(2))

Now we consider the theories constructed from three copies of the D3;(SU(2)) theory via
N =1 gauging, whose quiver diagram is given by

Ds(SU(2))

Dy(SU(2)) D3(SU(2))

The reduced index of three copies of D3(SU(2)) glued together by N' = 1 gauging is
I35 = t*(6 — 3xa(y)) +1° + 15 (21 — 15xa(y) + 3xs(y) + 7 (1 — xa(y) + O(""). (8:4)

We can see that 237373) evinces a one-dimensional conformal manifold, and the relevant and
marginal operators are listed in Table 5. We also list the reduced plethystic log and express
the short multiplets that contribute to the index at low orders:

I35 =14t = 3x2(y)) +1° + (=6 + 3x2(y)) + (1 — x2(y)) + O(t™) (8.5)
6Ba(00) + 3Bx 1,0) + 3Ba00) + 2C00) + O(F). (8.6)

8.3 Gauging 4 copies of D;5(SU(2))

We further consider the theories constructed with four copies of the D3 (SU(2)) theory glued
via N' = 1 gauging. The corresponding quiver diagram is

Ds(SU(2))

Ds(SU(2)) —(SUED— Ds(SU(2))
Dy(SU(2))

and the reduced index of the theory thus obtained is
f(3,3,3,3) = 4¢° — 415%)(2 (y) + A3 £ 75 — 16t241iX2(?/)
7 (284 6xs(y)) + 17 (4— 12xay) + (U +5xaly) (8T
— 1% (20 +28xa(y) + 16xa(y)) +O(t").

We compute the reduced plethystic log of the index f(3737373) in order to exhibit the generators
and relations of the chiral ring:

f(3737373) :4t3 — 4t1‘1_5X2(y) + 4t% — 3t6 -+ 2t12_5 -+ t%(zl -+ 4X2(y))

o (8.8)
— 04+ aly) — 4 o).
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We can also identify every short multiplet containing relevant and marginal operators that
contributes to the superconformal index as follows:

15

I3333 = 4Biag) + 4Bs(1 0y + 4B () + 3Cog) + O(t?) . (8.9)

4120

As expected, this is consistent with the decomposition of the NV = 2 &-type multiplets
containing the low-scaling dimension Coulomb branch operators of each of the D3(SU(2))
building blocks, as in equation (4.12), combined with the non-anomalous U(1) flavor currents
that survive from the N' = 2 R-symmetry after A" = 1 gauging.

9 N =1 SCFT constructions with D5(SU(2))

In this section, we consider examples where the gauging involves at least one copy of the
D5(SU(2)) theory. This is the theory with the largest value of p for which the superconformal
index can be computed in a reasonable timeframe. The first example, in Section 9.1, is the
first instance where we determine the index for gaugings involving differing p;, and as such
we find that the superconformal R-symmetry involves a mixing with irrational coeflicients.
In the second example, we consider gauging together two copies of D5(SU(2)). The resulting
operators spectroscopy in these two cases is summarized in Table 6.

9.1 Gauging 2 copies of D5(SU(2)) and one D5(SU(2))

We consider the theory composed via gluing two copies of D3(SU(2)) and a single D5(SU(2))
together, via (N = 1)-gauging, which can be depicted as

D5(SU(2))

(9.1)
Dy(SU(2)) Dy(SU(2))

We find the reduced superconformal index of this theory is

1(37375) — t3'05814 o t3'50969X2 (y) + 3t3'96124 o 2t3.99031X2 (y) + 2t4'01938

(9.2)
+ t4'07752 o t4.52907X2 (y) + t4'98062 o 2t6 + t6'05814 + t6'11627 + O(t6'48062) ]

This theory is an example where the mixing coeflicients ¢; are irrational, and thus the theory
has irrational charges, as seen from the irrational powers of ¢; however, we can see that
all the terms that appear are consistent with unitarity. For this theory, we study some of
the operators that contribute to the superconformal index. Recall that each copy of the
D3(SU(2)) theory has a single Coulomb branch operator, which we call u; and us, and the
D;5(SU(2)) theory has two Coulomb branch operators, uz and v3. We find that ug contributes
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to the 398 term; 4, and uy contribute to the $396124 term; and v3 provides the %7752 term.
All other relevant terms are provided by the N' = 2 superdescendants of these four Coulomb
branch operators. There are two U(1) flavor currents, and no marginal operators, that
contribute to the ¢ term. Finally, we can see that Tr o, which is an irrelevant operator,
contributes to the #595814 term.

Up to O(t59814) the reduced index is identical with reduced plethystic log of the index

t6'11627)

since the first composite operator appears at O( . Every relevant operator captured by

the superconformal index is actually a superconformal primary operator of a B-type N' =1
superconformal multiplet. Here, we exhibit the short multiplets that are captured by the
index up to order ¢°:

f(3,3,5) =E1.01938(0,0) + 31.16990(%,0) + 331.32041(070) + 231.33010(%70) + 23133979(070)

B 7 = A (9.3)
+ Bisso17(0,0) + Bi.s0060(2 0) + Bresozi(00) +2C0,0) + O(16:05814y

These supermultiplets and their associated primary operators are listed in Table 6.

9.2 Gauging 2 copies of D;(SU(2))

Another theory we consider which involves the D5(SU(2)) building block is the theory ob-
tained via gauging two copies of the D5(SU(2)) theory. The resulting SCFT can be written

Ds(SU(2)) D5(SU(2)) (9.4

By computing the superconformal index we can verify that there are no terms that violate

as the quiver

unitarity and thus confirm that we obtain an interacting SCFT with a = ¢ in the infrared.
The reduced index of this theory is

Tiss) = 26% — 207 xa(y) + 5t — 2t xa(y) + 25 — 207 xa(y) + O(t7) (9.5)

which has rational exponents, as expected since the mixing coefficients are themselves ra-
tional. We call the two Coulomb branch operators of Ds(SU(2)) as u and v, and they
have dimensions 6/5 and 8/5, respectively. In the gauged theory, we know that there ex-
ist two marginal operators that come from v, and v,. There also exists a marginal operator
Q?u1Q%us, however we can see from the superconformal index of the D5(SU(2)) theory, given
in equation (4.3), that the putative (Q?u;)? operators do not contribute to the index. There
is a single non-anomalous U(1) flavor symmetry. The current for this flavor symmetry and
the three marginal operators contribute to the coefficient 3 — 1 = 2 of the #% term. The
relevant terms in the index are contributed to by the following operators: t* is Q%u;, t'°/4
is Quj, t°? is u;, Q%v;, and Tr py i, and finally 274 is Qu;. We summarize this operator
content, together with the relevant and marginal operators in terms of N' = 1 superconformal
multiplets, as determined from the reduced plethystic logarithm, in Table 6.
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10 N = 1 theories with adjoint chirals

We have now determined the superconformal indices for a variety of the infrared SCFTs
with @ = ¢ that we constructed in [46]. We now turn to examples where, in addition
to the gauged D,(G) theories, we also include one or two extra adjoint chiral multiplets.
The superconformal index of this SCFT can be determined using the expression for the
superconformal index of the D,(G) theory, as in equation (4.3), and the known expression
for the index of a weakly-coupled chiral multiplet. A chiral multiplet in the representation
(adj, R) of a flavor symmetry G x F has index

e xp p(v) — 1073 x g 7 (v)
Ia joint chiral — PE 7 7 adj ; 10.1
i i - -rpy ol He-y

where Ry is the R-charge of adjoint chiral ¢, z denotes the G flavor fugacity that will be
gauged together with D,(G), and v stands for the fugacities of the other flavor symmetry F
collectively.

10.1 Gauging 2 copies of D,(SU(3)) with an adjoint chiral

As a first example, consider the SCFT constructed via the (AN = 1)-gauging of two copies of
the Dy(SU(3)) theory, together with an additional adjoint chiral multiplet ¢:

D,(SU(3)) Dy(SU(3) (10-2)

The reduced index of this theory is straightforwardly worked out from the superconformal
indices of the building blocks, and we find

fna=1 — t2'5359 T 3t3'80385 . 3t4.26795X2 (y) T 4t4'73205 T t5'0718

(2,2),8
_ /55350 6.33075 | (4680385 (10.3)
7 xa(y) + 3t + O(580385y

Here we utilized the notation n, to denote the number of adjoint chiral multiplets. We can
see that the index for this theory contains no unitarity-violating terms, demonstrating that it
does indeed flow to an infrared SCFT with a = ¢. The relevant and marginal operators that
each of the terms in the index arise from are listed in Table 4; similarly, it is straightforward
to use the reduced plethystic logarithm to determine the A" = 1 superconformal multiplets
that contribute to the index at low orders, and these are also contained in Table 4.

10.2 Gauging 1 copy of D3(SU(2)) with two adjoint chirals

Next, we consider an example of a gauging involving two additional adjoint chiral multiplets,
corresponding to the quiver
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Du(sU(2) —GUY) (10.4)

We find that the reduced index of this theory, constructed with a D3(SU(2)) gauged together
with two adjoint chiral multiplets ¢; and ¢- attached, is

Ina=2 :t2.74273 T t3.68568(3 — X2 (y)) T t4.62864 . 2t4.84284X2 (y) + t5.48545

(833 (10.5)
| BTESE g0 | 46428413 ()Y (4702564

We can see that this index contains no unitarity violating terms, and thus we have a good
infrared SCFT with a = ¢, as expected from the analysis of a subset of the protected operators
in [46]. The flavor symmetry of this theory is U(1) x SU(2), which can be seen in the ° term

— 4% = — (1 + Naupa(0))1°, (10.6)

if we revive the SU(2) flavor fugacity, v. The flavor symmetry is the anomaly-free part
of the classical U(1) x U(1l) x SU(2) flavor symmetry, where the first U(1) is the flavor
remnant of ' = 2 R-symmetry, and the remaining U(1) x SU(2) is the symmetry rotating
the two adjoint chirals ¢;9. The relevant and marginal operators that contribute to the
superconformal index are listed in Table 5, and we now briefly describe their identification.
Under the superconformal R-symmetry the R-charges of the adjoint chirals, the moment
map, and the single Coulomb branch operator of the Argyres—Douglas theory are

87 — v 354

R(¢r) = R(¢n) = ——7— ~ 0.61428,
11 + 2v/354
R(p) = +T ~ 1.31432, (10.7)
252 — 81/354
R(u) = % ~ 0.914242.

If we consider operators built out of these objects then we find that the following are relevant
scalar operators

Tro?, Trovpe, Tres, Trudr, Trugs, u, u. (10.8)

Each operator contributes a term ¢*%, where R is the R-charge of the operator, to the su-
perconformal index, and thus we can see the following contributions: the Coulomb branch
operator u to t*™*7 the three Tr¢;¢; to 3088 the two Trug; to t>™% and the u? to

948545 The theory has no marginal operators. The four operators Tr ¢;¢,;¢;, would a priori
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appear to be relevant operators, however they are absent in this specific case due to the
absence of a cubic Casimir for G = SU(2). In [45], we consider G = SU(N) and study
the SCFTs obtained by renormalization group flows triggered by both the relevant opera-
tors in equation (10.8) and the cubic operators, when they exist. These operators organize
themselves into AV = 1 superconformal multiplets, and the specific multiplets that contain
the relevant and marginal operators can easily be determined from the plethystic log; we
summarize the operators and their associated superconformal multiplets in Table 5.

10.3 Gauging 1 copy of D;(SU(2)) with two adjoint chirals

We consider another example of a gauging with two adjoint chiral multiplets where the
D;3(SU(2)) from the previous section is replaced with the D5(SU(2)) Argyres-Douglas theory.
The ultraviolet depiction of the resulting A" =1 SCFT is given by the following quiver

Dy(SU(2)) @ , (10.9)

Using the by-now-familiar techniques, we find that the reduced superconformal index of the
infrared SCFT is
Tha=2 _ 4242423 | 4323231 (340404 ) () | 34380808 _ y41212, () | 4438384

(5),3,3
o ABISAT  gpd 0040, (o) | 459192 | 4565654 45.82827, oy 4 04588384 (10.10)
4510 (t6.23231) .
The theory has the same U(1) x SU(2) flavor symmetry as the theory studied in the previous
subsection. We can figure out the relevant and marginal operators that contribute to the
index with the data of the infrared R-charges of each fields. The R-charges of the adjoint

chiral multiplets, the moment map, and the Coulomb branch operator of the D5(SU(2))
theory are

82 — /298

R(¢1) = R(¢n) = ——g5— ~ 0.634680,
49 + 51/298
R(p) = +1T ~ 1.32660, (10.11)
1—+/2
R(u) = 31— V2% - % 0.808078.

We find that there are no terms corresponding to operators that violate the unitarity bound,
thus we expect the IR theory in this example indeed has identical central charges. The full
spectrum of relevant and marginal operators we find from index, and the A" = 1 multiplets
to which they belong, are listed in Table 6.
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10.4 Gauging 0 copies of D,(G) with two adjoint chirals

Throughout this paper, and in our previous work [46], we focus on 4d N' = 1 SCFTs that
are built out of a diagonal gauging of Argyres-Douglas D,(G) theories, together with the
possible inclusion of adjoint-valued chiral multiplets. In fact, such a construction can lead
to N = 1 theories with a = ¢ even if the number of Argyres—Douglas theories included as
building blocks is zero! In this section, we consider the Lagrangian theory obtained formally
by gauging the G flavor symmetries of zero copies of any D,(G) theory, together with two
adjoint chiral multiplets. This is thus simply a quiver gauge theory with a gauge node GG and
two adjoint chiral multiplets:

’li:J
~_ 7
- -

(10.12)

The reader can easily confirm that this theory has a = ¢, for any value of GG. It has an SU(2)
flavor symmetry whose fundamental representation rotates the two adjoint chiral multiplets,
¢1 and ¢o, while the classical U(1) that rotates their phase is anomalous. We consider
G = SU(3), and then the reduced index of this theory can be determined utilizing the
formula in equation (10.1). The result is simply written as

A?’La: 9
Iadjﬁfdj - t3Xsu2,3(U) + 12 (Xoup,a(V) — Xouz,2(v)X2(¥))

; 10.13
+ tG (X5u2,5 (U) - XSLQ,S(U) +2- XHU%S(U)XZ (y)) + 0 (t?) ’ ( )

where we have refined the index by the fugacity v of the SU(2) flavor symmetry. The theory
contains seven relevant scalar operators

Tr (/b% 3 Tr ¢1¢2 ; Tr ¢§ 3 Tr ¢§) 3 Tr ¢%¢2 3 Tr ¢1¢§ 3 Tr ¢§ 3 (1014)

where the first three transform in the 3 of the SU(2) flavor, and the latter four transform in
the 4. There are seven marginal scalar operators

(Tr ¢2)*, Tr ¢ Tr daho, Tr 2 Tr @2, (Tr pacha)?, Tr prcho Tr 62, (Tr ¢2)”, Trlhy, o). (10.15)

Among these seven marginal operators, four of them are exactly marginal and span a four-
dimensional conformal manifold.

It turns out that G = SU(3) is particularly special due to the absence of an independent
quartic Casimir for that Lie algebra. When we have a larger gauge symmetry, we have more
marginal operators. For example when G = SU(4), the reduced index is

The= 9
Iadj;dj :t?)Xsuz,S(U) +12 (X5u2,4(v) - Xsu2,2(U)X2 (y))

15 10.16
+ 0 (2X5u2,5(v) — X5u273(v) + 2 — Xsug,S(U)Xz(y)) +0 (tT) . ( )
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As we can see, there is an additional set of scalar marginal operators transforming in the 5
of the SU(2) flavor. These are the operators

Troy, Tréige, Tr{or,¢2}’, Tregs, Troy. (10.17)

These operators exist for the a = ¢ infrared SCFTs that have ultraviolet description as
SU(N) with two adjoint-valued chiral multiplets, for any N > 3. The landscape formed by
superpotential deformations to new N' = 1 SCFTs triggered by the operators in equations
(10.14), (10.15), and (10.17) has been studied in [43].

11 Summary and future directions

We have determined the superconformal indices for a wide variety of theories, and we have
also discussed in some cases how we can analyze the computed indices to determine the
low-dimension operator content of the theory; hence we are effectively performing operator
spectroscopy. We have verified that there is no unitary violating operator up to certain order,
further supporting that our a = ¢ theories constructed are unitary interacting SCFTs. We
now summarize the operators that contribute to the relevant and marginal terms up to =6
for the indices of all of the D,(G) gaugings discussed throughout this paper. (See Tables 4,
5, and 6.)

The relevant and marginal operators typically fall into a few fixed categories. The first
kind of operators that appear are those that arise from the N = 2 £-type supermultiplets
that contain the Coulomb branch operators. Let @ denote the N' = 2 supercharge which
has non-zero j,. The states Qu and Q?u are super-descendants of the Coulomb branch
operator u. After N'=1 gauging, @Q is no longer a supercharge of the theory, and the states
u, Qu, and Q%*u are no longer related by supersymmetry; the are independent operators.
Nevertheless, these states, and products of these states, regularly contribute relevant and
marginal operators to the spectrum of these a = ¢ SCFTs.

The second category of operators are those constructed out of the fields of the weakly-
coupled content of the gauged theory. We variously include N/ = 2 vector multiplets, N' =1
vector multiplets, and N = 1 chiral multiplets. The fields with which we are concerned are
the scalar field ¢ inside of the N' = 1 chiral multiplet and the gaugino A inside of the N' =1
vector multiplet. When the gauging involves an N' = 2 vector multiplet, as in the f(G)
theories, one introduces both an N’ = 1 vector and chiral multiplet, and the supercharge @,
charged under jo, relates the gaugino and the scalar as A = Q¢.

Finally, there are operators constructed out of the moment-maps of each D,(G), . Typ-
ically, the Joseph ideal in equation (4.6) removes operators containing u*, and thus all con-
tributions from the moment-maps involve products of moment maps from different D,(G)
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origins. All non-cancelling contributions to the indices turn out to be formed either out of
products of these three categories of operators, or else out of operators belonging to the flavor
current multiplets.

In Table 4, we list the relevant and marginal operator content, and how they contribute to
the index, of the 54(5 U(3)) theory, the four theories obtained by (AN = 1)-gauging of between
three and six copies of Dy(SU(3)), and the infrared theory obtained by (N = 1)-gauging of
two copies of Dy(SU(3)) together with a single additional adjoint chiral multiplet. Similarly,
in Table 5, we write the operator content for the Eg(SU(2)) theory, the (A = 1)-gaugings of
three and four D3(SU(2)) theories, and finally the theory obtained via the (M = 1)-gauging
of the SU(2) flavor symmetry of a single D5(SU(2)) together with two additional adjoint-
valued chiral multiplets. Lastly, in Table 6, we write the relevant and marginal operators,
the N/ = 1 superconformal multiplets that they belong to, and how they contribute to the
index for each of the gauged theories that we consider involving a D5(SU(2)) building block.

We want to emphasize that the operator spectroscopy done in this paper has set the
foundations to further study an even broader landscape of 4d SCFTs with a = ¢. In partic-
ular, we are exploring the landscape of 4d N'= 1 SCFTs with a = ¢ by investigating if any
superpotential deformation maintaining the a = ¢ property exists. In view of the analysis
done in [43] on the superpotential deformations for SQCD with fundamental and adjoint
chiral multiplets, we perform a similar analysis, and we find that the resulting 4d N’ = 1
SCFTs often preserve the a = ¢ property [45].

Another important expectation is that analyzing the operator spectrum, as we have done
in this paper, should be helpful for constructing potential supergravity dual theories to these
4d SCFTs with a = ¢. The fact that a = ¢ holds at finite NV, where N is the rank of the gauge
algebra, requires a remarkable cancellation in the contributions to the subleading orders in
any putative AdSs dual. Determining the precise mechanism which sources this cancellation
is the subject of ongoing work. In the current paper, we have computed the superconformal
indices only for low-rank theories; this is because the full index of the higher-rank D,(G)
theories are yet unavailable. It would be interesting to find a method to compute the index
for arbitrary rank and look for the large N behavior of the index, which should be helpful
for understanding the holographic dual of these theories.!' The operator spectrum of these
SCFTs, which we analyzed via their superconformal indices, provides constraints on the form
of the supergravity duals, as these protected operators, and the renormalization group flows
that they trigger, must be replicated in their holographic dual theories.

UFor the case of N = 2 I'(G) theories, the Schur index is available for arbitrary N [12, 38, 40, 57].
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N=1

Index Term Positive Negative Total .
Multiplets
t3p—3 U; - 4 4?1(0 0)
t*o 2 (y) — Qu; —4 43%(07%)
5, (su(3) o=t Tr ¢ - 1 Biw.)
50 2x2(y) - Q Tr ¢? -1 Bs0,1)
16 Q2 Tr ¢? 1x (stress-tensor multiplet) 0 32(070) +C0,0)
1696 UiUsj, Tr d)?’ — 11 IIEQ(O,O)
~ ¢t Tr piptjzi, Q*us - 6 683 0,0)
I(2.2.9) ox2(y) - Qu; -3 3Bs 0,1
(2] T
16 et 2x (flavor current) 3 5B83(0,0) + 2C(0,0)
Tr pu1 pr3pio
R t9/2 Ug, Qzui - 8 8:% (0,0)
l(2,2,2,2) 92X (y) - Qu; —4 4B30,1)
t6 T g phj£4 3x (flavor current) 3 6B5(0,0) + 3C0,0)
T2 P xa(y) N Qui =5 58103
12,2,2, 124/5 QQui _ 5 553(070)
t6 - 4x (flavor current) —4 4C(0,0
3 u; _ 6 631(0,0)
. —
Tozoay 2 ) i - Baoy
3Ly LyLya, t5 Q2ui — 6 68%(070)
t6 Uil 5x (flavor current) 16 2132(0,0) 4 5C(0,0)
425359 Tr ¢ - 1 Bo.8453(0,0)
43.80385 ui, Tr ¢ - 3 353’1.26795(0,0)
42579 x5 (y) - Qui, Tr A¢ -3 3B 42265(0,1)
Tne=1 _
1i39)8 ¢4 73205 Tr i, Qu; - 4 4B1 57735(0,0)
2 —
7€5'0718 (Tr ¢?) - 1 ?1.6906(0,0)
7539 x5 (y) - Tr A\p? -1 B 8453(0,1)
16 Tr p; > 2x (flavor current) 0 2B2(0,0) + 2C(0,0)

Table 4: We present relevant and marginal contributions to the indices associated to theories
achieved via various ways of gauging copies of Dy(SU(3)). For an explanation of the notation
for the operators, see the main text. The positive/negative columns summarize the operators
that contribute either positively or negatively to the index, and we sum those contributions
in the final column, which is the the coefficient of the term in the index. The “Havor current”
at order t® refers to the leading order contribution from the supermultiplet containing the
flavor current; this contribution comes from a fermionic component.
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N=1

Index Term Positive Negative Total
Multiplets
£8/3,,—8/3 u; - 3 353(0 0)
7511/3072/3X2(y) _ Qu; -3 33%(0 b
A £14/3,,4/3 Q?u; - 33%(0,0)
Tgysu@y 007103 Uil - 6500
thy— Tr ¢2 - B0
tPv"2x2(y) - Q Tr ¢ -1 B%(Oé)
16 Q? Tr ¢* 1x (stress-tensor multiplet) 0 Ba0,0) + C(0,0)
t3 Q%u;, Tr puy pio - 3 3B10.0)
Tiaz /212 (y) : Qui -2 2Byo.p)
3,3
+6 uis (Tr pujez)® 1x(flavor current) 3 4B +C )
2(0,0) T+ C(0,0
(Q*u1)(Q%u2)
t4 Uj, qui - 6 6E%(0;0)
13,3,3) t'x2(y) - Qui -3 3B30.4)
16 Tr i pj £ 2x (flavor current) 1 332(0,0) + QCA(o,o)
3 u; -~ 4 4Bi(0,0)
5533 t154x2(y) - Qui 4 4§%(0’%)
13,3, 1£9/2 Q%u; - 48%(0,0)
16 oy 3x (flavor current) 1052(0,0) + 35(070)
£2.74273 u - 1 30.91424(0,0)
£3:68568 5 () _ Qu -1 31.22856(0,%)
44.62864 Q%u - 3B1.54288(0,0)
P £3.68568 Tr ¢ib; - 3 E1.22856(0,0)
3),3,3 B
(3) t4.84284X2(y) _ Tr Ao, —2 281.61428(0,%)
4548545 u2 — 1 B 82848(0,0)
£5.7858 Tr jugy; - 2 2B1.9286(0,0)
16 - 4x (flavor current) —4 45(0,0)

Table 5: We write the relevant and marginal contributions to the indices associated to the
theories obtained via various ways of gauging copies of D3(SU(2)). The notation is as de-
scribed in Section 11. Again, the positive/negative columns summarize the operators that
contribute positively /negatively to the index. The total column is the sum of the positive and
negative contributions and provides the coefficient of the associated term in the index. The
“flavor current” at order t® refers to the leading order contribution from the supermultiplet
containing the flavor current; this contribution comes from a fermionic component.
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N=1

Index Term Positive Negative Total
Multiplets
£3.05814 us - 1 31_01938(0,0)
£3:50969y 5 () _ Qus -1 33.50970(0,%)
43.96124 ur, us, Q%us - 3 331.3204(0,0)
£3:990813 (1) - Qu1, Qus -2 2E1.3301(0,$)
‘7(3’375) 4401938 Q?uy, Q%us - 2 281 .33979(0,0)
4407752 v3 - 1 31_35917(0,0)
452907y 5 (y) - Qus -1 31.50969(0,%)
£4.98062 Qv — 1 B1.6602(0,0)
16 - 2x (flavor current) — —2 2CA(o,o)
43 Q%u; - 2 2@1(070)
#15/4x5(y) . Qu; -2 2Bs 0,1
Its 5 1972 wi, Qv Tr piy o - 5 5B (0.0)
(21/4 - Q%v; -2 2B10.1)
16 v, Q%u1Q%us 1x (flavor current) 2 3Ba0,0) + 5(010)
42-42423 u - 1 Bo.80808(0,0)
£3.23231 v — 1 31.0774(0,0)
£3:40404, , (1) _ Qu -1 31.13468(0,%)
4380808 Tr ¢2, Tr ¢1 s, Tr ¢2 —~ 3 3B1.26936(0.0)
(421212, _ Qu -1 31.40404(0,5)
£4.38384 Q%u ~ 1 51.46128(0,0)
f(%:;s 14.84847 u2 - 1 31.61616(0,0)
$4:90404y , (1)) - Tr A1, Tr Ao -2 2?1.63468(0,%)
£5:19192 Q% - 1 31_73064(0,0)
4565654 uw - 1 31.8855(0,0)
£5:82827, 5 (1) _ uQu -1 31.9428(0,%)
4588384 Tr ey, Tr ucho — 2 2B1.96128(0,0)
16 - 4x (flavor current) — —4 45(0,0)

Table 6: In this table, we summarize the superconformal indices, and the associated op-
erator spectroscopy, for the gaugings discussed in Sections 9, 10.3, and 10.4. Again, the
positive/negative columns summarize the operators that contribute positively /negatively to
the index. The total column is the sum of the positive and negative contributions and pro-
vides the coefficient of the associated term in the index. The “favor current” at order t°
refers to the leading order contribution from the supermultiplet containing the flavor current;
this contribution comes from a fermionic component.

37



Acknowledgements

We thank Richard Derryberry for a helpful discussion. M.J.K. and C.L. thank the KAIX
program of KAIST for support during the final stage of this work. M.J.K. is supported by
Sherman Fairchild Postdoctoral Fellowship and the U.S. Department of Energy, Office of
Science, Office of High Energy Physics, under Award Number DE-SC0011632. C.L. acknowl-
edges support from DESY (Hamburg, Germany), a member of the Helmholtz Association
HGF. K.H.L. and J.S. are partly supported by the NRF grant NRF-2020R1C1C1007591. The
work of J.S. is also supported by POSCO Science Fellowship of POSCO TJ Park Foundation
and a Start-up Research Grant for new faculty provided by KAIST.

A Superconformal indices with flavor fugacities

In this appendix, we list the superconformal indices that were worked out throughout this
paper, in a refined way where all of the fugacities for the flavor symmetries are turned on.
The expressions tend to be rather cumbersome, as the flavor symmetry is generically just
U(1)N, for some N, however we write them here for both completeness and future reference.
We emphasize that throughout this appendix, we are considering the flavor-fugacity-refined
version of the reduced superconformal index, defined as in equation (3.4).

The refined and reduced index of three Dy(SU(3)) gauged together by an N' =1 SU(3)

vector multiplet is

Tpogy =t (02 + 07 4+ 07202 + vy + 01050+ 032) — Pxa(y) (v1 + 0y 'vg + vy 1)
H7 (<2407 + o+ 0y7) = txa(y) (0 + vivy” + 0)) (A1)
+ (o7 + 207+ 0] + vfuy 4 vy 4 2005 4 20 4 v P03 4 03) + O (80
In comparison with the unrefined index in equation (7.9), we have here two fugacities v; and
v associated to the two U(1) flavor symmetries generated by Fy — F; and F3 — Fo. We can
see that equation (7.9) is recovered when we take v; = vy = 1, as required. Next, we write

down the reduced index of four Dy(SU(3)) theories glued by N/ = 1 gauging, with the three
fugacities v; for the three U(1) flavor symmetries F;; — F;. The refined index is

Tpo22) = t2 ((or" + o +vrvg ' + 07?08 + 037> + vavs ™ + v3 + v3%03)
—x2(y) (v1 + vy 've + v3 vs + 03 ) (A.2)

+ 1% (=3 + 037 + 03 + vivs? + vy 2svs 4 o %03 + viey 2o3) + O () .

Similarly, the refined index for five Dy(SU(3)) glued together involves four fugacities v;
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associated to the four non-anomalous U(1) flavor symmetries, F; ;1 — JF;; we find

o 18

I22222) =17 (vi’ + vfgvg + v2_31)§’ + Ug_?’vff + v4_3)
2L -1 -1 -1 -1
—t5 x2(y) (vl—l—vl Vg + Uy U3+ U3 Vg + Uy ) (A.3)
Tt (U1—1 + vyt 4 vpvg 4 vsvg 4 v4) —4°+0 (t%> )

Finally, the refined index of the conformal A = 1 gauging of six copies of Dy(SU(3)) is

T 3/(.3 -3.3 -3.3 -3.3 -3.3 -3
l222222) = U (0] + 07 %05 + 03708 + v °v] + v s +037°)
4 -1 -1 -1 -1 -1
—t Xz(y) (U1+U1 Vg + Vg VU3 + VU3 Uy + Uy Vs + Uy )

+ 8 (v + vyt +vovs !+ vgup !+ vgvs !+ vs)

6 6 3 —6,,6 -3,,3 3,—3,3 —6,,6 -3
+ (=5 +v] + vy + vy vy + vy CUs + vivy Cvs + vy Cvs + Uy (A.4)
-3,,3 3,,—3,3 -3,3,,—3,,3 —6,.6 —6 3,,—3
+ Uy TV + VU5 TV + V] VU5 U + Vg U + U5+ VU5

-3,3 -3 -3,3 -3 —3,3, -3 -3,3 , .3, -3 3
+ v TU5U5 T+ Uy P03V T + U3 U U5 T + Vg Uy + VU, U5

-3,3, -3.3 -3 3 33 6 6 7
+ vy Pvsug %o + vy Pviu e + v %) + O (87)

The fugacities v; are again associated to the five U(1) flavor symmetries, which are generated
by Fip1 — Fi.

Next, we turn our attention to the refined indices involving the gauging of D3(SU(2))
theories. The refined index of two D3(SU(2)) gauged together, with a fugacity v for the
flavor U(1) generated by Fy — Fq, is

_/f\(373) = (1 s+ v_%) - tgxz(y) (v% + U_%> + 6 (1 s+ v_§>

(A.5)
- t%)@(y) (V*+07?) +t° (1 + ot + o7+ xa(y) (v% + v_%>> +0 (t%> .

Similarly, the refined index of three D3(SU(2)) gauged together via the diagonal of the SU(2)
flavor symmetries is

—~ 8 8 4 4 4 2

_4 8 _8 4 _4 4 _ 8 2 _2 _
I333) — ¢ (vl Shud + vyt Fuivg P+ ud v dug — xa(y) (Uf +vy? + vy

wloo
win

i) (A.6)

+ 1% (v + vy 2+ 00 = 2) + O (8°)

where, again, we have introduced two fugacities v; for the two non-anomalous U(1) flavor
symmetries generated by ;1 — F;. When four copies of the D3(SU(2)) SCET are (N = 1)-
gauged together via their common flavor symmetry, we find that the refined index, with three

39



fugacities v; standing for the three U(1) flavor symmetries associated to F;.1 — F;, is

~ 8 8 8 8

(8 s 15 2 _2 2 _2 2 2
I3333 =t <U13 + v fog oy ® U3 + U3 3) —t xa2(y) (Uf’ + vy Pvg 4 vy Pug +U33>

9/ 4 4 4 4 4 4 6 16 L 16 16
+t2 (v 5+vf023+v5v33+v§>+t <—3+v1“ + 0y 2+ 03 vy P

16 8 8 8 8 8 8 8 8 16 16)

(A7)

3,3

+ g * +viug? +vl3v§’v3 + vy 203 +ufv, 23 4 vy %oy

+0 (ﬁ) .

We have now written the flavor-fugacity-refined reduced superconformal indices for all
the 4d N' = 1 SCFTs arising from either asymptotically-free or conformal gaugings of the
diagonal of the flavor symmetry of a collection of either Dy(SU(3)) or D3(SU(2)) theories.
We now include the refined indices for some more sporadic examples of the N' = 1 SCFTs
with a = ¢ that were determined in [46]. The refined index for the infrared SCFT arising
from the A/ = 1 gauging of the SU(2) flavor symmetries of two copies of D3(SU(2)) and one
copy of D5(SU(2)) is

o~

. 8 _s
Tisss) = £3.05814)12 _ 43.50960,  (1),,2 4 43.96124 <v13 NEPYo e 1) vyt

_ 43.99031 2 -2\ o, 401938 (.3 -3\ .4 | ,4.07752. 16 (A.8)
X2(y) (vf +v, 3 )ug“+t v +vy P )vs +t V3
_IR0T ()0 4 980620 046 | () (tﬁ 05814) .

There are two U(1) flavor symmetries which do not have an ABJ anomaly, and to which we
associated the fugacities v; and v,. These correspond to the U(1)s generated by, respectively,
—F1+F2 and 3F; +3F, —b5F3; here F 5 are the flavor U(1)s arising from the two D3(SU(2))s
and F3 is the flavor U(1) coming from the D5(SU(2)). We can also consider the refined index
of the theory arising from two D;(SU(2)) gauged together, where there is one flavor fugacity
v standing for the anomaly-free U(1) symmetry generated by —F; + F». This index is

P B R S .
Tiss) =2 (05 +075) —t%xa(y) (vF + 075 ) +12 (1405 405 +075 +0v75
(A.9)

6

— £ ya(y) (u? + v_5> + 0 (v? + v—?> +0 (ﬁ) .
Next, we include an example where we are not only gauging a collection of Argyres—Douglas
theories, by also where we include additional chiral matter multiplets charged under the
introduced gauge node. In particular, the refined reduced index for the theory obained via
gauging two Do(SU(3)) theories together by N' = 1 gauging with one additional adjoint
chiral multiplet ¢ is
I(HQaZ—)l §2:5359,-2 4 43.80385 (vi’ 14 v1—3) vy — $A26795y (1) (1 oy oy ) —1
L 4473205 (vf oyttt 01—2) vy + {5OTIBy—4 55350, ) (42 (A.10)
+1° (vf + o7 2 —2) + O (t°%97) .
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The two fugacities v; and vy are for the two flavor U(1) generated by —F;+F and Fi+Fo—T
where T' is the classical U(1) symmetry that rotates the phase of ¢. As another example
involving adjoint-valued chiral multiplets, we consider the refined index for one D5(SU(2))
where the SU(2) flavor symmetry is gauged together with two adjoint chirals ¢; and ¢5. There
is an SU(2) x U(1) flavor symmetry; the SU(2) rotates the two chirals and the remaining
non-anomalous U(1) is T' — 3F, where the T is the generator of the U(1) factor in the U(2)
that classically rotates the two adjoint chiral multiplets. The fugacity for the Cartan of
SU(2) is vy and that for the U(1) is ve. Altogether, the refined reduced index is

](7'%(1)323 — tQ 74273 8 + 753.68568 (Xﬁu2,3 (Ul)vg o X2<y)vg) + t4'62864’U2—4
X2(U) Xoup.2 (V1 Vg + 74854516 1 4578580y o (0y )y (A.11)
— (X5u2,3(vl> + 1) + O (t6'42841) .

_ 4484284

From all of these refined indices we find that the charges of the operators under the U(1)
flavor symmetries, as read off from the fugacities, matches the identification of operators
using operator spectroscopy. Finally, we consider the refined index for one D5(SU(2)) whose
flavor SU(2) is gauged and coupled to two adjoint chirals ¢; and ¢,. Similar to the previous
example of D3(SU(2)) gauged with two adjoint chirals, this theory also has SU(2) x U(1);
two adjoint chirals are rotated into each other by an SU(2) flavor symmetry, and there is
also a non-anomalous U (1) that is 57" —4F where T rotates the phases of adjoint chirals. We
turn on fugacities vy and vy, which are associated to the SU(2) and U(1) flavor symmetries,
respectively. The refined index of this theory is given by

Ina72 — t2 42423 5 —|—t3 23231 2 t3.40404

8
5 | 13.80808
(5).3.3 vy +1

Xoug,3(V1)05"

t4.90404

X2(Yy)vs

4 —
_ t4'21212 + t4 38384 5 + t4 .84847

’U

Xz(y)v; X2 (Y) Xoua 2 (v1) 05 (A.12)

112
=+ t5.19192 t5 65654, 75 t5'82827 4 t5.88384

Uy Xsuz,2<v1)U53

—_— 6 oAl
Vg ° X2 (y)%s

—¢5 (X5u2,2(U1) + 1) +0 (t6'23231) .
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