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Abstract: Elastic nucleon-pion scattering amplitudes are computed using lattice QCD

on a single ensemble of gauge field configurations with Nf = 2+ 1 dynamical quark flavors

and mπ = 200 MeV. The s-wave scattering lengths with both total isospins I = 1/2

and I = 3/2 are inferred from the finite-volume spectrum below the inelastic threshold

together with the I = 3/2 p-wave containing the ∆(1232) resonance. The amplitudes are

well-described by the effective range expansion with parameters constrained by fits to the

finite-volume energy levels enabling a determination of the I = 3/2 scattering length with

statistical errors below 5%, while the I = 1/2 is somewhat less precise. Systematic errors

due to excited states and the influence of higher partial waves are controlled, providing a

pathway for future computations down to the physical light quark masses with multiple

lattice spacings and physical volumes.
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1 Introduction

Nucleon-pion (Nπ) scattering is a fundamental nuclear physics process. Because the pion

is the lightest strongly-interacting particle, pion exchange between nucleons governs the

long-range nuclear force and makes significant contributions to the binding of protons and

neutrons into atomic nuclei. Nucleon-pion scattering also gives rise to the prominent delta

resonance, ∆(1232), which makes important contributions to many nuclear processes, in-

cluding lepton-nucleon and lepton-nucleus scattering relevant to a range of electron-nucleus

and neutrino-nucleus scattering experiments.

While Nπ scattering is well understood experimentally and phenomenologically, such as

through the Roy-Steiner equations [1], our ability to predict these scattering amplitudes di-

rectly from quantum chromodynamics (QCD) is severely hampered by the non-perturbative

nature of the underlying theory of strong interactions. After QCD was established as the un-

derlying theory, chiral perturbation theory (χPT) [2] and chiral-EFT [3, 4] were established

to systematically describe the low-energy dynamics of pions and nucleons in an effective

field theory (EFT) framework. For a recent review, see Ref. [5]. While these EFT methods

are very powerful for treating low-energy hadron scattering processes, there are a number

of challenges which can only be addressed with first-principles calculations from QCD, for

which lattice QCD is an essential non-perturbative tool.
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For example, many of the low-energy-constants (LECs) of nuclear EFTs are difficult to

determine from experimental information alone. Lattice QCD can greatly assist the evalu-

ations of LECs by carrying out computations at a variety of quark masses and by comput-

ing processes which are difficult to measure experimentally, such as hyperon-nucleon and

three-nucleon interactions, short-distance matrix elements of electroweak and beyond the

Standard Model operators and many more. See recent reviews for further discussion [6–10].

Such interplay between EFT’s and lattice computations is already developing for meson-

meson scattering [11–16], but few lattice studies of meson-baryon scattering amplitudes

currently exist.

Another important issue concerns the convergence of EFTs, which are asymptotic ex-

pansions in small momenta and light quark masses, and thus, their convergence is not

guaranteed at the physical pion mass. Already, lattice QCD has provided numerical ev-

idence that SU(2) baryon χPT is not converging at or slightly above the physical pion

mass [17–19]. Including explicit ∆ degrees of freedom may improve convergence of SU(2)

baryon χPT, but this introduces a plethora of additional unknown LECs. Lattice QCD cal-

culations of Nπ scattering at various pion masses can help verify the convergence pattern,

and whether it is improved with explicit ∆s [20], as well as constrain the additional LECs.

Nπ scattering is additionally important because of the current tension between lattice QCD

determinations of the nucleon-pion sigma term [21–24] σπN and phenomenological deter-

minations [1, 25] (see Ref. [26] for a possible resolution). σπN plays an important role in

our understanding of direct dark matter detection experiments [27], emphasizing the im-

portance of this quantity. Controlled lattice QCD calculations of Nπ scattering are needed

to help resolve this tension.

As a final example, a very exciting prospect for lattice QCD is to determine key inputs

used in modeling neutrino-nucleus scattering cross sections to aid the next-generation ex-

periments, DUNE [28] and Hyper-K [29], designed to measure specific unknown properties

associated with neutrino oscillations. The importance of lattice QCD input was recently

highlighted with current lattice QCD results of the elastic nucleon form factors [30]. The

frontier for these lattice QCD applications is the ∆-resonance and pion-production contri-

butions to the inelastic νN structure. To carry out this program, it is essential to first

demonstrate control of Nπ scattering, a necessary component of computing nucleon inelas-

tic resonant structure.

Lattice QCD calculations of two-pion systems are well established (for a recent review,

see Ref. [31]), and there are now a handful of three-meson results [32–38]. In contrast, the

current state-of-the-art for lattice QCD computations of nucleon-pion scattering amplitudes

consists of two published determinations [39, 40], each employing a single ensemble with

mπ & 250 MeV, neither of which presents statistically significant results for the scattering

lengths. There is also older work which employs the quenched approximation [41] and

preliminary unpublished results for the I = 3/2 amplitudes [42–44]. The determination

of finite-volume nucleon-pion energies in Ref. [45] is performed close to the physical quark

masses, but scattering amplitudes are not computed. Lattice computations of meson-baryon

scattering lengths in other systems have also been performed [46, 47].

Recent advances in lattice QCD computations of multi-hadron scattering amplitudes
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are due in part to stochastic algorithms employing Laplacian-Heaviside (LapH) smearing to

efficiently compute timeslice-to-timeslice quark propagators [48, 49] which enable definite

momentum projections of the constituent hadrons in multi-hadron interpolators and the

evaluation of all needed Wick contraction topologies. Recently, these algorithms have been

successfully applied to meson-baryon scattering amplitudes [39, 45]. Alternatively, Ref. [40]

employs sequential sources while the scattering channels in Refs. [46, 47] are chosen to avoid

same-time valence quark propagation and can be straightforwardly implemented with point-

to-all. The LapH approach has also been employed to three-meson [32, 34–38, 50–52] and

two-baryon [53, 54] amplitudes.

This work is part of an ongoing long-term project to obtain Nπ scattering amplitudes

from lattice QCD, which requires computations using several Monte Carlo ensembles to

reach the physical pion mass and extrapolate to the continuum limit. Nucleon-pion correla-

tion functions in lattice QCD suffer from an exponential degradation in the signal-to-noise

ratio with increasing time separation, which hampers the determination of nucleon-pion

energies from the large-time asymptotics. This difficulty worsens as the quark mass is de-

creased to its physical value. One important objective of this work is to determine if the

stochastic-LapH approach of Ref. [49] is viable for computing nucleon-pion scattering am-

plitudes close to the physical values of the quark masses. Another objective is to compare

two different methods [55] of extracting the K-matrix from finite-volume energies. The

results presented here extend those of Ref. [39]. An update with increased statistics on

the same mπ = 280 MeV ensemble used in Ref. [39] is not included in this work due to

instabilities discovered in the gauge generation of that ensemble, as detailed in Ref. [56].

Both the total isospin I = 1/2 and I = 3/2 scattering lengths at light quark masses

corresponding to mπ = 200 MeV are computed in this work. The results are

mπa
3/2
0 = −0.2735(81) , mπa

1/2
0 = 0.142(22), (1.1)

where the errors are statistical only. The Breit-Wigner parameters for the ∆(1232)-resonance

are also determined from the I = 3/2, JP = 3/2+ partial wave

m∆

mπ
= 6.257(35), g∆Nπ = 14.41(53). (1.2)

Since only a single ensemble of gauge field configurations is employed, the estimation of

systematic errors due to the finite lattice size, lattice spacing, and unphysically large light

quark mass is left for future work. However, systematic errors due to the determination of

finite-volume energies, the reduced symmetries of the periodic simulation volume, and the

parametrization of the amplitudes are addressed. The methods presented here therefore

provide a step toward the lattice determination of the nucleon-pion scattering lengths at

the physical point with controlled statistical and systematic errors.

The remainder of this work is organized as follows. Sec. 2 discusses the effects of the fi-

nite spatial volume, including the corresponding reduction in symmetry and the relation be-

tween finite-volume energies and infinite-volume scattering amplitudes. Sec. 3 presents the

computational framework, including the lattice regularization and simulation, the measure-

ment of correlation functions, and the determination of the spectrum from them. Results

for the amplitudes are presented and discussed in Sec. 4, while Sec. 5 concludes.
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2 Finite-volume formalism

The Euclidean metric with which lattice QCD simulations are necessarily performed com-

plicates the determination of scattering amplitudes. It was shown long ago by Maiani and

Testa [57] that the direct application of an asymptotic formalism to Euclidean correlation

functions does not yield on-shell scattering amplitudes away from threshold. Instead, lattice

QCD computations exploit the finite spatial volume to relate scattering amplitudes to the

shift of multi-hadron energies from their non-interacting values [58]. See Ref. [59] for a more

complete investigation of the Maiani-Testa theorem, and Refs. [60, 61] for an alternative

approach to computing scattering amplitudes from Euclidean correlation functions based

on Ref. [62].

This section summarizes the relationship between finite-volume spectra and elastic

nucleon-pion scattering amplitudes. Due to the reduced symmetry of the periodic spatial

volume, this relationship is not one-to-one and generally involves a parametrization of the

lowest partial wave amplitudes with parameters constrained by a fit to the entire finite-

volume spectrum. Symmetry breaking due to the finite lattice spacing is also present, but

ignored. At fixed physical volume and quark masses, the continuum limit of the finite

volume spectrum exists and is assumed for this discussion.

For a particular total momentum P , the relationship between the finite-volume center-

of-mass energies Ecm determined in lattice QCD and elastic nucleon-pion scattering ampli-

tudes specified in the well-known K-matrix is given by the determinantal equation

det[K̃−1(Ecm)−BP (Ecm)] + O(e−ML) = 0 , (2.1)

where K̃ is proportional to the K-matrix and BP (Ecm) is the so-called box matrix. This

relationship holds below the nucleon-pion-pion threshold, up to corrections which vanish

exponentially for asymptotically large ML, where L is the side length of the cubic box

of volume L3 and M the smallest relevant energy scale. The determinant is taken over

all scattering channels specified by total angular momentum J , the projection of J along

the z-axis mJ , and the orbital angular momentum ℓ. For elastic nucleon-pion scattering

the total spin S = 1/2 is fixed, and therefore not indicated explicitly. The K-matrix is

diagonal in J and mJ , and, for elastic nucleon-pion scattering, additionally diagonal in ℓ.

The K̃-matrix in Eq. (2.1) explicitly includes threshold-barrier factors which are integral

powers of qcm =
√

q2cm, with

q2cm =
E2

cm

4
− m2

π +m2
N

2
+

(m2
π −m2

N)
2

4E2
cm

, (2.2)

so that K̃−1 is smooth near the nucleon-pion threshold. Each diagonal element of K̃

is associated with a particular partial wave specified by JP , where P is the parity, or

equivalently (2J, ℓ), so that

K̃−1
Jℓ,J ′ℓ′ = δJJ ′δℓℓ′q

2ℓ+1
cm cot δJℓ(Ecm) , (2.3)

where δJℓ(Ecm) is the scattering phase shift.
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d Λ dim. contributing (2J, ℓ)nocc for ℓmax = 2

(0, 0, 0) G1u 2 (1, 0)

G1g 2 (1, 1)

Hg 4 (3, 1), (5, 2)

Hu 4 (3, 2), 5, 2)

G2g 2 (5, 2)

(0, 0, n) G1 2 (1, 0), (1, 1), (3, 1), (3, 2), (5, 2)

G2 2 (3, 1), (3, 2), (5, 2)2

(0, n, n) G 2 (1, 0), (1, 1), (3, 1)2, (3, 2)2, (5, 2)3

(n, n, n) G 2 (1, 0), (1, 1), (3, 1), (3, 2), (5, 2)2

F1 1 (3, 1), (3, 2), (5, 2)

F2 1 (3, 1), (3, 2), (5, 2)

Table 1: A list of the lowest contributing partial waves for each irrep of the finite-volume

little group Λ in momentum class d employed in this work. All partial waves with ℓ ≤ ℓmax

for ℓmax = 2 are shown and each partial wave is denoted by (2J, ℓ). The superscript nocc

denotes the number of multiple occurrences (subductions) of the partial wave in the irrep.

The pattern of partial wave mixing is evidently more complicated for irreps with non-zero

total momentum.

The box matrix BP (Ecm) encodes the reduced symmetries of the periodic spatial vol-

ume, and is in general dense in all indices. The finite-volume energies used to constrain

K from Eq. (2.1) possess the quantum numbers associated with symmetries of the box,

namely a particular irreducible representation of the finite-volume little group for the to-

tal spatial momentum P = 2π
L d, with d ∈ Z

3. The matrices in Eq. (2.1) are therefore

block-diagonalized in the basis of finite-volume irreps, with each energy analyzed using a

single (infinite-dimensional) block. Since the subduction from infinite-volume partial waves

to finite-volume irreps is not in general one-to-one, an additional occurrence index n is

required to specify the matrix elements in each block. A particular block is denoted by the

finite-volume irrep Λ(d2) and a row of this irrep λ. Since the spectrum is independent of

the row λ, this index is henceforth omitted. For a particular block, the block-diagonalized

box-matrix is denoted B
Λ(d2)
Jℓn,J ′ℓ′n′ . The block diagonalization has no effect on K̃, apart from

introducing the additional occurrence index, in which it is diagonal.

In practical applications the matrices in Eq. (2.1) are truncated to some maximum

orbital angular momentum ℓmax. Threshold-barrier arguments ensure that at fixed Ecm

higher partial waves are suppressed by powers of qcm, but systematic errors due to finite

ℓmax must be assessed. The expressions for all elements of BΛ(d2) relevant for this work are

given in Ref. [55], although some are present already in Ref. [63]. The occurrence pattern

of lowest-lying partial waves in the finite-volume irreps is given in Tab. 1.

Employing this formalism for nucleon-pion scattering presents additional difficulties

compared to simpler scattering processes. First, due to the non-zero nucleon spin, two

partial waves contribute for each non-zero ℓ, one with J = ℓ + 1/2 and the other with
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a[fm] (L/a)3 × T/a Nmeas amπ amK

0.0633(4)(6) 643 × 128 2000 0.06502(35) 0.15644(16)

afπ afK amN

0.04233(16) 0.04928(21) 0.3148(23)

Table 2: Parameters of the D200 ensemble produced by the CLS consortium [64]. The

lattice spacing a is from Ref. [69] (with both statistical and systematic errors) and follows

the strategy of Ref. [70]. The number of gauge configurations employed here is specified

by Nmeas. The pion and kaon masses, denoted mπ and mK, and decay constants, denoted

fπ and fK, are taken from Ref. [70]. The nucleon mass mN determination is discussed in

Sec. 3.3.

J = ℓ− 1/2. Secondly, off-diagonal elements of the box matrix induce mixings of different

partial waves in the quantization condition. For ℓmax = 2, energies Ecm in irreps with

d2 = 0 determine unambiguously the quantity q2ℓ+1
cm cot δJℓ(Ecm) for s- and p-waves, while

these partial waves cannot be unambiguously isolated for levels in irreps with non-zero

total momentum. This complication necessitates global fits of all energies to determine the

desired partial waves, which are discussed in Sec. 4.

3 Spectrum computation details

This section details the numerical determination of finite-volume nucleon-pion energies used

to constrain the ℓ ≤ 2 partial waves of the I = 1/2 and I = 3/2 elastic nucleon-pion

scattering amplitudes. Properties of the single ensemble of gauge field configurations are

given in Sec. 3.1, and computation of the nucleon-pion correlation functions from them is

discussed in Sec. 3.2. The subsequent determination of the finite-volume spectra from the

correlation functions is detailed in Sec. 3.3.

3.1 Ensemble details

This computation uses the D200 ensemble of QCD gauge configurations generated by the

Coordinated Lattice Simulations (CLS) consortium [64], whose properties are summarized

in Table 2. It was generated using the tree-level improved Lüscher-Weisz gauge action [65]

and a non-perturbatively O(a)-improved Wilson fermion action [66]. Open temporal bound-

ary conditions [67] are employed to reduce the autocorrelation of the global topological

charge. However, all interpolating fields must be sufficiently far from the boundaries to

reduce spurious contributions to the fall-off of temporal correlation functions. An analy-

sis of the zero-momentum single-pion and ρ-meson correlators in Ref. [68] suggests that

a minimum distance of mπtbnd & 2 is sufficient to keep temporal boundary effects below

the statistical errors in the determination of energies. The time ranges for the correlators

employed here are such that mπtbnd & 2.3.
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A complete description of the algorithm used to generate the D200 ensemble is pre-

sented in Ref. [64], but some details relevant for the present work are given below. All CLS

ensembles use twisted-mass reweighting [71] for the degenerate light quark doublet and the

Rational Hybrid Monte Carlo (RHMC) approximation for the strange quark [72]. Both

representations of the fermion determinants require reweighting factors to change the sim-

ulated action to the desired distribution. All primary observables are therefore re-weighted

according to

〈A〉 = 〈AW 〉W
〈W 〉W

(3.1)

where 〈...〉W denotes the ensemble average with respect to the simulated action. W is

the product of two factors W = W0W1, where W0 and W1 are the reweighting factors

for the light and strange quark actions. They are estimated stochastically on each gauge

configuration as in Ref. [64].

The lattice scale is determined at a fixed value of the gauge coupling according to the

massless scheme described in Ref. [70] and updated in Ref. [69]. Specifically, the kaon decay

constant fK is enforced to take its physical value at the physical point where the pion and

kaon masses take their physical values. This point is identified along a trajectory in which

the bare light- and strange-quark masses are varied, keeping the sum of the (renormalized)

quark masses fixed. The heavier-than-physical pion mass mπ = 200 MeV for the D200

therefore results in mK = 480 MeV, which is less than the physical value. In practice, the

bare quark mass tuning satisfies the trajectory condition only approximately. In order to

correct any mistuning a posteriori, Ref. [70] applies slight shifts to the quark masses to

ensure the trajectory condition is respected in the scale determination. No such shift is

applied here.

Although open boundary conditions are employed, residual autocorrelation is evident

in the correlation functions, the measurements of which are separated by four molecular

dynamics units (MDU’s). In order to mitigate this, the original measurements are binned

by averaging Nbin consecutive gauge configurations. Independence of the statistical errors

as Nbin is increased suggests that autocorrelation effects are negligible. The dependence

of the relative errors on Nbin for the single-nucleon and single-pion correlators is shown in

Figure 1. Although evidence of autocorrelation remains for t . 8− 10a between Nbin = 20

and 40, these early timeslices are not used in the analysis, suggesting that Nbin = 20 is

sufficient.

3.2 Correlation function construction

The determination of finite-volume nucleon-pion energies requires a diverse set of temporal

correlation functions measured on the D200 gauge field ensemble. In addition to diagonal

correlation functions between single-pion and single-nucleon interpolating operators, cor-

relation matrices between all operators in each irrep are required. For the I = 3/2 irreps

in Table 1 where the resonant (2J, ℓ) = (3, 1) partial wave contributes, single-baryon op-

erators are included in addition to nucleon-pion operators resulting in additional valence

quark-line topologies. These topologies include those with lines that start and end on the

same timeslice.
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indices, for which ‘F’ denotes full dilution and ‘In’ some number of uniformly interlaced

projectors. Different dilution schemes are used for fixed-time quark lines, denoted ‘fix’,

which propagate between different timeslices, and relative-time lines (‘rel’) which start and

end at the same time. In this work, the relative-time quark lines were only used at the sink

time, while the fixed-time lines were used for quark propagation starting and ending at the

source time. Both the dilution schemes and the number of stochastic sources used for each

type of line are specified in Table 3.

A beneficial property of the stochastic estimators is the factorization of the inverse

of the Dirac matrix, which enables correlation construction to proceed in three steps: (1)

Dirac matrix inversion, (2) hadron sink/source construction, and (3) correlation function

formation. After determining the stochastically-estimated propagators in step (1), the

hadron source/sink tensors are computed in step (2). These tensors are subsequently reused

to construct many different correlation functions in step (3), which consists of optimized [32]

tensor contractions. Averages over Nt0 different source times, all possible permutations of

the available noise sources in a given Wick contraction, all total momenta, and all equivalent

irrep rows are performed to increase statistics.

3.3 Determination of finite-volume energies

Once the correlation functions computed as described in Sec. 3.2 are available, the de-

termination of finite-volume energies can commence. From the (binned) correlator and

reweighting factor measurements, the reweighted correlation functions are computed as

secondary observables according to Eq. (3.1). Their statistical errors and covariances are

used in fits to determine energies and estimated by the bootstrap procedure with NB = 800

samples.

In order to ensure that tbnd is sufficiently large, a maximum time separation tmax = 25a

is enforced globally in the analysis. Energies are determined from correlated-χ2 fits to both

single- and two-exponential fit forms, which are additionally compared to a “geometric

series” form

C(t) =
Ae−Et

1−Be−Mt
, (3.2)

which consists of four free parameters. We also explored a “multi-exponential” variant of

the geometric series, with the replacement Be−Mt →
∑

nBne
−Mnt.

The application of our approach to determining the nucleon and pion masses is shown

in Fig. 2. As usual, a fit range is desired so that statistical errors on the energies are

larger than systematic ones. This optimal range is selected according to several criteria.

First a good fit quality q & 0.2 − 0.3 is enforced to ensure that the fit describes the data

within the usual 68% confidence interval quoted for statistical errors. Second, the absence

of any statistically significant change in the energy upon variation of tmin around the chosen

fit range further suggests that the asymptotic large-time behavior is applicable. Finally,

consistency across different fit forms supports the hypothesis that the energy determination

is statistics limited. For the pion, consistency between single- and two-exponential fits, as

well as the mild variation with tmin, suggests that statistical errors are dominant. As is
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controlled by ensuring that extracted energies are insensitive to (t0, td) and Nop and by

ensuring that the rotated correlation matrix remains diagaonal within statistical errors for

all time separations t > td. The advantages of diagonalizing on a single set of times include

a better signal-to-noise ratio for large times and no need for eigenvector pinning in which

eigenvectors are re-ordered for diagonalizations at different times and bootstrap samples.

After forming the optimized correlators, the following ratio is taken

Rn(t) =
Dn(t)

Cπ(d2
π, t)CN(d2

N, t)
, (3.4)

with d2
π and d2

N chosen so that

Enon. int.
n =

√

m2
π +

(

2πdπ

L

)2

+

√

m2
N +

(

2πdN

L

)2

(3.5)

corresponds to the closest non-interacting energy. The ratio Rn(t) is then fit to the single-

exponential ansatz Rn(t) = Ane−∆Ent to determine the energy shift a∆En, from which the

lab-frame energy is reconstructed aElab
n = a∆En+aEnon.int.

n . Although the ratio fits enable

somewhat smaller tmin when ∆En is small, they offer little advantage for states which are

significantly shifted from non-interacting levels. Nonetheless, ratio fits are employed for

all levels in the nucleon-pion irreps, and are typically consistent with single- and double-

exponential fits directly to Dn(t).

A sample illustration of the procedure for nucleon-pion energies is shown in Fig. 3 for

the second level in the I = 1/2 G(3) irrep. Due to partial wave mixing, the single-nucleon

state is also present in this irrep. The GEVP is therefore required to properly isolate

the desired higher-lying nucleon-pion energies. Analogous plots for all levels are given in

Appendices A and B for the GEVP- and tmin-stability plots, respectively.

The spectra resulting from this analysis are shown in Figs. 4a and 4b for the I = 1/2

and I = 3/2 channels, respectively.

4 Scattering parameter results and discussion

This section details the determination of the scattering parameters from the finite-volume

energies. The parameterizations of the K matrix elements are presented, and best-fit values

for the parameters are summarized. Lastly, a comparison with chiral perturbation theory

is made.

4.1 Scattering parameter determinations

The energies shown in Figs. 4a and 4b are next used to determine scattering amplitudes via

the relations in Sec. 2. Although these relations are only applicable to energies below the

nucleon-pion-pion threshold, the slow growth of three-body phase space near threshold sup-

presses corrections to Eq. (2.1) and the coupling of nucleon-pion-pion states to our operator

basis is naively suppressed by the spatial volume, so energies somewhat above the inelastic

threshold are expected to be appropriate for inclusion in our global fits. Nevertheless, we
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G1u(0) G1(1) G(2) G(3) G1(4)

5.0

5.5

6.0

6.5

E
cm
/m

π

Nπ

Nππ

(a) The I = 1/2 spectrum.

G1u(0) Hg(0) G1(1) G2(1) G(2) F1(3) F2(3) G(3) G1(4) G2(4)G1g(0) Hu(0)

6.0

6.5

7.0

7.5

E
cm
/m

π

Nπ

Nππ

(b) The I = 3/2 spectrum.

Figure 4: The low-lying I = 1/2 and I = 3/2 nucleon-pion spectra in the center-of-

momentum frame on the D200 ensemble described in Table 2. Each column corresponds to

a particular irrep Λ of the little group of total momentum P 2 = (2π/L)2d2, denoted Λ(d2).

Dashed lines indicate the boundaries of the elastic region. Solid lines and shaded regions

indicate non-interacting Nπ levels and their associated statistical errors. Levels employed

in subsequent fits to constrain the scattering amplitudes are shown with solid symbols.

Two different fit strategies are employed to determine the parameters from the finite-

volume energies. The first, called the “spectrum method” [79], obtains best-fit values of the

model parameters {pn} by minimizing

χ2 ({pn}) =
∑

ij

(

q2cm,i

m2
π

−
q2,QC
cm,i

m2
π

({pn})
)

C−1
ij

(

q2cm,j

m2
π

−
q2,QC
cm,j

m2
π

({pn})
)

, (4.4)

where the q2cm,i are the center-of-mass momenta squared computed from lattice QCD, with

covariance matrix C, and q2,QC
cm,i ({pn}) are the center-of-mass momenta squared evaluated

from the model fit form for a given choice of parameters {pn}. The fact that the model

depends on mN/mπ and so is not independent of the data to be fit complicates the evaluation

of the covariance matrix C. As discussed in Ref. [55], a simple way to avoid this complication

so that C is just the covariance matrix of the data is to introduce a model parameter for
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the ratio mN/mπ and include an appropriate additional term in the χ2 of Eq. (4.4). Given

the relatively small error on mN/mπ, the additional terms have little effect on the fit

parameters or the resultant χ2, and are subsequently ignored. Note that the evaluation of

the (q2,QC
cm,i /m

2
π)({pn}) for a particular choice of the parameters requires the determination

of roots of Eq. (2.1), a procedure which can be delicate for closely-spaced energies.

The second method, called the “determinant residual” method [55], employs the de-

terminants of Eq. (2.1) themselves as the residuals to be minimized. These determinants

depend on the fit parameters through the K-matrix, which are adjusted to minimize the

residuals and best satisfy Eq. (2.1). This approach avoids the subtleties associated with

root-finding, but has other difficulties. For the spectrum method, the covariance between

the residuals is, to a good approximation, simply the covariance between the q2cm,i/m
2
π,

which can be estimated once and does not depend on the fit parameters. Conversely, for

the determinant residual method, the covariance must be re-estimated whenever the pa-

rameters are changed. Since the statistical errors on the determinant are typically larger

than those on q2cm,i/m
2
π, this approach is less sensitive to higher partial waves, and results

in a smaller χ2 compared to the spectrum method.

For the I = 3/2 fits, the JP = 1/2+, 3/2−, and 5/2− partial waves are added to

the spectrum method fits along with the ground states in the G1g(0) and Hu(0) irreps.

The I = 3/2 spectrum in the G2g(0) irrep was not computed, and irreps in the I = 1/2

channel which do not contain the s-wave were also omitted. This choice was made for

computational simplicity, although these irreps may be beneficial to further constrain higher

partial waves in future work. The determinant residual method is comparatively less robust

to the addition of other partial waves and is therefore only performed including the desired

waves. Nonetheless, the consistency between these different fitting methods, as well as

those including higher partial waves, suggest that uncertainties on amplitude parameters

are statistics dominated.

For the I = 1/2 channel, ℓmax = 0 is employed. Although the small number of levels

precludes a sophisticated estimate of the effect of higher partial waves, the influence of

the omitted p-waves can be explored by examining the influence of the highest-lying level

on the fit. Table 5 indicates that the effective range is insensitive to the omission of the

lowest-lying nucleon-pion level in the G1(4) irrep. These I = 1/2 fits are also insensitive to

an additional term in the effective range expansion, and exhibit no statistically significant

difference between the spectrum and determinant-residual methods.

Results from fits using both the spectrum and determinant-residual methods including

various partial waves are given in Tables 4 and 5 for I = 3/2 and I = 1/2, respectively. In

addition to the desired partial waves, fits using the spectrum method are mildly sensitive to

the JP = 1/2+, 3/2−, and 5/2− waves with I = 3/2. Although not included in the table,

the determination of the effective range for both isospins is robust to the addition of the next

term in the effective range expansion. Results for the partial waves from the fit including

only the desired partial waves are shown with the points from the total-zero momentum

irreps in Figs. 5 and 6 for the I = 3/2 and I = 1/2 partial waves, respectively. Since the

scattering length is the only desired parameter from the I = 1/2 spectrum, only the lowest

nucleon-pion levels from each irrep are included in the fit, as denoted by the solid symbols in
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Fit Npw A1/2− g2 M∆/Mπ A1/2+ A3/2− A5/2− χ2 dofs

SP 2 -1.56(4) 13.8(6) 6.281(16) — — — 44.38 23− 3

DR 2 -1.57(5) 14.4(5) 6.257(36) — — — 14.91 23− 3

SP 5 -1.53(4) 14.7(7) 6.290(18) -0.19(6) -0.46(12) 0.37(10) 30.17 25− 6

Table 4: Results for the fits in the I = 3/2 channel. Npw is the number of partial waves

included in the fit. Two different fit forms are included, the one denoted Npw = 2 includes

only the desired partial waves, namely JP = 1/2− and 3/2+, while the one with Npw = 5

includes all s-, p-, and d-waves. For the Npw = 2 fit, results from the determinant-residual

method, denoted ‘DR’, are shown in addition to the spectrum method, denoted ‘SP’.

Fit Npw A1/2− χ2 dofs

SP 1 0.82(12) 1.68 5− 1

DR 1 0.92(22) 1.72 5− 1

SP 1 0.82(13) 0.79 4− 1

Table 5: Results for fits to the I = 1/2 spectrum in Fig. 4a. Npw is the number of partial

waves included in the fit. Due to the small number of levels, all fits include only the desired

JP = 1/2− partial wave. Nonetheless, the effect of the omitted p-waves is estimated by

removing the G1(4) level, which evidently has little influence on the result. ‘SP’ refers to

the spectrum method, and ‘DR’ refers to the determinant-residual method.

Fig. 4a. Full exploration of the elastic I = 1/2 spectrum likely requires additional operators

beyond the scope of this work, due to the strongly-interacting JP = 1/2+ wave containing

the N(1440) Roper resonance.

The spectrum method enables an additional visualization of the quality of fits to the

finite-volume spectra. The residual is constructed using model values of q2,QC
cm /m2

π which

depend on the parameters and can be compared with the input data from the spectrum.

Such comparisons are shown in Fig. 7 for both the I = 1/2 and I = 3/2 spectra. Although

not shown explicitly on the plot, the ground states in G1(1), G(2), G(3), and G1(4) with

I = 3/2 are sensitive to the JP = 3/2+ partial wave. The ℓmax = 0 approximation signifi-

cantly increases the χ2 for these levels. Conversely, these levels therefore place significant

constraints on the near-threshold behaviour of the 3/2+ wave, in contrast to the higher-

lying levels in the Hg(0), G2(1), F1(3), F2(3), and G2(4) irreps. The ground states in the

G1g(0) and Hu(0) irreps are not shown on the plot, and only included in the Npw = 5 fit

in Table 4.

The final results for the scattering lengths in this work are taken from the determinant

residual method fit in Table 4 with Npw = 2 for I = 3/2 and the spectrum method fit for

I = 1/2 including all five levels

mπa
3/2
0 = −0.2735(81) , mπa

1/2
0 = 0.142(22), (4.5)

which are already given in Eq. (1.1). The results from this work for the Breit-Wigner
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χPT prediction at mπ ≈ 200 MeV This work at RS at

Quantity NLO N2LO N3LO mπ ≈ 200 MeV mphys
π [91]

mπa
1/2
0 0.2526(45) 0.444(10) 0.1660(93) 0.142(22) 0.1699(23)

mπa
3/2
0 -0.2291(46) -0.2020(63) -0.0756(98) −0.2735(81) -0.0863(17)

Table 6: Comparison of the scattering lengths predicted from SU(2) χPT using values

of LECs determined from low-energy πN scattering. The values are also compared to the

Roy-Steiner analysis of experimental πN scattering in Ref. [91] for a comparison with the

best phenomenological values.

scattering lengths, the isospin 1/2 and 3/2 πN scattering lengths are given by

a
3/2
0 = a+0 − a−0 , a

1/2
0 = a+0 + 2a−0 . (4.8)

The values and correlations of the extracted LECs from Tables 7-9 of Ref. [91] can

then be used to predict the scattering lengths at the values of ǫπ, µ and mN/Λχ in this

calculation with the NLO, N2LO and N3LO formulae. The value of d̄18 is taken from

Eq. (10) of Ref. [92]. The values of the input parameters from this D200 ensemble are

ǫD200
π = 0.1759(12) , µD200 = 0.2102(19) ,

(

mN

Λχ

)D200

= 0.8368(72) . (4.9)

The value of aFπ = afπ/
√
2 is used from Table 2 and a value of gA = 1.289 was used to

be consistent with Ref. [20]. Alternatively, gA could be taken at the value of ǫD200
π from

Ref. [19] (gA ≈ 1.255), but this leads to a change within the quoted uncertainties, which is

not suprising given the very mild pion mass dependence of gA. The LECs C, D, etc. were

determined with those from Ref. [91] and the physical nucleon mass.

In Table 6, we compare the predicted values from SU(2) χPT using the LECs and

correlations determined at various orders in the chiral expansion with those determined

in this work. As can be seen, the χPT prediction does not agree well with our results

for any order in the chiral expansion. The expansion for mπa
1/2
0 has an erratic behavior

and the expansion for mπa
3/2
0 moves monotonically away from the value determined in this

analysis. It is curious that at mπ ≈ 200 MeV, the N3LO prediction is consistent with the

best determination of the scattering lengths from the Roy-Steiner (RS) analysis of Ref. [91].

In contrast, as noted in Ref. [92], at the physical pion mass, the χPT predictions approach

the RS results at N2LO, but then diverge with the N3LO expansion. This discrepancy can

be reconciled to a large extent by including explicit ∆ degrees of freedom [20].

With results at only a single pion mass, we can not infer what the source of the

discrepancy between the lattice results and the expectations from χPT are. It will be very

interesting to try and understand this discrepancy with lattice QCD πN scattering results

at lighter values of the pion mass.

5 Conclusion

This work presented a computation of the lowest partial waves for the elastic nucleon-pion

scattering amplitude on a single ensemble of gauge configurations with mπ = 200 MeV.
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The s-wave scattering lengths are determined for both isospins I = 1/2 and I = 3/2, as

well as the Breit-Wigner resonance parameters of the ∆(1232) in the JP = 3/2+ partial

wave with I = 3/2. To our knowledge, this is the first lattice QCD determination of the

nucleon-pion scattering lengths after Ref. [41], which employs the quenched approximation.

A comparison of two different methods, the spectrum method and the determinant residual

method, of extracting K-matrix information from finite-volume spectra was also made.

Although the determinant residual method avoids awkward root-finding, it was found to

be less sensitive to higher partial wave contributions.

Our results give us encouragement that the methods used here will prove useful for fu-

ture work at the physical values of the quark masses and for other lattice spacings. Larger

volumes needed at smaller lattice spacings and quark masses will require an increase of

Nev, the dimension of the LapH subspace discussed in Sec. 3.2, but not the number of

Dirac matrix inversions in the stochastic-LapH algorithm for all-to-all quark propagators.

Nevertheless, the increasingly severe signal-to-noise problem will likely require more con-

figurations and source times to achieve a similar statistical precision.

The scattering lengths determined in this work were compared with state-of-the art

determinations from the Roy-Steiner analysis of Ref. [91]. Using the LECs from that anal-

ysis, we were able to evaluate the scattering lengths at mπ ≈ 200 MeV using various orders

in the chiral expansion. We found significant discrepancies between the χPT estimates of

the scattering lengths and the values determined in this work. In order to understand this

discrepancy, results at additional lighter pion mass points are required, as well as investiga-

tions of discretization effects and possibly large finite-volume effects due to the proximity

to the nucleon-pion threshold [93] and the associated energy scale M = m∆ −mπ −mN in

the exponentially suppressed terms in Eq. (2.1).

This work is part of a larger effort to compute baryon scattering amplitudes on lattice

QCD gauge field ensembles at quark masses in the chiral regime mπ . 300 MeV where

effective theories may be applicable. As discussed in Sec. 3.2, the stochastic LapH approach

to quark propagation enables considerable re-use of the hadron tensors in multiple multi-

hadron correlation functions on the D200 ensemble employed here. Analyses are currently

underway to compute the analogous amplitudes for the NΛ−NΣ system, as well as the NN

and NΣ − NΛ channels. Hopefully this exploratory computation has sufficient statistical

precision to impact chiral effective theories for these baryon-baryon channels as well.
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A Systematic errors from correlation matrix rotation

As discussed in Sec. 3.3, the optimized diagonal correlation functions Dn(t) are obtained in

this work from the GEVP using a single-pivot approach which uses one choice of (t0, td). The

systematic error associated with this approach is estimated for each energy level by fixing the

fit range [tmin, tmax] and varying the GEVP metric and diagonalization times (t0, td) defined

in Eq. (3.3), as well as the dimension of the input correlation matrix Nop. Taking both

GEVP stability and statistical precision into account, the parameters (t0, td) = (8a, 16a)

are found to work well for all energies presented here. As shown in Fig. 9, the spectrum is

rather insensitive to variations in (t0, td) and Nop.

B Systematic errors from varying fit forms and time ranges

As discussed in Sec. 3.3, multiple fit ranges and fit forms are compared for every energy

level to ensure systematic errors associated with excited state contamination are smaller

than the statistical errors. Ultimately, single-exponential fits to the correlator ratios in

Eq. (3.4) are chosen due to their mild sensitivity to tmin and good statistical precision. The

fit range is chosen to be consistent with the double-exponential tmin plateau, defined as the

range of tmin for which the fitted energy exhibits no statistically significant variation. Most

levels are additionally consistent with the single-exponential fit plateau, although as shown

in Fig. 2 for mN, these fits may fail to describe correlators with significant excited state

contamination. Plots analogous to the tmin-plot in Fig. 3 are shown for each of the I = 1/2

levels in Fig. 10 and the I = 3/2 levels in Figs. 11-15.
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Figure 10: Stability of the I = 1/2 spectrum illustrated by varying the fit range and fit

form. The chosen fit for each level is indicated by the solid black line and the corresponding

errors are indicated by dotted lines. Each subplot contains the spectrum for a single irrep

labelled in the same manner as Fig. 4. The chosen values are taken from ratio fits and

compared to both single- and double-exponential fits over a range of tmin with tmax = 25a.
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Figure 11: Stability of fits to determine the I = 3/2 spectrum for total momentum having

d2 = 0. As in Fig. 10, a variety of fit ranges and fit forms is compared for each level. Each

plot contains all fits for a single level in a particular irrep. Indexing for the levels begins at

zero for the lowest and increases with increasing energy.
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Figure 12: Same as Fig. 11 for I = 3/2 except that d2 = 1.
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Figure 13: Same as Fig. 11 for I = 3/2 except that d2 = 2.
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Figure 14: Same as Fig. 11 for I = 3/2 except that d2 = 3.
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Figure 15: Same as Fig. 11 for I = 3/2 except that d2 = 4.

– 28 –



References

[1] J. Ruiz de Elvira, M. Hoferichter, B. Kubis, and U.-G. Meißner, Extracting the σ-term from

low-energy pion-nucleon scattering, J. Phys. G 45 (2018) 024001, [arXiv:1706.01465].

[2] J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158

(1984) 142.

[3] S. Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett. B 251 (1990) 288–292.

[4] S. Weinberg, Effective chiral Lagrangians for nucleon - pion interactions and nuclear forces,

Nucl. Phys. B 363 (1991) 3–18.

[5] H. W. Hammer, S. König, and U. van Kolck, Nuclear effective field theory: status and

perspectives, Rev. Mod. Phys. 92 (2020) 025004, [arXiv:1906.12122].

[6] C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A. Nicholson, P. Vranas, and

A. Walker-Loud, Towards grounding nuclear physics in QCD, Prog. Part. Nucl. Phys. 121

(2021) 103888, [arXiv:1910.07961].

[7] I. Tews, Z. Davoudi, A. Ekström, J. D. Holt, and J. E. Lynn, New Ideas in Constraining

Nuclear Forces, J. Phys. G 47 (2020) 103001, [arXiv:2001.03334].

[8] Z. Davoudi, W. Detmold, K. Orginos, A. Parreño, M. J. Savage, P. Shanahan, and M. L.

Wagman, Nuclear matrix elements from lattice QCD for electroweak and

beyond-Standard-Model processes, Phys. Rept. 900 (2021) 1–74, [arXiv:2008.11160].

[9] V. Cirigliano et al., Neutrinoless Double-Beta Decay: A Roadmap for Matching Theory to

Experiment, arXiv:2203.12169.

[10] V. Cirigliano et al., Towards Precise and Accurate Calculations of Neutrinoless Double-Beta

Decay: Project Scoping Workshop Report, 7, 2022. arXiv:2207.01085.

[11] M. Niehus, M. Hoferichter, B. Kubis, and J. Ruiz de Elvira, Two-Loop Analysis of the Pion

Mass Dependence of the ρ Meson, Phys. Rev. Lett. 126 (2021) 102002, [arXiv:2009.04479].

[12] R. Molina and J. Ruiz de Elvira, Light- and strange-quark mass dependence of the ρ(770)

meson revisited, JHEP 11 (2020) 017, [arXiv:2005.13584].

[13] M. Mai, C. Culver, A. Alexandru, M. Döring, and F. X. Lee, Cross-channel study of pion

scattering from lattice QCD, Phys. Rev. D 100 (2019) 114514, [arXiv:1908.01847].

[14] X.-Y. Guo and M. F. M. Lutz, On light vector mesons and chiral SU(3) extrapolations, Nucl.

Phys. A 988 (2019) 48–58, [arXiv:1810.07078].

[15] X.-Y. Guo, Y. Heo, and M. F. M. Lutz, On the chiral extrapolation of charmed meson

masses, arXiv:1801.10122.

[16] D. R. Bolton, R. A. Briceno, and D. J. Wilson, Connecting physical resonant amplitudes and

lattice QCD, Phys. Lett. B757 (2016) 50–56, [arXiv:1507.07928].

[17] A. Walker-Loud et al., Light hadron spectroscopy using domain wall valence quarks on an

Asqtad sea, Phys. Rev. D 79 (2009) 054502, [arXiv:0806.4549].

[18] A. Walker-Loud, Baryons in/and Lattice QCD, PoS CD12 (2013) 017, [arXiv:1304.6341].

[19] C. C. Chang et al., A per-cent-level determination of the nucleon axial coupling from

quantum chromodynamics, Nature 558 (2018) 91–94, [arXiv:1805.12130].

– 29 –



[20] D. Siemens, J. Ruiz de Elvira, E. Epelbaum, M. Hoferichter, H. Krebs, B. Kubis, and U. G.

Meißner, Reconciling threshold and subthreshold expansions for pion–nucleon scattering,

Phys. Lett. B 770 (2017) 27–34, [arXiv:1610.08978].

[21] QCDSF-UKQCD Collaboration, R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L.

Rakow, G. Schierholz, A. Schiller, H. Stuben, F. Winter, and J. M. Zanotti, Hyperon sigma

terms for 2+1 quark flavours, Phys. Rev. D 85 (2012) 034506, [arXiv:1110.4971].

[22] xQCD Collaboration, Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, and K.-F. Liu, πN

and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D 94

(2016) 054503, [arXiv:1511.09089].

[23] C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen,

G. Koutsou, and A. Vaquero Aviles-Casco, Nucleon axial, tensor, and scalar charges and

σ-terms in lattice QCD, Phys. Rev. D 102 (2020) 054517, [arXiv:1909.00485].

[24] S. Borsanyi, Z. Fodor, C. Hoelbling, L. Lellouch, K. K. Szabo, C. Torrero, and L. Varnhorst,

Ab-initio calculation of the proton and the neutron’s scalar couplings for new physics

searches, arXiv:2007.03319.

[25] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meißner, High-Precision

Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations, Phys. Rev. Lett.

115 (2015) 092301, [arXiv:1506.04142].

[26] R. Gupta, S. Park, M. Hoferichter, E. Mereghetti, B. Yoon, and T. Bhattacharya,

Pion–Nucleon Sigma Term from Lattice QCD, Phys. Rev. Lett. 127 (2021) 242002,

[arXiv:2105.12095].

[27] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meißner, Remarks on the

pion–nucleon σ-term, Phys. Lett. B 760 (2016) 74–78, [arXiv:1602.07688].

[28] DUNE Collaboration, B. Abi et al., Deep Underground Neutrino Experiment (DUNE), Far

Detector Technical Design Report, Volume I Introduction to DUNE, JINST 15 (2020)

T08008, [arXiv:2002.02967].

[29] Hyper-Kamiokande Proto- Collaboration, K. Abe et al., Hyper-kamiokande design

report, arXiv:1805.04163.

[30] A. S. Meyer, A. Walker-Loud, and C. Wilkinson, Status of Lattice QCD Determination of

Nucleon Form Factors and their Relevance for the Few-GeV Neutrino Program,

arXiv:2201.01839.

[31] R. A. Briceño, J. J. Dudek, and R. D. Young, Scattering processes and resonances from

lattice QCD, arXiv:1706.06223.

[32] B. Hörz and A. Hanlon, Two- and three-pion finite-volume spectra at maximal isospin from

lattice QCD, Phys. Rev. Lett. 123 (2019) 142002, [arXiv:1905.04277].

[33] T. D. Blanton, F. Romero-López, and S. R. Sharpe, I = 3 Three-Pion Scattering Amplitude

from Lattice QCD, Phys. Rev. Lett. 124 (2020) 032001, [arXiv:1909.02973].

[34] Hadron Spectrum Collaboration, M. T. Hansen, R. A. Briceño, R. G. Edwards, C. E.

Thomas, and D. J. Wilson, Energy-Dependent π+π+π+ Scattering Amplitude from QCD,

Phys. Rev. Lett. 126 (2021) 012001, [arXiv:2009.04931].

[35] M. Fischer, B. Kostrzewa, L. Liu, F. Romero-López, M. Ueding, and C. Urbach, Scattering

of two and three physical pions at maximal isospin from lattice QCD, Eur. Phys. J. C 81

(2021) 436, [arXiv:2008.03035].

– 30 –



[36] A. Alexandru, R. Brett, C. Culver, M. Döring, D. Guo, F. X. Lee, and M. Mai,

Finite-volume energy spectrum of the K−K−K− system, Phys. Rev. D 102 (2020) 114523,

[arXiv:2009.12358].

[37] T. D. Blanton, A. D. Hanlon, B. Hörz, C. Morningstar, F. Romero-López, and S. R. Sharpe,

Interactions of two and three mesons including higher partial waves from lattice QCD, JHEP

10 (2021) 023, [arXiv:2106.05590].

[38] GWQCD Collaboration, M. Mai, A. Alexandru, R. Brett, C. Culver, M. Döring, F. X. Lee,

and D. Sadasivan, Three-Body Dynamics of the a1(1260) Resonance from Lattice QCD,

Phys. Rev. Lett. 127 (2021) 222001, [arXiv:2107.03973].

[39] C. W. Andersen, J. Bulava, B. Hörz, and C. Morningstar, Elastic I = 3/2, p-wave

nucleon-pion scattering amplitude and the ∆(1232) resonance from Nf=2+1 lattice QCD,

Phys. Rev. D97 (2018) 014506, [arXiv:1710.01557].

[40] C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies, A. Pochinsky,

G. Rendon, and S. Syritsyn, P -wave ππ scattering and the ρ resonance from lattice QCD,

Phys. Rev. D96 (2017) 034525, [arXiv:1704.05439].

[41] M. Fukugita, Y. Kuramashi, M. Okawa, H. Mino, and A. Ukawa, Hadron scattering lengths

in lattice QCD, Phys. Rev. D52 (1995) 3003–3023, [hep-lat/9501024].

[42] V. Verduci, Pion-nucleon scattering in lattice QCD. PhD thesis, Graz U., 2014.

[43] D. Mohler, Review of lattice studies of resonances, PoS LATTICE2012 (2012) 003,

[arXiv:1211.6163].

[44] F. Pittler, C. Alexandrou, K. Hadjiannakou, G. Koutsou, S. Paul, M. Petschlies, and

A. Todaro, Elastic π − N scattering in the I = 3/2 channel, PoS LATTICE2021 (2022)

226, [arXiv:2112.04146].

[45] C. B. Lang, L. Leskovec, M. Padmanath, and S. Prelovsek, Pion-nucleon scattering in the

Roper channel from lattice QCD, Phys. Rev. D95 (2017) 014510, [arXiv:1610.01422].

[46] W. Detmold and A. Nicholson, Low energy scattering phase shifts for meson-baryon systems,

Phys. Rev. D93 (2016) 114511, [arXiv:1511.02275].

[47] A. Torok, S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, and

A. Walker-Loud, Meson-Baryon Scattering Lengths from Mixed-Action Lattice QCD, Phys.

Rev. D81 (2010) 074506, [arXiv:0907.1913].

[48] Hadron Spectrum Collaboration, M. Peardon, J. Bulava, J. Foley, C. Morningstar,

J. Dudek, R. G. Edwards, B. Joo, H.-W. Lin, D. G. Richards, and K. J. Juge, A Novel

quark-field creation operator construction for hadronic physics in lattice QCD, Phys. Rev.

D80 (2009) 054506, [arXiv:0905.2160].

[49] C. Morningstar, J. Bulava, J. Foley, K. J. Juge, D. Lenkner, M. Peardon, and C. H. Wong,

Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in

lattice QCD, Phys. Rev. D83 (2011) 114505, [arXiv:1104.3870].

[50] T. D. Blanton, F. Romero-López, and S. R. Sharpe, Implementing the three-particle

quantization condition including higher partial waves, arXiv:1901.07095.

[51] C. Culver, M. Mai, R. Brett, A. Alexandru, and M. Döring, Three pion spectrum in the

I = 3 channel from lattice QCD, Phys. Rev. D 101 (2020) 114507, [arXiv:1911.09047].

– 31 –



[52] R. Brett, C. Culver, M. Mai, A. Alexandru, M. Döring, and F. X. Lee, Three-body

interactions from the finite-volume QCD spectrum, Phys. Rev. D 104 (2021) 014501,

[arXiv:2101.06144].

[53] J. R. Green, A. D. Hanlon, P. M. Junnarkar, and H. Wittig, Weakly Bound H Dibaryon from

SU(3)-Flavor-Symmetric QCD, Phys. Rev. Lett. 127 (2021) 242003, [arXiv:2103.01054].

[54] B. Hörz et al., Two-nucleon S-wave interactions at the SU(3) flavor-symmetric point with

mud ≃ mphys
s : A first lattice QCD calculation with the stochastic Laplacian Heaviside

method, Phys. Rev. C 103 (2021) 014003, [arXiv:2009.11825].

[55] C. Morningstar, J. Bulava, B. Singha, R. Brett, J. Fallica, A. Hanlon, and B. Hörz,

Estimating the two-particle K-matrix for multiple partial waves and decay channels from

finite-volume energies, Nucl. Phys. B924 (2017) 477–507, [arXiv:1707.05817].

[56] D. Mohler and S. Schaefer, Remarks on strange-quark simulations with Wilson fermions,

Phys. Rev. D 102 (2020) 074506, [arXiv:2003.13359].

[57] L. Maiani and M. Testa, Final state interactions from Euclidean correlation functions, Phys.

Lett. B245 (1990) 585–590.

[58] M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl.

Phys. B354 (1991) 531–578.

[59] M. Bruno and M. T. Hansen, Variations on the Maiani-Testa approach and the inverse

problem, JHEP 06 (2021) 043, [arXiv:2012.11488].

[60] M. T. Hansen, H. B. Meyer, and D. Robaina, From deep inelastic scattering to heavy-flavor

semileptonic decays: Total rates into multihadron final states from lattice QCD, Phys. Rev.

D96 (2017) 094513, [arXiv:1704.08993].

[61] J. Bulava and M. T. Hansen, Scattering amplitudes from finite-volume spectral functions,

Phys. Rev. D 100 (2019) 034521, [arXiv:1903.11735].

[62] J. C. A. Barata and K. Fredenhagen, Particle scattering in Euclidean lattice field theories,

Commun. Math. Phys. 138 (1991) 507–520.

[63] M. Göckeler, R. Horsley, M. Lage, U. G. Meißner, P. E. L. Rakow, A. Rusetsky,

G. Schierholz, and J. M. Zanotti, Scattering phases for meson and baryon resonances on

general moving-frame lattices, Phys. Rev. D86 (2012) 094513, [arXiv:1206.4141].

[64] M. Bruno et al., Simulation of QCD with Nf = 2 + 1 flavors of non-perturbatively improved

Wilson fermions, JHEP 02 (2015) 043, [arXiv:1411.3982].

[65] M. Luscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys.

97 (1985) 59. [Erratum: Commun. Math. Phys.98,433(1985)].

[66] J. Bulava and S. Schaefer, Improvement of Nf = 3 lattice QCD with Wilson fermions and

tree-level improved gauge action, Nucl. Phys. B874 (2013) 188–197, [arXiv:1304.7093].

[67] M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07 (2011) 036,

[arXiv:1105.4749].

[68] C. Andersen, J. Bulava, B. Hörz, and C. Morningstar, The I = 1 pion-pion scattering

amplitude and timelike pion form factor from Nf = 2 + 1 lattice QCD, Nucl. Phys. B939

(2019) 145–173, [arXiv:1808.05007].

[69] B. Strassberger et al., Scale setting for CLS 2+1 simulations, PoS LATTICE2021 (2022)

135, [arXiv:2112.06696].

– 32 –



[70] M. Bruno, T. Korzec, and S. Schaefer, Setting the scale for the CLS 2 + 1 flavor ensembles,

Phys. Rev. D95 (2017) 074504, [arXiv:1608.08900].

[71] M. Lüscher and F. Palombi, Fluctuations and reweighting of the quark determinant on large

lattices, PoS LATTICE2008 (2008) 049, [arXiv:0810.0946].

[72] M. A. Clark and A. D. Kennedy, Accelerating dynamical fermion computations using the

rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys.

Rev. Lett. 98 (2007) 051601, [hep-lat/0608015].

[73] C. Morningstar, J. Bulava, B. Fahy, J. Foley, Y. Jhang, et al., Extended hadron and

two-hadron operators of definite momentum for spectrum calculations in lattice QCD,

Phys.Rev. D88 (2013) 014511, [arXiv:1303.6816].

[74] C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link variables in lattice

QCD, Phys. Rev. D69 (2004) 054501, [hep-lat/0311018].

[75] C. Michael and I. Teasdale, Extracting Glueball Masses From Lattice QCD, Nucl. Phys.

B215 (1983) 433.

[76] M. Luscher and U. Wolff, How to Calculate the Elastic Scattering Matrix in Two-dimensional

Quantum Field Theories by Numerical Simulation, Nucl. Phys. B339 (1990) 222–252.

[77] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, and R. Sommer, On the generalized

eigenvalue method for energies and matrix elements in lattice field theory, JHEP 04 (2009)

094, [arXiv:0902.1265].

[78] F. J. Yndurain, R. Garcia-Martin, and J. R. Pelaez, Experimental status of the pi pi isoscalar

S wave at low energy: f(0)(600) pole and scattering length, Phys. Rev. D 76 (2007) 074034,

[hep-ph/0701025].

[79] P. Guo, J. Dudek, R. Edwards, and A. P. Szczepaniak, Coupled-channel scattering on a

torus, Phys. Rev. D 88 (2013) 014501, [arXiv:1211.0929].

[80] G. Silvi, S. Paul, C. Alexandrou, S. Krieg, L. Leskovec, S. Meinel, J. Negele, M. Petschlies,

A. Pochinsky, G. Rendon, S. Syritsyn, and A. Todaro, P -wave nucleon-pion scattering

amplitude in the ∆(1232) channel from lattice QCD, Physical Review D 103 (may, 2021).

[81] P. A. Zyla et al., Review of Particle Physics, Progress of Theoretical and Experimental

Physics 2020 (08, 2020)

[https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf].

083C01.

[82] T. R. Hemmert, B. R. Holstein, and N. C. Mukhopadhyay, N N, N Delta couplings and the

quark model, Phys. Rev. D51 (1995) 158–167, [hep-ph/9409323].

[83] V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, and D. R. Phillips, Precision

calculation of the π− deuteron scattering length and its impact on threshold π N scattering,

Phys. Lett. B 694 (2011) 473–477, [arXiv:1003.4444].

[84] V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, and D. R. Phillips, Precision

calculation of threshold π−d scattering, πN scattering lengths, and the GMO sum rule, Nucl.

Phys. A 872 (2011) 69–116, [arXiv:1107.5509].

[85] D. Gotta et al., Pionic hydrogen, Lect. Notes Phys. 745 (2008) 165–186.

[86] T. Strauch et al., Pionic deuterium, Eur. Phys. J. A 47 (2011) 88, [arXiv:1011.2415].

– 33 –



[87] M. Hennebach et al., Hadronic shift in pionic hydrogen, Eur. Phys. J. A 50 (2014) 190,

[arXiv:1406.6525]. [Erratum: Eur.Phys.J.A 55, 24 (2019)].

[88] N. Fettes, U.-G. Meissner, and S. Steininger, Pion - nucleon scattering in chiral perturbation

theory. 1. Isospin symmetric case, Nucl. Phys. A 640 (1998) 199–234, [hep-ph/9803266].

[89] N. Fettes and U.-G. Meissner, Pion nucleon scattering in chiral perturbation theory. 2.:

Fourth order calculation, Nucl. Phys. A 676 (2000) 311, [hep-ph/0002162].

[90] T. Becher and H. Leutwyler, Low energy analysis of πN → πN , JHEP 06 (2001) 017,

[hep-ph/0103263].

[91] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meißner, Roy–Steiner-equation

analysis of pion–nucleon scattering, Phys. Rept. 625 (2016) 1–88, [arXiv:1510.06039].

[92] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G. Meißner, Matching pion-nucleon

Roy-Steiner equations to chiral perturbation theory, Phys. Rev. Lett. 115 (2015) 192301,

[arXiv:1507.07552].

[93] M. F. M. Lutz, U. Sauerwein, and R. G. E. Timmermans, On the axial-vector form factor of

the nucleon and chiral symmetry, Eur. Phys. J. C 80 (2020) 844, [arXiv:2003.10158].

– 34 –


