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Abstract: Motivated by the high computational costs of classical simulations, machine-learned

generative models can be extremely useful in particle physics and elsewhere. They become espe-

cially attractive when surrogate models can efficiently learn the underlying distribution, such that

a generated sample outperforms a training sample of limited size. This kind of GANplification

has been observed for simple Gaussian models. We show the same effect for a physics simulation,

specifically photon showers in an electromagnetic calorimeter.
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1 Introduction

Particle physics research at colliders is defined by extremely large datasets combined with precision

simulations, from first principles all the way to a detailed detector simulation. A reliable generation

and simulation chain is crucial to link measurements to fundamental properties of elementary

particles. This chain is factorized into two main parts, event generation based on a fundamental

Lagrangian and perturbative or non-perturbative quantum field theory, and detector simulations

describing the interactions of relativistic particles with the detector. For the upcoming runs of the

Large Hadron Collider (LHC), both parts need to gain significantly in speed, to keep up with the

size of experimental datasets. One way to achieve this speed gain is to apply modern machine

learning (ML) to all levels of the simulation chain. A key tool in this speed-improvement program

is deep generative neural networks (NNs) that learn to emulate slower physics-based simulations,

replacing the underlying physics by fast and accurate surrogate models.

A foundational question with NN surrogate models is, what are the advantages of using the

fast simulation compared with the original dataset used for training? Or specifically, how many

more events can we sensibly generate from these models before we are limited, for instance, by the

training statistics? Without any additional information, we would expect that the statistical power

of a generated dataset is at most the same as the dataset used for training. A larger generated

sample than the training dataset will then include successively less information per event than the

training data, and eventually the information in the generated events will saturate and be dominated

by limitations from the network architecture and training. With this pattern in mind [1], we can

define an amplification or GANplification factor [2, 3] in terms of an effective sample size for a

given surrogate model.

GANplification arises, intuitively, from the fact that neural networks work like classical para-

metric fits [4, 5], and they are particularly effective when we want to interpolate in many dimensions.

This feature is behind the success of the NNPDF parton densities [6] as the first mainstream ML-

application in particle theory.

– 1 –
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Formally, this fit-like effect is one source of inductive bias, where the underlying assumption

is that physics probability densities are smooth. Especially in particle physics, it should be possible

to employ other inductive biases, such as symmetries or fundamental invariances in datasets [7–

12]. Fast detector simulations benefit from the fact that we can factorize the problem into pieces.

Surrogate models are trained to produce a detector response for each outgoing particle. For example,

if there is an event with " outgoing particles, each one will be attached to a sampling from the

surrogate model. If the training set has # detector interactions, additional combinatorial factors

appear for choosing # out of " different events that could be created. These factors can lead to

another statistical amplification. Finally, surrogate models with valid inductive biases require far

fewer parameters to specify than the original dataset, so there will also be a benefit in the required

disk space.

The goal of this paper is to study the statistical amplification of deep generative models, focusing

on interpolation from the smoothness inductive bias, for detector simulations as a realistic and highly

relevant application. Fast surrogate models for detector simulations have been developed [13–25]

and improved [26–40] to the level that they are ready to be used in the upcoming LHC runs. In

fact, the ATLAS Collaboration has already integrated a Generative Adversarial Network (GAN)

into its fast calorimeter simulation and will use it to generate over a billion events [41, 42]. Initial

studies exist on quantifying uncertainties of generative models in event generation [43], but there

has not yet been a study of the fundamental benefits of deep generative surrogates applied to detector

simulations.

In this paper, we study statistical amplification in the context of photon showers in an electro-

magnetic calorimeter for a GAN-like generative model (Calomplification). However, the method

can be applied to gauge the merit of a generative surrogates whenever the underlying distribution

can be accessed either through a large number of samples or analytically. We expect similar results

in all cases where the smoothness assumption on the underlying density distribution is valid.

The paper is organized as follows. In section 2, we start by introducing our data set and

the established generative Variational Autoencoder-GAN (VAE-GAN) architecture adapted to this

simulation [30]. Next, we describe our treatment of the comparison between generated and truth

samples and the relevant observables in section 3. We then present the amplification effects of the

generative networks in section 4. This comparison includes an estimate of the effective sample

size to the information encoded and a comparison to standard density estimators. In section 5, we

briefly summarize our promising findings.

2 Dataset and model

The International Large Detector (ILD) [44] is one of two detector concepts proposed for the In-

ternational Linear Collider (ILC). It is optimized towards the Particle Flow analysis concept for

optimal global event reconstruction [45, 46]. It combines high-precision tracking and vertexing

capabilities with very good hermiticity and highly-granular electromagnetic and hadronic calorime-

ters (ECal/HCal). We choose one of its two proposed electromagnetic calorimeters, the Si-W ECal,

for our dataset. It consists of 30 active silicon layers in a tungsten absorber stack with 20 layers of

2.1 mm and 10 layers of 4.2 mm thickness. The silicon sensors have a cell size of 5 × 5 mm2.

– 2 –
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space sizes. We also replace batch norm by spectral norm in the discriminator [52] to further

stabilize the training. The discriminator uses the difference between reconstructed images and the

corresponding training images as an additional input to the final, fully connected layer. For the

training images themselves, this difference vector is zero. We apply label smoothing to prevent

vanishing gradients from an overconfident classifier. Supplementing the information gained from

the images themselves with locally connected layers and mini-batch discrimination [53] ensures

better consistency between training and generated images.

The encoder network uses a convolutional input and two convolutional hidden layers, applying

Leaky Rectified Linear Unit activation (LeakyReLU) [54] after the first two and ReLU after the third

layer. The output of the encoder’s convolutional part is fed to two separate linear layers, defining

the mean and log var values of the Gaussian VAE latent space.

Our network is implemented in PyTorch 1.8.0 [55] and trained on Nvidia P100s using the

Adam optimizer [56] with a learning rate of 8 × 10−6 for all networks. Each training on 1k showers

is run for 24h, amounting to around 50000 epochs. For epochs after 40000, the distributions of the

(i) pixel energy sum (visible energy), (ii) highest pixel energy (peak energy), (iii) per-pixel energy,

and, (iv,v) the pixel position weighted by the pixel energy (center of gravity) in a given direction,

{

�vis, �peak, �pixel,CGG,H

}

, (2.2)

are estimated using histograms of 96000 generated images. The histograms feature 100 bins and

constant ranges. Finally, we select the epoch with the best agreement between the generated and

training distributions averaged over all five observables, in terms of the measure discussed in the

next section. This procedure is repeated for three independent trainings, and we draw a VAE-GAN

sample in equal proportions from the resulting three models. We are aware that three independently

trained models are not statistically sufficient to define a reliable standard deviation, but we have

found them to be very helpful and sufficient in estimating the stability of the network training.

Whenever we show �pixel we apply an additional minimum cut of 5 MeV, as will be discussed in

detail in the next section.

3 Sample comparison

To determine the performance of the trained model, we again use distributions of the same five

high-level observables as for the training. We compare showers generated by Geant4 and our

VAE-GAN, but now using the high-statistics validation set. Figure 4 shows a set of distributions for

1k shower images used for a single VAE-GAN training and 1000k showers from the corresponding

generative network. They are compared to the validation set of 218k Geant4 showers. In addition

to the continuous distributions we also show the number of active pixels per image. First, we see

that statistical fluctuations of the training set propagate into under- and over-densities of the learned

distributions. One prominent difference is the number of active pixels, which can be attributed

to the under-estimation of the number of low energy hits below 5 MeV. The remaining learned

distributions are smoother and show fewer fluctuations than the training data. For the visible per-

pixel energy, the VAE-GAN interpolates into the sparsely populated interval between around 2 and

120 MeV even though the training set does not include a single pixel in this range. Previous work

– 5 –
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Figure 5. Quantiles developing by splitting the validation set of into subsets of equal size regarding their

energy sum & peak energy.

event counts follow a Poisson distribution, the probability for a zero bin to occur can be calculated

for the average occupation and gives around 4.5 · 10−5.

Jensen–Shannon divergence

The evaluation chain for the quality of the generated samples starts by constructing quantiles from

the validation set. This defines our approximate truth density ?8 per quantile 8. Next, we extract the

density of showers 68 per quantile, either for smaller sets of Geant4 showers or 1000k VAE-GAN

generated showers. Due to values appearing in our validation set multiple times, quantiles are not

uniquely defined, so the ?8 values may differ slightly from their constructed value 1/#Q.

To measure the similarity of the two distributions, we use the Jensen-Shannon divergence

�JS(6, ?) =
1

2
�KL

(

6

�

�

�

�

�

6 + ?

2

)

+
1

2
�KL

(

?

�

�

�

�

�

6 + ?

2

)

. (3.1)

The �JS can be understood as a symmetrized version of the Kullback–Leibler (KL)-divergence

�KL(6 | ?) =

∫

6(G) log
6(G)

?(G)
dG. (3.2)

For the VAE-GAN results, where 6 = 6(G) is the generated distribution, the �JS is the exact entity

optimized by the min-max training on the GAN loss defined in eq. (2.1) [30, 51]. For GAN and

Monte Carlo methods, we usually do not have an explicit form of the generated distributions, but

only sets G and P generated from the estimated distribution 6 or the true distribution ?. This is

why we estimate the �JS for the continuous distributions from the quantile values

�JS(6, ?) =
1

2

∑

&8 ∈Q

(

68 log
68

1
2
(68 + ?8)

+ ?8 log
?8

1
2
(68 + ?8)

)

. (3.3)

Just like the �JS, this estimate lies between zero and log 2. It turns into the continuous �JS between

– 7 –
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the histogram estimators

6(G) =
∑

&8 ∈Q

68

vol(&8)
1&8

(G) =
∑

&8 ∈Q

#{G ′ ∈ &8 | G
′ ∈ G}

#G · vol(&8)
1&8

(G)

and ?(G) =
∑

&8 ∈Q

?8

vol(&8)
1&8

(G) ,

(3.4)

with vol the n-dimensional volume, 1&8
the indicator function of the i-th quantile and G all showers

in either an evaluation set of Geant4 samples or in the generated set. As for all histogram estimators,

independent of the choice of bin edges, the overall number of bins, the cardinality of the fitted set,

as well as the number of showers per bin have to go to infinity for the estimator to converge to the

underlying distribution. As �JS goes to zero, the two distributions 6 and ? are identical.

To determine the quality of our generative model relative to truth or validation distributions,

we look at the dependence of the Jensen–Shannon divergence �JS on the number of quantiles =quant

we can reliably construct. This will allow us to gauge where the density estimation underlying

the VAE-GAN beats the statistically limited training data. As discussed earlier, we estimate the

uncertainty on �JS for the 5k and 10k evaluation sets of Geant4 data from five independent sets

each.

4 GANplification performance

Using our extended methodology we are now in a position to extend the toy study of ref. [1] to a

relevant physics application, with the corresponding increased complexity and physics content.

Overcoming training statistics

In figure 6 we show how �JS depends on the number of quantiles for the different observables given

in eq. (2.2). For simple, uni-modal distributions like the energy sum, the peak energy and the centers

of gravity, 1000k showers generated from the VAE-GAN achieve similar values as the 1k training

data for very low numbers of bins. This means the generated data closely resembles the mean,

standard deviation and low-level moments of the training data. For the more complex distribution

of the visible per-pixel energy, the �JS only resolves part of the high-density regions for a small

number of quantiles. Increasing the numbers of quantiles, the interpolation of the generative model

in the sparsely populated areas of the support starts to help, and the �JS-values for the Geant4 data

increases over the VAE-GAN level. As there are on average about 13 active pixels above 5 MeV,

as seen in figure 4, the statistics for the per-pixel energy distribution benefits from these 13 pixel

measurements per shower. For large numbers of quantiles, the �JS values of the VAE-GAN are

consistently below the corresponding values for the training sample and for all observables. This

amplification is a result of the interpolation via the generative model’s smoothing properties.

To quantify the amplification, we can compare the VAE-GAN distributions to larger Geant4

samples. Again, for small numbers of quantiles the VAE-GAN does not reach the truth �JS-values

of larger data samples. This confirms that the neural network does not add global information to the

training data and will not improve, for instance, the estimated mean of a Gaussian distribution. On

the other hand, what we are really interested in are the features over the full distributions. In figure 6

– 8 –
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to this truth sample, we estimate the information content of finite-size samples using quantiles for

standard kinematic observables and their correlations. A variable number of quantiles allows us to

balance resolution with statistics.

Our study confirms earlier results based on a simple Gaussian example [1], in that for a properly

trained network a set of generated showers comparable in size to the training data provides a physics-

wise nearly equivalent but statistically independent copy of the training data. More generated

showers will, individually, contain less information than an actual shower, but add information as a

sample. This amount of information can be linked to an effective sample size of actual data. For

very large numbers of generated showers, the information in the generated sample reaches a plateau,

reflecting limitations of the network architecture and training.

For our problem and network at hand, we find that the effective sample sizes give an enhance-

ment or GANplification factor of 10 to 50, for a large number of quantiles and corresponding to

high-resolution kinematic features. For a training sample of 1k showers we generate up to 1000k

showers from the network and find a comparable performance of up to 50k Geant4 showers for the

kinematic distributions and their correlations. We also interpret the VAE-GAN as a density estima-

tor and find that it learns the truth density from the showers better than standard density estimators

on the high-level kinematic variables. This proves that the generative network can even learn and

sample from implicitly defined distributions and benefit from superior interpolation or fit proper-

ties. These properties motivate deep generative detector simulations for statistical amplification in

addition to computational acceleration.

Acknowledgments

We would like to thank Suada Mulgeci for the valuable discussions in the earlier stages of this project.

The research of AB and TP is supported by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under grant 396021762 – TRR 257 Particle Physics Phenomenology after

the Higgs Discovery. This work was supported by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1 - 390900948

(the Heidelberg STRUCTURES Excellence Cluster). BN is supported by the U.S. Department of

Energy, Office of Science under contract DE-AC02- 05CH11231. SB is supported by the Helmholtz

Information and Data Science Schools via DASHH (Data Science in Hamburg - HELMHOLTZ

Graduate School for the Structure of Matter) with the grant HIDSS-0002. DH and SD acknowledge

support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under

Germany’s Excellence Strategy – EXC 2121 „Quantum Universe“ – 390833306. EE is funded

through the Helmholtz Innovation Pool project ACCLAIM that provided a stimulating scientific

environment for parts of the research done here. This research was supported in part through the

Maxwell computational resources operated at Deutsches Elektronen-Synchrotron DESY, Hamburg,

Germany.

– 13 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
1
1
P
_
0
7
2
2
 
v
1

References

[1] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying event samples,

SciPost Phys. 10 (2021) 139 [2008.06545].

[2] Y. Hao, A. Orlitsky, A. T. Suresh and Y. Wu, Data amplification: A unified and competitive approach

to property estimation, 1904.00070.

[3] B. Axelrod, S. Garg, Y. Han, V. Sharan and G. Valiant, On the Statistical Complexity of Sample

Amplification, 2201.04315.

[4] M. Bellagente, M. Haußmann, M. Luchmann and T. Plehn, Understanding Event-Generation

Networks via Uncertainties, 2104.04543.

[5] I. Chahrour and J. D. Wells, Function Approximation for High-Energy Physics: Comparing Machine

Learning and Interpolation Methods, 2111.14788.

[6] NNPDF collaboration, Unbiased determination of the proton structure function F(2)**p with faithful

uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067].

[7] S. Krippendorf and M. Syvaeri, Detecting Symmetries with Neural Networks, 2003.13679.

[8] G. Barenboim, J. Hirn and V. Sanz, Symmetry meets AI, SciPost Phys. 11 (2021) 014 [2103.06115].

[9] B. M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson and L. Vogel, Symmetries, Safety,

and Self-Supervision, 2108.04253.

[10] C. G. Lester, Chiral Measurements, 2111.00623.

[11] R. Tombs and C. G. Lester, A method to challenge symmetries in data with self-supervised learning,

2111.05442.

[12] K. Desai, B. Nachman, J. Thaler, SymmetryGAN: Symmetry Discovery with Deep Learning,

2112.05722.

[13] L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example: Location-Aware

Generative Adversarial Networks for Physics Synthesis, Comput. Softw. Big Sci. 1 (2017) 4

[1701.05927].

[14] M. Paganini, L. de Oliveira and B. Nachman, Accelerating Science with Generative Adversarial

Networks: An Application to 3D Particle Showers in Multilayer Calorimeters, Phys. Rev. Lett. 120

(2018) 042003 [1705.02355].

[15] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN : Simulating 3D high energy particle showers

in multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev. D97

(2018) 014021 [1712.10321].

[16] S. Vallecorsa, F. Carminati and G. Khattak, 3D convolutional GAN for fast simulation, EPJ Web Conf.

214 (2019) 02010.

[17] S. Carrazza and F. A. Dreyer, Lund jet images from generative and cycle-consistent adversarial

networks, Eur. Phys. J. C 79 (2019) 979 [1909.01359].

[18] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7 (2019) 075

[1907.03764].

[19] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, DĳetGAN: A

Generative-Adversarial Network Approach for the Simulation of QCD Dĳet Events at the LHC, JHEP

08 (2020) 110 [1903.02433].

– 14 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
1
1
P
_
0
7
2
2
 
v
1

[20] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A. Ustyuzhanin and E. Zakharov, Generative

Models for Fast Calorimeter Simulation: the LHCb case, EPJ Web Conf. 214 (2019) 02034

[1812.01319].

[21] P. Musella and F. Pandolfi, Fast and Accurate Simulation of Particle Detectors Using Generative

Adversarial Networks, Comput. Softw. Big Sci. 2 (2018) 8 [1805.00850].

[22] K. Deja, T. Trzcinski and L. Graczykowski, Generative models for fast cluster simulations in the tpc

for the alice experiment, EPJ Web Conf. 214 (2019) 06003.

[23] L. de Oliveira, M. Paganini and B. Nachman, Controlling Physical Attributes in GAN-Accelerated

Simulation of Electromagnetic Calorimeters, J. Phys. Conf. Ser. 1085 (2018) 042017 [1711.08813].

[24] J. W. Monk, Deep Learning as a Parton Shower, JHEP 12 (2018) 021 [1807.03685].

[25] J. N. Howard, S. Mandt, D. Whiteson and Y. Yang, Foundations of a Fast, Data-Driven,

Machine-Learned Simulator, 2101.08944.

[26] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt, Generating and refining particle detector

simulations using the Wasserstein distance in adversarial networks, Comput. Softw. Big Sci. 2 (2018)

4 [1802.03325].

[27] M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic calorimeter showers

using a Wasserstein Generative Adversarial Network, Comput. Softw. Big Sci. 3 (2019) 4

[1807.01954].

[28] M. Backes, A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Unweighting, 2012.07873.

[29] D. Belayneh et al., Calorimetry with Deep Learning: Particle Simulation and Reconstruction for

Collider Physics, Eur. Phys. J. C 80 (2020) 688 [1912.06794].

[30] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol et al., Getting High: High

Fidelity Simulation of High Granularity Calorimeters with High Speed, 2005.05334.

[31] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol et al., Decoding Photons:

Physics in the Latent Space of a BIB-AE Generative Network, EPJ Web Conf. 251 (2021) 03003

[2102.12491].

[32] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, D. Hundhausen, G. Kasieczka et al., Hadrons,

Better, Faster, Stronger, 2112.09709.

[33] C. Krause and D. Shih, CaloFlow: Fast and Accurate Generation of Calorimeter Showers with

Normalizing Flows, 2106.05285.

[34] C. Krause and D. Shih, CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter

Showers with Normalizing Flows, 2110.11377.

[35] G. R. Khattak, S. Vallecorsa, F. Carminati and G. M. Khan, Fast Simulation of a High Granularity

Calorimeter by Generative Adversarial Networks, 2109.07388.

[36] R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini et al., Particle Cloud Generation with

Message Passing Generative Adversarial Networks, 2106.11535.

[37] A. Hariri, D. Dyachkova and S. Gleyzer, Graph Generative Models for Fast Detector Simulations in

High Energy Physics, 2104.01725.

[38] F. Rehm, S. Vallecorsa, V. Saletore, H. Pabst, A. Chaibi, V. Codreanu et al., Reduced Precision

Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case,

2103.10142.

– 15 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
1
1
P
_
0
7
2
2
 
v
1

[39] F. Rehm, S. Vallecorsa, K. Borras and D. Krücker, Validation of Deep Convolutional Generative

Adversarial Networks for High Energy Physics Calorimeter Simulations, 3, 2021, 2103.13698.

[40] F. Rehm, S. Vallecorsa, K. Borras and D. Krücker, Physics Validation of Novel Convolutional 2D

Architectures for Speeding Up High Energy Physics Simulations, EPJ Web Conf. 251 (2021) 03042

[2105.08960].

[41] ATLAS Collaboration, “Deep generative models for fast shower simulation in ATLAS.”

ATL-SOFT-PUB-2018-001, 2018.

[42] ATLAS collaboration, AtlFast3: the next generation of fast simulation in ATLAS, 2109.02551.

[43] A. Butter, T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot et al., Generative Networks for

Precision Enthusiasts, 2110.13632.

[44] ILD Concept Group collaboration, H. Abramowicz et al., International Large Detector: Interim

Design Report, 3, 2020.

[45] M. A. Thomson, Particle flow calorimetry and the PandoraPFA algorithm, Nuclear Instruments and

Methods in Physics Research A 611 (2009) 25 [0907.3577].

[46] J. S. Marshall and M. A. Thomson, The Pandora Software Development Kit for Pattern Recognition,

Eur. Phys. J. C 75 (2015) 439 [1506.05348].

[47] “iLCSoft Project Page.” https://github.com/iLCSoft, 2016.

[48] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso et al., Recent developments in geant4,

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment 835 (2016) 186.

[49] M. Frank, F. Gaede, C. Grefe and P. Mato, DD4hep: A Detector Description Toolkit for High Energy

Physics Experiments, J. Phys. Conf. Ser. 513 (2014) 022010.

[50] A. B. L. Larsen, S. K. Sønderby, H. Larochelle and O. Winther, Autoencoding beyond pixels using a

learned similarity metric, in Proceedings of the 33rd International Conference on International

Conference on Machine Learning - Volume 48, p. 1558–1566, JMLR.org, 2016.

[51] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair et al., Generative

Adversarial Networks, 1406.2661.

[52] T. Miyato, T. Kataoka, M. Koyama and Y. Yoshida, Spectral Normalization for Generative

Adversarial Networks, Feb., 2018.

[53] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen et al., Improved techniques

for training gans, in Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon and R. Garnett, eds., vol. 29, Curran Associates, Inc., 2016,

https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf.

[54] A. L. Maas, A. Y. Hannun and A. Y. Ng, Rectifier nonlinearities improve neural network acoustic

models, in in ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.

[55] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library, Advances

in Neural Information Processing Systems 32 (2019) 8024.

[56] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 1412.6980.

[57] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf and A. Smola, A kernel method for the

two-sample-problem, in Advances in Neural Information Processing Systems, B. Schölkopf, J. Platt

and T. Hoffman, eds., vol. 19, MIT Press, 2007,

https://proceedings.neurips.cc/paper/2006/file/e9fb2eda3d9c55a0d89c98d6c54b5b3e-Paper.pdf.

– 16 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
1
1
P
_
0
7
2
2
 
v
1

[58] G. Biau, B. Cadre, M. Sangnier and U. Tanielian, Some theoretical properties of gans, Annals of

Statistics 48 (2018) 1539 [1803.07819].

[59] D. Belomestny, E. Moulines, A. Naumov, N. Puchkin and S. Samsonov, Rates of convergence for

density estimation with gans, 2021.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel et al., Scikit-learn:

Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825.

– 17 –


