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Ingmar Hartl1, and Christoph M. Heyl1,3,4

1Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
2Department of Physics, Lund University, P.O Box 118, SE-221 00 Lund, Sweden
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Abstract

Post-compression of ultra-short laser pulses via self-phase modulation is routinely employed for the
generation of laser pulses with optical bandwidths reaching far beyond the laser gain limitations. While
high compression factors can be routinely achieved, the compressed pulses typically suffer from temporal
quality degradation. We numerically and experimentally analyze the deterioration of different measures
of temporal quality with increasing compression factor and show how appropriate dispersion management
and cascading of the post-compression process can be employed to limit the impact of this effect. The
demonstrated saturation of pulse quality degradation at large compression factors puts novel femtosecond
laser architectures based on post-compressed pico- or even nanosecond laser systems in sight.

1 Introduction

Femtosecond laser pulses are nowadays used for a
wide range of applications [1, 2]. Their produc-
tion typically relies on the generation inside a mode-
locked oscillator, followed by amplification and op-
tionally frequency conversion or post-compression.
The latter enables the temporal compression of am-
plified laser pulses, surpassing the bandwidth lim-
its of amplifier gain media. The wide spectra re-
quired to support ultra-short pulses can be gener-
ated by taking advantage of the optical Kerr ef-
fect, causing an intensity-dependent refractive in-
dex. This nonlinear effect in turn results in the
modulation of the pulse’s temporal phase depending
on its amplitude shape and thus to spectral broad-

ening, a phenomenon called self-phase modulation
(SPM). While post-compression methods are widely
employed for decades, the quest for ultra-short pulses
at high peak and average power has pushed post-
compression technology to increasing compression
factors. In particular, the invention of the hollow-
core capillary/fiber, followed by very recent devel-
opments employing multi-pass cells have opened the
possibility to post-compress multi-100 fs or even pi-
coseond pulses at millijoule pulse energy to durations
reaching the few-femtosecond regime [3]. Industry-
grade, high-power picosecond ytterbium (Yb)-based
lasers can thus be directly converted into femtosec-
ond sources, making it possible to extend their high
repetition rate, power-scalability and reliability to ul-
trafast strong field physics [4, 5, 6]. Compressing the
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input pulse to less than a tenth of its original duration
in a single compression stage has been demonstrated
multiple times [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
with a recent record approaching a compression fac-
tor of 40 in a single compression stage [5].

A common drawback of post-compression is the
degradation of the pulse’s temporal quality induced
by modulations of the spectral amplitude and higher-
order phase contributions, which typically remain af-
ter compression. These effects cause pre- and post-
pulses, which can easily reach more than 10% of the
peak power of the main pulse [16]. A few tech-
niques have been developed to address the problem
of temporal quality degradation in post-compression
including input pulse shaping [17] and pulse cleaning
methods. In particular, third-order nonlinear effects
that preserve the fundamental wavelengths, such as
nonlinear elliptical rotation (NER) or cross-polarized
wave generation (XPW), have been demonstrated be-
fore as effective pulse cleaning tools. In fact, NER can
be used in the same spectral broadening setup, to si-
multaneously broaden the spectrum while improving
the temporal contrast [18, 19]. However, NER mostly
affects the contrast of the initial pulse, and not the
strong pre- and post-pulses which appear after re-
moving the SPM-induced chirp. Other pulse clean-
ing methods rely on the usage of frequency doubling
[20], saturable absorbers [21] or simply on spectral
filtering [22]. Most of these methods come with a
considerable reduction of pulse energy. Since an in-
crease in peak power is one of the main purposes for
post-compression, such techniques are not ideal, as
one limits the potential increase of peak power.

In this work, we explore the link between tempo-
ral quality degradation and high compression factors.
We use a generalized model for post-compression to
numerically show how different measures of tempo-
ral quality inevitably degrade with increasing SPM-
induced spectral broadening factor, reaching satura-
tion if suitable dispersion management is applied. We
then verify our key observations experimentally using
gas-based post-compression of mJ-class pulses. Fi-
nally, we outline a scheme enabling to maintain good
temporal quality at high compression factors utilizing
cascaded spectral broadening stages.

2 SPM broadening and tempo-
ral quality

2.1 SPM broadening

For common post-compression scenarios with negli-
gible impact of linear dispersion during the spectral
broadening process, the post-compression process can
be split into two steps. First, an initial nonlinear
step where SPM-induced spectral broadening is the
main physical effect, and second, a linear compres-
sion step where the chirp induced by SPM is re-
moved/optimized. The first step changes the spec-
tral intensity while keeping the temporal shape al-
most the same, while the second step changes the
temporal shape while keeping the spectral intensity
constant. These two steps can be combined into one
equation:

Eout(t) = F−1

[
F
[
Ein(t) exp(iB|Ein(t)|2)

]
× exp

(
i
γ

2
(ω − ω0)2

)]
, (1)

where F denotes the Fourier transform from time t to
angular frequency ω and F−1 is the inverse. E(t) rep-
resents the complex-valued temporal pulse envelope,
written as the electric field’s analytic signal represen-
tation [23]. SPM is expressed in the first exponential
term, where B denotes the strength of the Kerr non-
linearity experienced by the pulse. We can normalize
the value of the pulse intensity |E(t)|2, such that B
equals the phase change at the peak of the pulse in
radians, typically referred to as the B-integral [3].
Linear compression, where mostly linear chirp is ad-
justed, is commonly done using negatively chirped
mirrors or grating compressors. The linear chirp, also
referred to as group-delay dispersion (GDD) can be
written as a quadratic phase in the Fourier domain,
denoted as γ. The variable ω refer to the angular fre-
quency, with ω0 being the central angular frequency.

To maintain the general applicability of the model,
and the corresponding findings, we keep the model
as simple as possible. Depending on the post-
compression technique and parameter regime used,
spatio-temporal effects and other nonlinearities have

2



to be taken into consideration. However, SPM and
chirp compensation typically still play a central role.
We assume that the dispersion during the SPM-
induced broadening process is minimal, which is
typically the case for gas-based methods and lim-
ited spectral output bandwidths as well as for tech-
niques involving a fiber much shorter than its dis-
persion length. Even solid-based techniques where
the medium is very thin, or where the linear disper-
sion is compensated e.g. via dispersive multi-pass cell
mirrors [4, 24] can be modeled to a good approxima-
tion by this equation. Transmission losses are also
neglected, as there is no general way to model this
value.

In Eq. (1), the time and frequency variables can
be re-scaled according to the full with at half maxi-
mum (FWHM) of the input pulse intensity, σin

FWHM,
and can then be generalized for any wavelength and
pulse width, similar to the dimensionless charac-
teristic length scales used in soliton physics [25].
This normalization approach is used throughout the
paper (unless stated differently as for the experi-
mental data), defining time as t/σin

FWHM, frequency
as (f − f0)σin

FWHM, and group-delay dispersion as
γ/σin

FWHM
2.

For a Gaussian-shaped input pulse, defined by
Ein(t) = exp

(
−4 ln 2 t2/σin

FWHM
2
)
, the temporal

compression factor C = σin
FWHM/σ

out
FWHM scales al-

most linearly with B-integral. Using Eq. (1), we nu-
merically find a suitable relation reading as

C ≈ 0.59B + 1. (2)

This linear approximation of the compression fac-
tor as a function of the B-integral is displayed in
Fig. 1(a). It provides an approximate value valid
for Fourier transform-limited (FTL) pulses as well as
for pulses compressed via GDD removal only. This
is because for these two cases, the functions are not
exactly linear, and the two differ from the approxi-
mation in Eq. (2) almost equally except at very high
compression factors, with an error below 5% for both
up to a B-integral of 40 radians. Up to 100 radi-
ans, the error is below 2% for the FTL case and just
above 10 % with only GDD removal. Note that this
relationship is different from the well-known relation
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Figure 1: (a) Required B-integral needed to post-
compress a Gaussian pulse using SPM, based on
Eq. (1). (b) Different temporal pulse shapes of the
output pulse located in the points marked by I, II,
and III in (a), all three having the same FTL σFWHM

= 100 fs. (c) Corresponding spectra of the three
pulses.

between spectral broadening factor and B-integral,
∆ω
∆ω0
≈ 0.88B [3]. This means the compression factor

increases slower than the broadening factor as the B-
integral increases, an effect which can be attributed
to the typical non-Gaussian amplitude shape of SPM-
broadened spectra.

Figures 1(b-c) display three post-compression sce-
narios yielding identical FWHM durations of the FTL
pulses. With increasing compression factor, the spec-
tral and temporal amplitude modulation period de-
creases and the temporal contrast deteriorates, i.e.
more energy is transferred into pre- and post-pulses.
While our simulations take into account Gaussian in-
put pulses, it can be shown that other bell-shaped
pulses behave similarly [26, 27].
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2.2 Quantifying temporal quality

There are different ways to quantify the temporal
quality of an ultrashort laser pulse, depending on the
property of interest. An important measure is the
intensity ratio of the secondary peaks over the main
peak, Isecondary

peak /Iprimary
peak , also referred to as tempo-

ral intensity contrast. The intensity ratio matters in
particular, if the pulse is used to excite matter where
confinement of the interaction to one point in time
can be important. As an example, laser plasma ac-
celeration depend on laser-matter interactions at very
high intensities, and pre-pulses can have a significant
detrimental effect [28]. An intensity ratio of 0% signi-
fies that the pulse does not have any secondary peaks
nor any pedestal.

Another measure describing temporal pulse quality
is the energy ratio, defined by the fraction of energy
that is contained within the main peak of the pulse.
This entails integrating the power over the primary
peak, and dividing it by the total energy including all
pre-, post-pulses and temporal pedestal. The energy
ratio can be written as

Energy Ratio =

∫ t0+σFWHM

t0−σFWHM
P (t)dt∫ +∞

−∞ P (t)dt
, (3)

where P (t) is the instantaneous power of the pulse
and t0 is the position of the primary peak. In this
equation, the boundaries of the primary peak are de-
fined as twice the temporal FWHM width. This inte-
gration boundary is experimentally easily accessible
and can be used to estimate the peak power of well-
behaved SPM-broadened post-compressed pulses, as
shown below. For more complicated temporal pulse
structures often observed in the few-cycle regime, this
boundary is less useful. An energy ratio of 100%
means that all the energy is contained within the pri-
mary peak. A perfect Gaussian pulse has an energy
ratio of ∼98%.

In the framework of pulse compression, another im-
portant property is the peak power boost, which is the
ratio of the peak powers after and before the com-
pression, P out

peak/P
in
peak [29]. Note that the peak power

boost can be approximated by the product of the
compression factor and the energy ratio of the com-
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Figure 2: (a) A pulse calculated from Eq. (1), with
the integration limits (±σout

FWHM) marked by the
shaded area and the primary and secondary peak
powers marked by horizontal line segments. (b) Cor-
responding spectral intensity and phase (obtained af-
ter removing the SPM-induced GDD) of the pulse.

pressed pulse [29]. Another important factor, the en-
ergy transmission, is withheld in this discussion, as
this varies greatly from case to case.

Figure 2 shows an example pulse that is spectrally
broadened by SPM and then post-compressed accord-
ing to Eq. (1). The spectral features create secondary
temporal peaks both before and after the primary
peak of the pulse (see Fig. 2(a)). The horizontal
gray line segments mark the primary and secondary
peaks, highlighting the quantities used to calculate
the intensity ratio. This ratio is not affected by the
weak pedestal, but the energy ratio takes this into
account. The shaded area has a width of twice the
pulse’s FWHM, serving as the integration bounds for
calculating the energy ratio. The phase displayed
in Fig. 2(b) corresponds to the higher-order phase
that cannot be removed by simple GDD optimiza-
tion, representing a common experimental scenario
where chirped mirrors or grating-based compressors
are used mainly for GDD removal.

Experimentally, pulse characterization is essen-
tial for measuring the temporal quality of the
pulse. A spectrogram-based pulse shape measure-
ment technique such as frequency-resolved optical
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gating (FROG) can provide the exact shape of
the primary and secondary peaks [23]. However,
spectrogram-based techniques typically provide only
a limited temporal dynamic range, which can lead to
an overestimated peak power if a weak but possibly
long pedestal cannot be resolved. For this purpose,
other techniques such as third-order autocorrelation
can provide an improved dynamic range [30, 31].

3 Temporal quality degrada-
tion at high compression fac-
tors

3.1 Asymptotic degradation

Using the generalized treatment of pulses indepen-
dent of the initial width and wavelength introduced
in the previous section, we simulate post-compression
of a Gaussian input pulse at different compression
factors. The different measures of temporal qual-
ity are then extracted, and summarized in Fig. 3.
For each measure, two cases are shown: first, the
Fourier-limited case, where the SPM-induced phase
has been set to zero after spectral broadening, and
second, the case where only the GDD is optimized.
Optimal GDD removal is determined by maximizing
the peak power of the compressed pulse. The continu-
ous degradation of the temporal quality with increas-
ing compression factor can be clearly observed for the
second case. However, for the FTL case, the degrada-
tion slows down and approaches an asymptotic value
of 10% for the intensity ratio (gray dashed line in
Fig. 3(a)). The energy ratio reaches about 70% at
a compression factor of 100, showing a further slow
decrease to about 65% at a factor 1000 (not shown).

Because of the saturation effects observed for the
temporal quality degradation for pulses compressed
to the FTL, the peak power boost continuously in-
creases in a linear fashion even at high compression
factors. This is a clear indication that higher-order
chirp becomes less tolerable at high compression fac-
tors and the need for better phase compensation tech-
niques becomes more important.
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Figure 3: (a) Energy ratio, intensity ratio and (b)
peak power boost, plotted as functions of the com-
pression factor at FTL. All measures are shown for
two compression scenarios considering FTL (solid
lines) and GDD-optimized (dashed-dotted lines)
pulses.

3.2 Dispersion compensation

We now extend the simulation results shown in Fig. 3
to cases where the GDD is not optimally removed.
The effect on the energy ratio and the actual com-
pression factor of the compressed pulse are displayed
in Fig. 4. Note that the actual compression factor
refers to the ratio computed from the FWHM of the
GDD-optimized pulse and not from the FWHM of
the FTL pulse.

The point of optimal compression is marked by a
dashed white line in Fig. 4(a). Interestingly, the en-
ergy ratio is higher when the pulse is not optimally
compressed. When the GDD is not sufficiently re-
moved, the temporal pulse shape remains closer to
the initial shape, which is a perfect Gaussian pulse.
And on the other hand, when too much GDD is sub-
tracted, multiple sub-pulses of similar height appear,
resulting in a large pulse duration and consequently
large integration bounds for computing the energy
ratio, covering most of the pulse’s energy. For very
large compression ratios, the wider spectrum makes
the pulse more sensitive to dispersion, and the pulse
again disintegrates into multiple subpulses. These re-
sult again in a lower energy ratio, which can be seen
at the top right corner of Fig. 4(a).
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A similar behavior is observed for the intensity ra-
tio, where a better value is obtained when the pulse is
not optimally compressed (not shown). Even though
the energy ratio is lower when the pulse is optimally
compressed, it stays above 60% even at very high
compression factors, as shown in Fig. 3(a).
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Figure 4: (a) Energy ratio and (b) actual compression
factor of the compressed pulses (GDD removal only).
The while line in (a) marks the peak-power-optimized
compression.

As mentioned in Sec. 2, the peak power can be es-
timated by the product of the energy ratio and the
actual compression factor, as shown in Fig. 5. The
figure also visualizes that even though the energy ra-
tio gets worse at large compression factors, there is
still a clear improvement of the peak power boost at
an optimal GDD compensation.

3.3 Effect of input chirp

Another important parameter in post-compression is
the input chirp, as it can significantly alter the prop-
erties of the output pulse. One reason why chirped
pulses are used in post-compression is to avoid dam-
age due to self-focusing [32, 33]. Because of the chirp,
the pulse energy is distributed in a longer time span,
thus lowering the peak intensity. For a Gaussian
pulse, this stretching of the duration σ can be written
as [34]:

σ

σFTL
=

√
1 +

(
(4 ln 2)γ

σ2
FTL

)2

. (4)
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Figure 5: (a) Product of the energy and actual com-
pression factors and (b) the peak power boost. This
shows the similarity of the two, showing how the
product can be used as a good approximation of the
peak power.

Stretching the input pulse has a clear negative effect
on the temporal contrast of the compressed pulse,
as can be seen in Fig. 6. Both energy and intensity
ratios degrade much faster with increasing compres-
sion factor. Note that the compression factor in this
case is calculated using the FTL pulse as input pulse
duration and not the duration of the stretched pulse.
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Figure 6: Energy ratio (a) and the intensity ratio (b)
of the compressed FTL pulse from a chirped Gaussian
pulse input, plotted as functions of input pulse chirp
and compression factor.

Aside from the degrading temporal quality, a larger
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amount of nonlinearity is also needed to spectrally
broaden a chirped pulse. For γ/σ2

FWHM = ±5, the
pulse will be almost 14 times longer according to
Eq. (4). This means the peak power of the pulse
will be severely diminished. For the case of negative
input chirp, the spectrum initially becomes narrower
at lower B-integrals as shown in [35], but eventually
also results in spectral broadening. Note that the
white part on the left hand side of the two plots do
not contain data, as the compression factor is always
greater than 1 when the pulse is compressing. An
exemption is when the spectrum becomes narrower
as mentioned, which results in a longer FTL output
pulse. This is why the lower parts of the plots in
Fig. 6, corresponding to negative input chirps, ex-
tend to compression factors below one.

The reduced temporal contrast for nonzero input
chirp can be understood by looking at the spectral
evolution of the pulse, displayed in Fig. 7. For both
positively and negatively chirped pulses, the broad-
ened spectrum is more finely structured, which is
detrimental to the temporal quality. In addition,
chirped input pulses typically cause higher-order
chirp under SPM broadening, which makes linear
compression more difficult. These effects cause a re-
duced temporal quality. It is therefore not advisable
to use a chirped input pulse for post-compression.
Additional issues beyond temporal quality degrada-
tion caused by chirping the input pulse are discussed
in Ref. [36].

3.4 Experimental demonstration of
temporal contrast degradation

For a direct demonstration of pulse quality degrada-
tion with increasing compression factor, we used a
2-m Argon-filled multi-pass cell (MPC) to compress
mJ-class pulses from a Yb:YAG Innoslab burst am-
plifier, with an initial pulse width of 730 fs centered at
1030 nm. Third-harmonic generation FROG (THG
FROG) is used to measure the pulses. Two sets of
measurements were performed, one using an input
pulse energy of 2 mJ and another with 3 mJ, while
keeping other key parameters constant, i.e. causing
an increased spectral broadening and thus a larger
compression factor for the 3 mJ case. The retrieved
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Figure 7: Spectral evolution at different input dis-
persion values, (a) γ/σFWHM = 1, (b) γ/σFWHM = 0,
and (c) γ/σFWHM = −1. In the first and last case,
the initial pulse is stretched by dispersion to almost
thrice its original duration.

pulses have a residual GDD, which was not fully com-
pensated in the experiment. The remaining GDD
is then numerically optimized to reach optimal com-
pression.

The resulting reconstructed temporal pulse shapes
are shown in Fig. 8. The 2 mJ input pulse yields an
energy ratio of 92%, which is higher than the 83%
measured for the 3 mJ input pulse. This is expected
due to the degradation of the temporal contrast at
higher compression factors. Note that the dynamic
range of the retrieved pulse is limited by the dynamic
range of the measurement [37], causing most likely
a slightly overestimated energy ratio for both mea-
surements. In addition to a reduced energy ratio, a
reduced intensity ratio can be observed for the 3 mJ
case, causing stronger pre- and post-pulses. Despite
this, the peak power boost is higher in the 3-mJ case,
as predicted by our simulations. The peak power
boost (neglecting transmission losses), is about 10 for
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the 2-mJ case and 14 for the 3-mJ case.
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Figure 8: Retrieved output pulses using an input en-
ergy of 2 mJ for (a) and an input of 3 mJ for (b). The
corresponding retrieved spectral intensity and phase
are plotted in the insets, with the separately recorded
fundamental spectrum as shaded area.

4 Cascaded broadening

4.1 Optimal cascading ratio

Following our discussion about the degrading tem-
poral pulse quality with increasing compression fac-
tor, we now discuss a route to mitigate this issue.
One way to reduce the compression factor per post-
compression stage is to cascade the broadening pro-
cess into two stages, each with compression factors of
C1 and C2, resulting in an effective compression fac-
tor Ceff = C1C2. Here, the GDD is optimized twice,
first in-between the two spectral broadening stages
and second, after the second stage.

A compressor in the middle of the spectral broad-
ening process has the effect of halting the continu-
ous increase of the relative peak powers of the pre-
and post-pulses. Because of their reduced peak power
compared to the main pulse, the pre- and post-pulses
will not significantly change anymore in the next
spectral broadening stage, as shown in Fig. 9. A very
similar structure can also be clearly seen in the dual-
stage compression reported in [29]. Note that up to

three cascaded broadening stages have already been
demonstrated [38].
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Figure 9: Temporal pulse shapes resulting from a
two-stage cascaded broadening process where the
GDD is optimized for maximum peak power after
each stage.

In order to minimize the compression factor per
stage for a given total compression factor Ceff, the
optimal cascading ratio, C1/C2, should be equal to
1. This means having a compression factor for each

stage of Ci = C
1/N
eff , where N is the number of stages.

To demonstrate this, we run a simulation of dual-
stage compression at different cascading ratios, all
resulting in the same Ceff of 50. The results are sum-
marized in Fig. 10. It can be seen that the optimal
case for both the energy ratio and the peak power
boost is the middle part of the plots, where C1 = C2.
For the intensity ratio, the optimal part is not in
the middle, but rather shifted towards the right side
(C1 > C2). This minimum corresponds to the sce-
nario where the pre- and post-pulses appearing in
the second compression stage reach the same height
as the ones generated in the first stage (see Fig. 9).
Because the main pulses are very different in the two
stages, the growth rate of these secondary peaks is
also different, explaining this asymmetry.

In general, Fig. 10 illustrates improved temporal
quality for dual-stage post-compression compared to
the single-stage case (considering compression via
GDD optimization) even when the optimal cascading
ratio is not met. Unless this cascading ratio is beyond
10, single-stage compression with the same compres-
sion factor Ceff (indicated by the dashed lines) is al-
ways worse than using a dual-stage compression.

Fig. 11(a) compares the peak power boost for sin-
gle and dual-stage post-compression. The peak power
boost for the optimal dual-stage compression reaches

8



-1 -0.5 0 0.5 1
log10(C1/C2)

0
10
20
30
40
50

Pe
ak

 P
ow

er
 B

oo
st

-1 -0.5 0 0.5 1
0

20

40

60

80

En
er

gy
 R

at
io

 (%
)

Cascaded, N = 2
N = 1
N = 1, FTL

-1 -0.5 0 0.5 1
0

5

10

15

In
te

ns
ity

 R
at

io
 (%

)

(a)

(c)

(b)

Figure 10: Energy ratio (a), intensity ratio (b),
and peak power boost (c) resulting from a two-stage
broadening process, where C1 is the compression fac-
tor of the first stage and C2 for the second. In all
cases, the effective compression factor Ceff = C1C2

is equal to 50. The dashed lines represent the case
for single-stage (N = 1) broadening, where only the
GDD is optimized.

almost the same level as the FTL case for single-
stage compression. This shows that even without
using advanced pulse shaping techniques to remove
the higher-order chirp if large compression factors are
used, dual-stage cascading enables reaching a high
peak power boost. And if higher-order chirp can also
be removed for the cascaded compression, an even
higher peak power boost will be achieved.

An important factor which was so far neglected in
our discussion about cascaded broadening is arising
due to losses in particular in the compressor and pos-
sible coupling losses if fibers are employed. Naturally,
the overall losses will increase with N . For MPCs,
the transmission can reach above 90% [29], limited
only by the spatial quality of the beam and the re-
flectance of the mirrors used. Compressor losses can

also reach values below 5%, using efficient gratings
or chirped mirrors with high reflectivity. Assuming
a more modest transmission of 80% per stage, dual-
stage cascaded broadening will only result in a higher
peak power boost if the improvement is greater than
1/0.8 = 1.25. This is the case for compression factors
above 30, as shown in Fig. 11(b). If higher trans-
mission per stage can be achieved, this limit will be
moved further down to lower compression factors.
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Figure 11: (a) Peak power boost improvement of
dual-stage cascading (N = 2) compared to single-
stage (N = 1). (b) The ratio of the peak power boost
for N = 2 and N = 1, where only the GDD is opti-
mized for both.

4.2 Multi-stage cascading

As shown in Fig. 9, the pre- and post-pulses gener-
ated in the first stage are carried over into the subse-
quent stage. An interesting phenomenon occurs when
the cascading is implemented before the compression
factor is high enough such that these secondary pulses
appear. In this case, no secondary pulse will be car-
ried over, and the post-compressed pulse will have
a very smooth profile. However, in this case, the
compression factor per stage will be limited to small
values, as the secondary pulses appear roughly when
C > 2 (see Fig. 3). One way to still reach higher
compression factors is to employ multiple cascaded
stages. The result of using cascaded broadening with
10 stages is shown in Fig. 12. The oscillations in the
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Figure 12: Temporal shapes and spectra of the out-
put pulses at (a) N = 10 and (b) N = 1, with the same
input and output pulse duration for both scenarios.

spectral intensity is less, and also the higher-order
chirp is confined to a narrower region in the spectrum,
overall resulting in a smoother temporal profile.

Multi-stage cascading will of course result in in-
creased overall losses. One possible way to minimize
the losses is to use an MPC, where the mirrors serve
as linear compressors by employing chirped coatings,
and the nonlinear medium is adjusted for each pass
through the cell, e.g. by using multiple glass plates
with variable thickness and/or position, such that
roughly the same low compression factor is achieved
for each roundtrip despite the increasing peak power.
Reducing the B-integral per stage further and adding
more stages would result in soliton-like compression
with an important difference to other soliton self-
comprssion scenarios: Employing an MPC results in
discrete brodening and compression steps, and more
importantly, the nonlinearity and dispersion per dis-
crete step are uncoupled and can be optimized indi-
vidually. Note that nonlinearity and dispersion can
be adjusted in gas-filled hollow core fibers too, e.g.
by using a pressure gradient, but in this case, the
two properties are coupled to each other. Thus, only
one is usually optimized at a time, e.g. for limiting
the nonlinearity to avoid filamentation at high pulse
energies [39].

5 Summary and conclusion

We showed how temporal quality degradation is
connected with the compression factor of post-
compressed pulses, both by using numerical simula-
tions and with experimental data. If only the GDD
of the SPM-broadened pulse is optimized, the tempo-
ral quality continuously degrades, but if higher-order
chirp can also be addressed, we have shown that this
degradation slows down, approaching an asymptotic
limit. This conclusion is a motivation towards reach-
ing even higher compression factors, while stressing
the need for advanced phase compensation techniques
to address higher-order chirp. We also showed that
the temporal quality degradation in relation to higher
compression factors is present regardless of the input
linear chirp, but happens much faster with chirped
input pulses.

We proposed the idea of using cascaded broaden-
ing specifically to limit the temporal quality degra-
dation, especially at high compression factors. We
have shown how an optimal cascading ratio can be
achieved when the compression factor for each stage
is minimized. Via cascading, the temporal quality of
the post-compressed pulse can be improved, while at
the same time reaching a higher peak power. This
property highlights the importance of the discussed
method as other approaches for temporal contrast
improvement typically result in a lower peak power.
We also showed that keeping the compression fac-
tor very low for each stage is a way towards reaching
high compression factors without generating pre- and
post-pulses.

In conclusion, we presented how very high post-
compression factors can be achieved while minimiz-
ing temporal quality degradation by either employing
higher-order dispersion management or dividing the
compression into multiple stages. Our results mo-
tivate post-compression at even higher compression
factors, making the technique viable for pulses in the
10-100 ps or even the nanosecond range.
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