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Abstract: In recent years, X-ray speckle tracking techniques have emerged as viable tools for
wavefront metrology and sample imaging applications, and have been actively developed for use
at synchrotron light sources. Speckle techniques can recover an image free of aberrations and
can be used to measure wavefronts with a high angular sensitivity. Since they are compatible
with low-coherence sources they can be also used with laboratory X-ray sources. A new
implementation of the ptychographic X-ray speckle tracking method, suitable for the metrology
of highly divergent wavefields, such as those created by multilayer Laue lenses, is presented here.
This new program incorporates machine learning techniques such as Huber and non-parametric
regression and enables robust and quick wavefield measurements and data evaluation even for
low brilliance X-ray beams, and the imaging of low-contrast samples. To realize this, a software
suite was written in Python 3, with a C back-end capable of concurrent calculations for high
performance. It is accessible as a Python module and is available as source code under Version 3
or later of the GNU General Public License.
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1. Introduction

With the development of X-ray sources of ever increasing brightness and coherence there
is an ongoing drive to design and develop optics able to focus X-ray beams down to about
1 nm [1]. Such optics would have a major impact in the field of X-ray microscopy. Also they
would add great benefit for various modalities of X-ray imaging that investigate nano-structured
materials and biological samples in-situ and in-operando, or which require extremely high X-ray
intensities [2–6]. However, diffraction limited X-ray optics are very challenging to make and
the highest achievable resolution is ultimately limited by aberrations of the optical elements.
Thus, there is an increasing need for at-wavelength and in-situ wavefront metrology techniques
of sufficient accuracy. The measurement of the wavefront is critical to understand the source of
aberrations and to subsequently improve the fabrication of optical elements.

In this paper we focus on an approach, ptychographic X-ray speckle tracking (PXST) [7–9],
that belongs to a family of phase imaging and lens monitoring techniques called X-ray speckle
tracking (XST). Despite the name, PXST does not necessarily require speckle patterns, but any
pattern with modulations in intensity will do, such as that formed by a beam transmitting through
a Siemens star test structure [8]. Here, instead of a speckle pattern, we refer to the measured
intensity pattern as an in-line or projection hologram. In any case, the contrast and smallest sizes
of the features in the measured patterns are important properties that influence the quality of the
reconstructed images and wavefronts obtained via speckle-based techniques [7, Appendix D].
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Fig. 1. Illustration of the X-ray speckle tracking principle for the the absolute (a)
and ptychographic (b) configurations. (a): the wavefront with the phase profile 𝜙
produced by the optics is measured at two distances downstream from the mask. Bottom:
the reference and the image are compared to determine the displacements. (b): the
illuminating beam propagates from left to right. The sample is scanned across the beam.
The red lines depict the illumination’s wavefront in the sample and image planes. The
virtual reference profile generated by the PXST algorithm is depicted at the reference
plane.

The XST technique was introduced by Bérujon [10] and Morgan, Paganin, and Siu [11] as a
way of obtaining a quantitative measurement of the phase gradient of a wavefront. This technique
is based on the principles of geometric optics, where in the eikonal approximation light rays are
directed normal to the wavefront’s surface (Fig. 1). The principle of XST is simple: a local tilt
of the wavefront (that is, a deviation of the direction of a local ray) can be observed as a shift
of the “shadow” of a particular feature of an object placed in the beam. By tracking shifts of
particular features as seen in different planes downstream or as caused by removing or shifting the
refracting object of interest, the ray deflections and thus the phase gradient of the X-ray wavefront
can be obtained. Typically, a sheet of sandpaper, consisting of small silicon carbide grains, or
a biological filter membrane with micrometer-sized pores, is used as the analyzer to produce
the intensity-modulated beam. To retrieve the wavefront created by a lens, the intensity is often
measured with and without the lens in the analyzer beam [12]. These two detector images are
usually labeled the “image” or “reference image”, depending on whether the object (the lens in
this case) is inserted in the beam or not. By comparing these, the displacements at positions x in
the beam can be measured in the horizontal and vertical directions separately, and the deflection
angle 𝛼(x) = {𝛼𝑥 (x), 𝛼𝑦 (x)} in both directions is obtained at each position. The deflection angle
is directly related to the phase gradient as

𝜕Φ(x)
𝜕𝑥

=
2𝜋
𝜆
𝛼𝑥 (x),

𝜕Φ(x)
𝜕𝑦

=
2𝜋
𝜆
𝛼𝑦 (x), (1)

where 𝜆 is the X-ray wavelength. The phase Φ(x) can then be obtained by integration.
Since its introduction, a number of XST-based methods were developed for use with synchrotron

and laboratory light sources, which are described and compared in a review paper by Zdora [13].
Some of these methods were devised to characterize focusing X-ray optics [7,14]. The advantage
of the XST method is that it offers a high angular sensitivity and low requirements on transverse
and longitudinal coherence of the X-ray beam. However, high angular sensitivity measurements
of the wavefront of high numerical aperture (NA) X-ray lenses, such as multilayer Laue lenses



(MLLs) [15], is very challenging. In the absolute configuration of XST, where the reference and
the image planes are located a distance 𝑧 − 𝑧 apart (Fig. 1), the angular sensitivity depends on
the ratio of the effective pixel size to the distance between the reference and the image planes:
Δ𝜃 (x) = Δ𝑥(x)/(𝑧 − 𝑧). Here, the effective pixel size is defined as the smallest resolvable
displacement of a speckle or feature (including effects such as fringe visibility, finite pixel size,
beam coherence and noise). Hence, the best accuracy is obtained by maximizing the distance
between the reference and image planes. However, for highly divergent wavefields, there arises
an inevitable trade-off between the wavefront sampling frequency and the angular sensitivity.
Namely, the ideal location of the image plane is as far downstream of the lens focus as required
to cover the detector array with the beam since this maximizes the wavefront sampling frequency.
In order to minimize Δ𝜃 (maximizing the distance 𝑧) one should place the reference plane as
close as possible to the beam focus. But in this plane the footprint of the beam on the detector
may be much smaller than that in the image plane because of the beam divergence. This leads to
a poorly sampled reference, as only a few pixels will span the wavefront’s footprint.

Our method of PXST [7] overcomes this problem of sampling highly divergent beams. As
schematically described in Fig. 1 (b), a sample is stepped across the beam wavefront while
in-line projection holograms are collected with the detector at a fixed distance from the sample.
The main advantage of this method, as compared to the absolute XST configuration, is that it
alleviates the need to measure the reference image. Instead, the virtual reference image can
be reconstructed from the collected holograms with nanometer precision, as long as there is
sufficient overlap of the illuminated regions of the sample. In the simplest case of one step of the
object (that is, two object positions) the displacements Δ𝑥(x) are obtained from the differences in
positions of features from one frame to the other, minus the average displacement of all features.
By keeping the measurement and object in fixed planes, the approach is applicable to highly
divergent wavefields produced by high NA X-ray optics such as multilayer Laue lenses (MLLs),
which we primarily consider in this paper.

MLLs are diffractive, multilayer-based X-ray optics that can be understood as an extension of
a conventional Fresnel zone plate in the form of a volume diffracting element [15, 16]. MLLs
are cut from a deposited multilayer, which may consist of many thousands of layers of two
alternating materials with different refractive properties. A bi-layer of the two materials forms a
period. To focus X-rays to a common point the period thickness must decrease with the distance
from the optical axis since smaller periods diffract X-rays by larger angles. The numerical
aperture of the lens is thus set by the smallest period in the structure. A common way to fabricate
the multilayer structure is by magnetron sputtering, in which a substrate is moved sequentially
through the plasmas of two different materials. The time spent in each determines the individual
layer thickness. Multilayers with periods below 1 nm are feasible using this method. Unlike with
lithographically prepared Fresnel zone plates, there is no substantial limit to the thickness of the
lens (in the direction of propagation) that can be prepared, allowing structures of high aspect
ratio and high diffracting efficiency for hard X-rays. However, the angular acceptance of such
structures for efficient diffraction (the rocking curve) is usually narrower than the NA, and so the
Bragg condition cannot be simultaneously fulfilled throughout the entire lens aperture unless
the layers vary in their tilt to the incident beam. This wedging of the layers is achieved with a
straight-edge mask placed between the sputter source and the substrate [17], which creates a
shadow of the extended source and thus a thickness gradient in the penumbra of this shadow.
Knowing the thickness gradient one can precisely determine where to cut an MLL that focuses
X-rays of particular energy at a desired focal length [18]. The deposited multilayer consists
of tens of thousands of nanometer thick layers and deposition times can take many days [15].
Long deposition times require a stable and reproducible sputtering process. However, since
the sputtering process removes material from the target, it gets thinner and the sputtering rate
diminishes over time. An uncorrected linear decrease in rate, for example, manifests in coma, an



aberration that depends on the third power of the pupil coordinate [19].
PXST has been successfully used in our laboratory to characterize the wavefronts of individual

MLLs. Nevertheless, as first implemented, it has some limitations. One of them becomes
prominent if the sample is too close to the focus. In that case the reference profile is sampled
sparsely, and PXST fails to successfully infer the reference image. However, this is also where
the angular sensitivity of the PXST method is maximised and therefore one would like to work in
this condition. In addition, when the noise of the intensity measurements is too high, PXST is not
able to resolve the sample features and therefore fails to measure the feature displacements from
one frame to another. In order to curtail these limitations we devised an improved implementation
of the PXST analysis method. This new analysis pipeline, robust speckle tracking (R-PXST), is
applicable over a wider range of experimental parameters and is highly robust against noise in
the intensity measurements. We devised a software suite called pyrost for the whole R-PXST
data processing pipeline in Python [20]. Also, using this new software, we explored the impact
of experimental parameters on the angular sensitivity of R-PXST and compared it with PXST.
In order to confirm the parametric analysis, we simulated speckle tracking scans using the
Rayleigh-Sommerfeld diffraction theory.

2. Speckle Tracking algorithm

In this paper, we consider the general case of the projection imaging geometry shown in Fig. 1 (b).
Here, the detector records a magnified near-field projection hologram 𝐼 (x, 𝑧) of the sample, at a
plane a distance 𝑧 from the object (referred to as the image plane), as illuminated by an X-ray
beam diverging from an effective point source a distance 𝑧1 before the sample. The phase profile
of the wavefront illuminating the sample is 𝜙(x) and the amplitude is given by 𝑤1/2 (x). Morgan
et al. [7] devised a speckle tracking approximation which relates the projection hologram 𝐼 (x, 𝑧)
with a virtual reference hologram 𝐼ref (x, 𝑧) formed under plane-wave illumination. The reference
hologram is that which would be recorded on a detector with a demagnified pixel size and placed
a distance 𝑧 downstream of an object illuminated by a perfect plane. In particular,

𝐼 (x, 𝑧) ≃ 𝑊 (x)𝐼ref

[
x − 𝜆𝑧

2𝜋
∇Φ(x), 𝑧

]
, (2)(

𝑧

𝑧

)
𝑤(𝝃)𝐼ref (𝝃, 𝑧) ≃ 𝐼

[
𝝃 + 𝜆𝑧

2𝜋
∇𝜙(𝝃), 𝑧

]
, (3)

where 𝑧 = 𝑧/𝑀 = 𝑧𝑧1/𝑧+𝑧1 is the effective propagation distance, 𝑀 = 𝑧+𝑧1/𝑧1 is the geometric
magnification factor, ∇𝜙(𝝃) and ∇Φ(x) are the transverse gradients of the illuminating wavefield
phase in the sample and image planes, and 𝑤(𝝃) and𝑊 (x) are the amplitude profiles in the sample
and image planes. The approximation was derived under the assumption of monochromatic light
and in the near-field regime.

From their speckle tracking approximation, Morgan et al. [7] developed an iterative algorithm
capable of reconstructing the reference image and the phase profile of the illumination from a
series of projection holograms of the same sample, each recorded for a different displacement
Δ𝝃𝑛 of the sample in the transverse plane. According to Eqs. (2) and (3), the relationship between
the measured images 𝐼𝑛 and the virtual reference hologram 𝐼ref can be expressed as

𝐼𝑛 (x) ≈ 𝑊 (x)𝐼ref (x − 𝜆𝑧

2𝜋
∇Φ(x) − Δ𝝃𝑛) = 𝑊 (x)𝐼ref (u(x) − Δ𝝃𝑛), (4)

where u(x) maps the measured intensity profile in the detector (image) plane (x) to the reference
(sample) plane (𝝃). This mapping is dependent upon the magnification of the reference image but
it also includes a contribution caused by wavefront errors. The mapping is proportional to the
phase gradient of the wavefront. The intensity profile𝑊 (x) can be measured without the sample



in place, but in practice this “white-field” can be obtained simply by averaging all 𝐼𝑛 (x). For a
uniform white-field profile𝑊 and within the limits of the approximation in Eq. (4), the reference
image is simply a merging of each recorded image in the scan after correcting for the geometric
distortions induced by the lens aberrations. The displacements applied to these overlaid images
are given by the demagnified sample positions Δ𝝃𝑛/𝑀 .

Fig. 2. Flow diagram for the PXST iterative update algorithm [9]. The algorithm starts
with the measured data, sample translations, and initial aberration-free pixel mapping.
During the update procedure at each iteration the reference image is reconstructed from
the current estimation of the pixel mapping, whereupon the pixel mapping is updated
so as to minimize the difference between the right-hand and left-hand sides of Eq. (4).

As described in [21, Appendix B], the Fresnel scaling theorem states that the hologram of a
thin object formed using a beam diverging from a point source, recorded a distance 𝑧 from the
object, is equal to the hologram of a magnified version of that object formed under plane-wave
illumination and recorded at a shorter propagation distance 𝑧 = 𝑧/𝑀. Therefore, as an initial
step, the mapping between detector and reference planes is approximated as linear:

𝐼 (x, 𝑧) = 𝑀−2𝐼ref (x/𝑀, 𝑧/𝑀) ⇒ u(x) = x/𝑀 . (5)

Starting from this preliminary step, the mapping (𝑢) and the reference image (𝐼ref) are iteratively
updated following the flowchart illustrated in Fig. 2. The update procedures are accomplished by
minimizing the target function given by [7, 9]:

𝜀(u, 𝐼ref,Δ𝝃𝑛) =
∫ ∑

𝑛 (𝐼𝑛 (x) −𝑊 (x)𝐼ref (u(x) − Δ𝝃𝑛))2∑
𝑛 (𝐼𝑛 (x) −𝑊 (x))2 𝑑x . (6)

The procedure performs accurately in the case of low noise and a high density of intensity
measurements mapped to the reference plane, but it fails to yield plausible results when the noise
is too high (such as for low exposures obtained using a less brilliant source) or when the intensity
samples are sparsely spread out in the reference plane. Robust speckle tracking (R-PXST)
aims to attain more accurate results from noisy and sparse data by employing robust machine
learning and non-parametric techniques such as Nadaraya-Watson kernel regression [22, 23] and



local weighted linear regression [24, 25] for the estimation of the reference image, and Huber
regression [26,27] for the geometrical mapping update. All of these aspects were compiled in
the software suite called pyrost.

3. Main functions and overview

Fig. 3. A diagram of the main classes and their attributes and methods in pyrost
software [20].

The software was devised with an intent to be accessible to imaging and data scientists.
Therefore, pyrost was designed with a user-friendly interface written in Python 3 and provides
a high-level documentation for the project, including tutorials and an installation instruction [28].
The most intensive parts of calculations are executed in C with a support of concurrent calculations
to yield the best performance. In order to maximize the utility and accessibility of the software
suite, pyrost is available under Version 3 or later of the GNU General Public Licence. This
allows other software projects to incorporate and modify all or part of this program into their
own processing pipeline. The software is available through the anaconda package distribution
system for the ease of installation or can be compiled locally.

The software has an object-oriented architecture and stores all of the necessary data in data
containers with an interface that includes various utility functions. The organization of the main
containers and their main methods is described in Fig. 3. The following classes are central to the
suite:

1. CXIProtocol (not shown in Fig. 3) stores a list of paths for each of the data attributes
necessary for the data processing pipeline together with their corresponding data types.

2. CXIStore takes a CXIProtocol protocol, list of input files, and an output file. It offers
an interface to extract from the input files all the data attributes defined in the protocol
(read_indices), load an attribute (load_attribute), and save a new attribute’s
data to the output file (save_attribute). The class is designed to work with HDF5 or
CXI files.

3. STData is the main data container, which provides an interface to edit, load, and save
data to and from the files in CXIStore file handler. Also it provides a set of tools for
the preprocessing of a PXST dataset and can create a SpeckleTracking object that
performs the main loop of R-PXST update.



4. SpeckleTracking performs the reference image and geometrical mapping updates
needed for the iterative R-PXST update.

Additionally the suite contains a set of classes to perform common image transformations such
as cropping and down-scaling, tools to simulate a PXST scan dataset based on scalar diffraction
theory, and a class to integrate phase gradient maps and to perform polynomial fitting (see [28]
for more information).

3.1. Initialization

A file protocol (CXIProtocol) must be created before loading the files. pyrost offers a
default protocol, but it can be customized to accommodate different data files. The protocol,
including file paths, is passed to the CXIStore object, which searches the input files for data
defined by the protocol. The PXST dataset is then preprocessed by generating an STData object
from CXIStore and loading the set of attributes defined by the user using the load method.
STData contains tools to create maps and quantities needed prior to the main speckle tracking

update procedure. In particular, update_mask generates a pixel mask that excludes bad and
hot pixels of the detector from the subsequent analysis. defocus_sweep is used to estimate
the defocus distance 𝑧1 by generating reference images and computing their mean local variances,
for a set of assumed focal distances. The mean local variance serves as a figure of merit of how
sharp or blurry the reference image is. At the end of this process the defocus distance with the
sharpest reference image is chosen. update_whitefield generates a white-field image by
taking a pixel-wise median through a stack of measured frames.

Measurements at very high magnification, made by positioning the sample close to the focus, of-
ten suffer from the background varying in time during the measurement. update_whitefield
can alleviate this by generating a separate white-field for each frame, based on a principal compo-
nent analysis (PCA) approach [29] or by applying pixel-wise median filtering over a stack of
frames. Figure 4 displays the results of the PCA-based dynamic white-field correction applied
to data collected from a biomineralized shell of a marine planktonic diatom measured at P11

Fig. 4. The reference image obtained by stitching projection holograms obtained from a
diatom, processed with (right panel) and without (left) dynamic white-field correction.
The insert shows the entire field of view of the reference image and the region displayed
at higher magnification is given by the dashed white lines. Data were collected at a
photon energy of 17.5 keV and a magnification of 4837.



beamtime of the PETRA III synchrotron radiation facility as previously described [8]. The beam
was focused with a pair of MLLs with focal lengths of 1.25 mm and 1.15 mm and a NA’s of
0.014 and 0.015, in the vertical and horizontal directions, respectively. The X-ray beam photon
energy was 17.5 keV and holograms were recorded at a magnification of 4837.

3.2. Speckle tracking update loop

Having formed an initial estimate for the defocus distance and the white-field (or a set of
white-fields, if needed), a SpeckleTracking object with all data attributes necessary for the
R-PXST update can be generated. SpeckleTracking provides an interface to iteratively refine
the reference image and lens wavefront. It offers two methods (train and train_adapt)
to perform iterations until the Huber criterion converges to a minimum (see Eq. (16) in
Section 3.5). The difference between these two methods is that train_adapt performs
an update of the optimal kernel bandwidth used in the estimation of the reference profile at
each iteration, where train keeps the kernel bandwidth constant. The typical reconstruction
cycle consists of: (i) the optional optimisation of the kernel bandwidth used for reference
image estimation (find_hopt, in train_adapt); (ii) generation of the reference image
(update_reference); (iii) an update of the discrete (pixel) mapping between a stack of
frames and the generated reference image (update_pixel_map); (iv) an update of the
sample translation vectors (update_translations); and (v) calculation of figures of merit
(update_error). These five steps are described in the sections below.

In Fig. 5 we display the results after the first and 14th iteration of the outlined update procedure
for the case of a Siemens star test sample. These data were obtained using the same setup as
described above, and a magnification of 4837. The evolution of the error metric in this example
is described below.

3.3. Reference image update

The reference image is recovered from a set of 𝑁 measurements 𝐼𝑛 (x) with the help of the speckle
tracking approximation as follows [7]:

𝐼ref (𝝃) =
∑

𝑛𝑊 (u−1 (𝝃 + Δ𝝃𝑛))𝐼𝑛 (u−1 (𝝃 + Δ𝝃𝑛))∑
𝑛𝑊

2 (u−1 (𝝃 + Δ𝝃𝑛))
. (7)

The error in the reference image, caused by noise in the measured intensities, plays a key role
in the robustness of the whole speckle tracking algorithm and directly affects the quality of the
update of the geometric mapping u(x) as discussed below in Section 3.5. In Appendix A we
derive the variance of the reference image estimator of Eq. (7) to examine how this depends upon
and correlates with noise in the measured photon counts, which follows the Poisson distribution.
We find that the variance in the reference profile reduces with the inverse of the redundancy
factor 𝑁0 (𝝃). This factor is equal to the number of times that the given feature in the reference
profile is present in the measured stack of frames. On average it is equal to the ratio of the width
of a single image to the size of the step by which the sample is shifted from one frame to another.

In order to reduce the variance in the reference image estimator we employed non-parametric
techniques [30, 31] in our implementation of the reference image update. Given random pairs of
variables {𝑥𝑖 , 𝑦𝑖}𝑖={1..𝑁 }, the non-parametric regression model can be formulated as [32]:

𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜀𝑖 , 𝑓 (𝑥𝑖) = E[𝑦𝑖], E[𝜀𝑖] = 0, (8)

where 𝑓 (𝑥) is the regression function we try to estimate and 𝜀 is the error term. Here, we consider
the Nadaraya-Watson kernel regression estimator [22, 23]:

𝑓 (𝑥) =
∑𝑁

𝑖=1 𝐾 ((𝑥 − 𝑥𝑖)/ℎ)𝑦𝑖∑𝑁
𝑖=1 𝐾 ((𝑥 − 𝑥𝑖)/ℎ)

, (9)
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Fig. 5. Maps of the reference image and maps pertaining to the wavefront, obtained
after the first iteration (top row) and 22nd iteration (bottom row) of the R-PXST
reconstruction using a Siemens star object. The first two columns show cropped regions
of the reference image and reference image MSE. The full area of the scan is shown in
the insert of the reference images of the first column. The third and fourth columns
show maps of the vertical component of the displacements u𝑖 𝑗 and the Huber errors for
this displacement component. The final column gives maps of the scaling factor 𝑠𝑖 𝑗 .
The colour scale is indicated with (minimum, maximum) values of (0.6, 1.3), (0, 1.2),
(-60, 60), (0, 1.2), and (0, 100) for columns 1–5, respectively. Data were collected at a
photon energy of 17.5 keV and a magnification of 4837.

where 𝐾 (𝑥) is the kernel function and ℎ is the kernel bandwidth. The kernel regression estimator
minimizes the mean-squared-error MSE( 𝑓 (𝑥)) at the point 𝑥, which is given by:

MSE( 𝑓 (𝑥)) =
𝑁∑︁
𝑖=1

𝐾

( 𝑥 − 𝑥𝑖
ℎ

)
(𝑦𝑖 − 𝑓 (𝑥))2 =

𝑁∑︁
𝑖=1

𝐾 ( 𝑥 − 𝑥𝑖
ℎ

) ( 𝑓 (𝑥𝑖) + 𝜀𝑖 − 𝑓 (𝑥))2. (10)

By applying the kernel regression approach to the speckle tracking approximation in Eq. (7), the
reference image estimator can be given by:

𝐼ℎref (𝝃) =
∑

𝑛

∑
𝑖𝑊 (x𝑖)𝐼𝑛 (x𝑖)𝐾 ((𝝃 − 𝝃𝑛𝑖)/ℎ)∑

𝑛

∑
𝑖𝑊

2 (x𝑖)𝐾 ((𝝃 − 𝝃𝑛𝑖)/ℎ)
, (11)

where we used the Gaussian kernel 𝐾 (𝝃) = 𝑒−𝝃2/2/
√

2𝜋 and where 𝝃𝑛𝑖 = 𝑢(x𝑖) + Δ𝝃𝑛 are the
intensity measurement coordinates mapped to the reference plane. The variance of this estimator
is inversely proportional to the kernel bandwidth (see Appendix A) which can therefore be
reduced by increasing the bandwidth at the cost of band-limiting the reconstructed reference
image.

Although the kernel-based regression delivers a robust and smooth estimate of the reference
profile in the regions where the density of measurement coordinates 𝝃𝑛𝑖 is high as compared to
the kernel bandwidth, it suffers from higher bias at the boundaries of the domain of the inputs
𝝃𝑛𝑖 . Therefore, we also implemented a local linear regression estimator, which provides a better
local linear approximation by minimizing the following criterion as a function of the vector



{𝛼̂(𝑥), 𝛽(𝑥)} [24, 25]:

MSE(𝛼̂(𝑥), 𝛽(𝑥)) =
𝑁∑︁
𝑖=1

𝐾

( 𝑥 − 𝑥𝑖
ℎ

)
(𝑦𝑖 − 𝛼̂(𝑥) − (𝑥 − 𝑥𝑖)𝛽(𝑥))2. (12)

Naturally, each image is discretely sampled by the pixel array of the detector. For pixel 𝑖, 𝑗
of image 𝑛, the discrete representation of the image is given by 𝐼𝑛𝑖 𝑗 = 𝐼𝑛 (𝑖 𝛿𝑥, 𝑗 𝛿𝑦), where 𝛿𝑥
and 𝛿𝑦 are the extents of a pixel along the 𝑥 and 𝑦 coordinates, respectively. Since the reference
profile is measured virtually, the sampling interval in the reference plane can be of arbitrary
value and highly impacts the computational cost of the speckle tracking update procedure. In our
software the sampling intervals 𝑓𝑥 , 𝑓𝑦 are measured in the units of the demagnified pixel sizes
𝛿𝑢 and 𝛿𝑣, so that 𝐼ref ( 𝑓𝑥𝑖, 𝑓𝑦 𝑗) = 𝐼ref ( 𝑓𝑥𝑖 𝛿𝑢𝒊 + 𝑓𝑦 𝑗 𝛿𝑣 𝒋), where 𝛿𝑢 = 𝛿𝑥/𝑀, 𝛿𝑣 = 𝛿𝑦/𝑀, and
𝒊, 𝒋 are the unit vectors along the horizontal and vertical detector axes, respectively. Likewise,
we convert the sample translations to pixel units, so that Δ𝑖𝑛 = Δ𝜉𝑛/𝛿𝑢 and Δ 𝑗𝑛 = Δ𝜒𝑛/𝛿𝑣,
where Δ𝝃𝑛 = (Δ𝜉𝑛,Δ𝜒𝑛). The function u(x) maps intensities from the detector to the reference
plane. Since both the detector and reference intensity profiles are discretized, the mapping is
also discrete. We call the discrete representation of the mapping function the “pixel mapping”.
This mapping is scaled by the demagnified pixel size and is given by 𝑢𝑥

𝑖 𝑗
= 1/𝛿𝑢 𝑢𝑥 (𝑖 𝛿𝑥, 𝑗 𝛿𝑦),

𝑢
𝑦

𝑖 𝑗
= 1/𝛿𝑣 𝑢𝑦 (𝑖 𝛿𝑥, 𝑗 𝛿𝑦), where u(x) =

(
𝑢𝑥 (x), 𝑢𝑦 (x)

)
. Finally, the discrete reference image

may be reconstructed from the measured data 𝐼𝑛𝑖 𝑗 and pixel mapping (𝑢𝑥
𝑖 𝑗
, 𝑢

𝑦

𝑖 𝑗
) as follows:

𝐼ref ( 𝑓𝑥𝑖, 𝑓𝑦 𝑗) =
∑

𝑛

∑
𝑖′
∑

𝑗′ 𝐾 ( 𝑓𝑥𝑖 − 𝑢𝑥𝑖′ 𝑗′ + Δ𝑖𝑛, 𝑓𝑦 𝑗 − 𝑢𝑦𝑖′ 𝑗′ + Δ 𝑗𝑛, ℎ) 𝑊𝑖′ 𝑗′ 𝐼𝑛𝑖′ 𝑗′∑
𝑛

∑
𝑖′
∑

𝑗′ 𝐾 ( 𝑓𝑥𝑖 − 𝑢𝑥𝑖′ 𝑗′ + Δ𝑖𝑛, 𝑓𝑦 𝑗 − 𝑢𝑦𝑖′ 𝑗′ + Δ 𝑗𝑛, ℎ) 𝑊2
𝑖′ 𝑗′

, (13)

where the kernel is converted to pixel units 𝐾 (𝑖, 𝑗 , ℎ) = 𝐾 ( 𝑖 𝛿𝑢+ 𝑗 𝛿𝑣
ℎ

).
In the top left panel of Fig. 5, we show the reference image corresponding to the initial estimate

for the pixel map with 𝑢𝑥
𝑖 𝑗
= 𝑖 and 𝑢𝑦

𝑖 𝑗
= 𝑗 , following Eq. (5). Looking closely, one can see that

distortions of the individual holograms of the Siemens star, caused by lens aberrations, give rise
to the placement errors when stitching together the reference image. These errors are reflected in
the map of the MSE, in the second column of Fig. 5. The MSE (Eq. (10)) reaches maximum
near the inner ends of the spokes of the sample where the placement errors are most prominent.
However, after the 14th iteration, the placement errors are largely reduced and the Fresnel fringes
near the edges of the Siemens star structure become clearly visible.

3.4. Optimal kernel bandwidth

The use of a small kernel bandwidth in a non-parametric estimator can introduce a small bias to
the estimate. At the same time, less smoothing means that each estimate is obtained by averaging
over (in effect) just a few observations, making the estimate noisier. So less smoothing increases
the variance of the estimate. Therefore, we want to select an optimal bandwidth that minimizes
the MSE metric in Eq. (10). By performing the second-order Taylor expansion of the regression
function 𝑓 (𝑥) in Eq. (10), the MSE as the function of the kernel bandwidth ℎ can be found as

MSE(ℎ) = 𝑅(𝐾) 𝑓 (𝑥)
𝑁ℎ

+ 1
4
ℎ4𝜇2 (𝐾)2 𝑓 ′′(𝑥)2 + 𝑜{(𝑁ℎ)−1 + ℎ4}. (14)

where 𝑅(𝐾) =
∫
𝐾 (𝑥)2𝑑𝑥 and 𝜇2 (𝐾) =

∫
𝑥2𝐾 (𝑥)𝑑𝑥 [33]. The error profile is concave and has

a single optimal bandwidth ℎopt, that depends on the unknown regression function 𝑓 (𝑥) and
therefore can not be estimated directly. One way to estimate the optimal bandwidth based on the
data is to use the cross-validation (CV) metric [33]. The CV is given by:

CV(ℎ) = 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑓−𝑖 (𝑥𝑖))2, (15)



where 𝑓−𝑖 (𝑥) is the “leave-one-out” estimator based on the dataset with 𝑥𝑖 deleted, similar to
the concept of 𝑅free in crystallography [34]. SpeckleTracking class divides the dataset
into two subsets at the initialization stage. The CV method calculates the CV by generating a
reference image based on the former “training” subset and calculating the error metric introduced
in Section 3.5 (Eq. (16)) for the latter “testing” subset. find_hopt estimates the optimal
bandwidth by finding a minimum of CV(ℎ) with the quasi-Newton method of Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) [35].
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Fig. 6. Evolution of the cross-validation error metric CV(ℎ) (Eq. (15)) during the
R-PXST iterations using the adaptive kernel bandwidth update (train_adapt). By
updating the optimal kernel bandwidth ℎopt

𝑖
at each iteration, train_adapt attains a

lower average error at the end. The dataset used here is the same shown in Fig. 5.

It should be noted that the cross validation error CV changes at each iteration of the R-PXST
reconstruction, and thus so too does the optimal kernel bandwidth. To account for this we
implemented the ability to update the kernel bandwidth at each iteration of R-PXST, using the
BFGS method in train_adapt. In Fig. 6 we show CV𝑖 (ℎ) for consecutive iterations of the
R-PXST update loop together with the estimate of the optimal kernel bandwidth at each iteration,
for the same dataset as in Fig. 5.

3.5. Pixel mapping update

The pixel mapping update is carried out separately at each pixel 𝑖, 𝑗 in the detector grid by
minimizing the error metric in Eq. (6) as a function of u(x). In order to make the prediction robust
against the outliers in the intensity measurements we use the Huber regression technique [26,27].
Following the convention of Eq. (13), the discrete representation of the Huber criterion based on
the target function in Eq. (6) is given by:

𝜀𝑖 𝑗 (𝛿𝑖, 𝛿 𝑗 , 𝑠) =
1
𝑁

×
𝑁∑︁
𝑛=1

[
𝑠 + H1.35

(
𝐼𝑛𝑖 𝑗 −𝑊𝑖 𝑗 𝐼ref ( 𝑓𝑥𝑖 − 𝑢𝑥𝑖 𝑗 − 𝛿𝑖 + Δ𝑖𝑛, 𝑓𝑦𝑖 − 𝑢𝑦𝑖 𝑗 − 𝛿 𝑗 + Δ 𝑗𝑛)

𝑠

)
𝑠

]
, (16)

where H𝑀 (𝑥) is the Huber’s function [36]. The parameter 𝑀 of the Huber function is held fixed
and equal to 1.35, following the recommendation of Owen [26], and 𝑠 is the scaling parameter.
The update_errors method in the SpeckleTracking class calculates 𝜀𝑖 𝑗 as well as
the same error normalised by that obtained for a uniform reference image and the linear pixel



mapping u(x) = x/𝑀:

𝜀𝑖 𝑗 (𝛿𝑖, 𝛿 𝑗 , 𝑠) =
𝜀𝑖 𝑗 (𝛿𝑖, 𝛿 𝑗 , 𝑠)

1
𝑁

∑𝑁
𝑛=1

[
𝑠 + H1.35

(
𝐼𝑛𝑖 𝑗−𝑊𝑖 𝑗

𝑠

)
𝑠

] . (17)

The scaling parameter essentially defines a threshold for whether observations are treated as
outliers or not. If the scaled argument of H1.35 in Eq. (16) is less than 1.35 then the loss function
has a quadratic nature that is similar to the terms in a least-squares minimisation (L2 regression).
However, when the scaled argument exceeds 1.35, the loss function becomes linear, which
then reduces the contribution of that particular term in the sum, compared with a least-squares
approach. That is, when the difference between an observation 𝐼𝑛𝑖 𝑗 and its corresponding
prediction𝑊𝑖 𝑗 𝐼ref is large (on a scale determined by 𝑠) the observation is considered an outlier.
The scaling itself is a parameter that is optimised in the minimisation, so the threshold between
inliers and outliers can evolve through the iterative process. The criterion in Eq. (16) is jointly
convex in 𝛿𝑖, 𝛿 𝑗 , and 𝑠. Thus, starting from the preliminary approximation of the pixel mapping
𝑢𝑥
𝑖 𝑗
= 𝑖, 𝑢𝑦

𝑖 𝑗
= 𝑗 and the scale mapping 𝑠𝑖 𝑗 =

√︁
𝑊𝑖 𝑗 , we obtain a new estimation 𝑢𝑥′

𝑖 𝑗
= 𝑢𝑥

𝑖 𝑗
+ 𝛿𝑖,

𝑢
𝑦′
𝑖 𝑗

= 𝑢
𝑦

𝑖 𝑗
+ 𝛿 𝑗 , 𝑠′

𝑖 𝑗
= 𝑠 by minimizing 𝜀𝑖 𝑗 (𝛿𝑖, 𝛿 𝑗 , 𝑠) in Eq. (16). The minimization can be

performed by one of three algorithm options implemented in the update_pixel_mapmethod:
grid search, random search or differential evolution [37–39]. These methods were chosen over
the gradient-based minimization algorithms since they minimize the error metric globally instead
of descending into an adjacent local minimum in the error space. From our experience and
observations the error landscapes of most of the datasets we tested suffer from noise and contain
many local minima that surround the global minimum.

The update of the pixel mapping usually requires a further regularisation, since these estimates
are affected by the noise of the measured photon counts 𝐼𝑛𝑖 𝑗 and are prone to artefacts that
may arise from poor initial estimates of the reference image. To address this, we employed a
Gaussian-weighted smoothing as follows:

𝑢̃𝑥𝑖 𝑗 =
𝐾 (𝑖, 𝑗 , 𝜎) ∗ (𝑤𝑖 𝑗𝑢

𝑥′
𝑖 𝑗
)

𝐾 (𝑖, 𝑗 , 𝜎) ∗ 𝑤𝑖 𝑗

, 𝑢̃
𝑦

𝑖 𝑗
=
𝐾 (𝑖, 𝑗 , 𝜎) ∗ (𝑤𝑖 𝑗𝑢

𝑦′
𝑖 𝑗
)

𝐾 (𝑖, 𝑗 , 𝜎) ∗ 𝑤𝑖 𝑗

, (18)

where 𝜎 is the Gaussian kernel bandwidth, ∗ denotes the convolution operation, and 𝑤𝑖 𝑗 =

max{𝜀𝑖 𝑗 (0, 0, 𝑠𝑖 𝑗 ) − 𝜀𝑖 𝑗 (𝛿𝑖, 𝛿 𝑗 , 𝑠), 0} is the error difference before and after the update.
Since the geometric mapping between the reference plane and the detector plane is defined in

terms of the gradient of the scalar function Φ, as u(x) = x − 𝜆𝑧
2𝜋∇Φ(x), the curl of the mapping

must be zero: ∇ × u(x) = 0 [9, 40]. Such a vector field is called irrotational. However, the pixel
mapping is updated at each point separately without any examination of the irrotationality. To
constrain the mapping field to be irrotational one can first integrate u(x) and then numerically
calculate the gradient to obtain a curl-free version. We implemented this procedure into the
update_pixel_map method with the cosine transform integration [41] chosen for integrating
the pixel mapping.

In the third and the fifth columns of Fig. 5 we show the vertical component of the geometric
mapping (𝑢𝑦

𝑖 𝑗
) and scale mapping (𝑠𝑖 𝑗 ) respectively, after the first and 14th iteration. The pixel map

was updated by the random search algorithm with regularization (𝜎 = 8.0) and the irrotationality
constraint. In our example of Fig. 5 the X-ray beam was focused by a pair of MLLs oriented
orthogonally to each other and along the 𝑥 and 𝑦 axes of the detector. As discussed in the
introduction, the aberrations in the wavefront of the lens are primarily due to systematic layer
thickness error, and therefore are expected to vary along the lens orientation. Hence, 𝑢𝑦

𝑖 𝑗
is

expected to vary along the 𝑦 axis of the detector and 𝑢𝑥
𝑖 𝑗

along the 𝑥 axis. This matches what we
see in the pixel map shown in Fig. 5.



The scaling parameter estimator based on finding a minimum of Eq. (16) gives an estimate of
the square root of MSE [27]:

𝑠2 =
1
𝑁

𝑁∑︁
𝑛=1

(
𝐼𝑛𝑖 𝑗 −𝑊𝑖 𝑗 𝐼ref ( 𝑓𝑥𝑖 − 𝑢𝑥𝑖 𝑗 − 𝛿𝑖 + Δ𝑖𝑛, 𝑓𝑦𝑖 − 𝑢𝑦𝑖 𝑗 − 𝛿 𝑗 + Δ 𝑗𝑛)

)2
. (19)

Therefore, if the only source of variance in measured intensities comes from the Poisson noise,
we expect the scaling parameter after the reconstruction to be on average smaller than before.
However, as shown in fifth column in Fig. 5 the scaling map after the update is larger. This is
caused by the intensity variations within in the white field of the lens pupil (as can be seen in the
measured frames of Fig. 2, for example) that modulate over the course of the scan as noted in
Sec. 3.1.

3.6. Updates of translation vectors

The procedure for updating the sample translation vectors follows the same logic as that for the
pixel mapping update. The error function of Eq. (16) is taken as a function of Δ𝑖𝑛,Δ 𝑗𝑛 and
summed over the detector grid, not over the stack of frames. The sample translation is then
updated for each frame separately using the grid search algorithm.

4. Results

4.1. Dependence on defocus distance and number of frames

As discussed in Appendix D of reference [7], the sample position that maximizes the angular
sensitivity Δ𝜙 of PXST is at the focal plane, where the magnification is the greatest:

Δ𝜙 =
2𝜋
𝜆
Δ𝜃 𝛿𝑥 =

2𝜋
𝜆

𝛿𝑥2

𝑀
, (20)

for a detector pixel size 𝛿𝑥 and magnification 𝑀 ≈ 𝑧1/𝑧. Therefore, for wavefront measurements
it is beneficial to place the test object very close to the focus of the lens. On the other hand, a

Z
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Y

Fig. 7. Experimental geometry of a PXST wavefront metrology experiment used in our
laboratory setup and in our simulations. The scheme is provided with one example of
the defocus distance, focal length, and sample-to-detector distance.



Source, MLL and propagation distance

Focal length,
𝑓

NA Total
number of
photons per
PXST scan

Photon
energy

Angular
width of
source

Detector
distance, 𝑧

1.5 mm 0.013 5 × 106 17 keV 2.5 mrad 2 m

Barcode sample and detector parameters

Bar size Transmittance
of the first
material

Transmittance
of the second
material

Detector grid
size

Pixel size

0.5 µm to
1.5 µm

0.85 0.65 2000 × 1000 55 µm

Table 1. Parameters used in simulations shown in Figs. 8 and 9.

very high magnification raises the problem of under-sampling the reference profile, since the
sampling interval of the intensity measurements mapped to the reference plane is proportional
to the magnification. Furthermore, for measurements using laboratory X-ray sources, we wish
to understand how the PXST analysis depends on the number of frames collected when the
total measurement time (and hence total signal) is limited. To test these dependencies, and to
determine the robustness of the R-PXST and PXST algorithms, analyses were carried out on
simulated data using the pyrost and speckle_tracking software.

For the simulations we considered a geometry that is typical for one-dimensional PXST
wavefront metrology measurements routinely carried out in our laboratory (Fig. 7), which is the
measurement of a cylindrical wavefront formed by focusing a collimated beam to a line focus by
a single MLL [42]. Some of the parameters of the geometry are listed in Table 1. To match the
line focus, we assumed a test object with a structure that varies only in one direction, which we
call a barcode object, consisting of layers of two materials with randomly-varying thicknesses
ranging between 0.5 µm and 1.5 µm as detailed in Table 1. The wavefront of the focused beam
was generated using a complex-valued lens pupil function Π(𝑥) (for a lens coordinate 𝑥) similar
to that of an actual MLL. The amplitude of the pupil transmission was taken from a measured
lens transmission which decreased slightly with increasing diffraction angle and includes random
modulations across the pupil of about ±35 %. The phase of the pupil transmission was assumed
to vary with 𝑥3, representing a coma aberration often found in high-NA MLLs [8]. The object
was taken to be in the beam behind the focus and scanned in the transverse direction. Sample
translations Δ𝜉𝑛 were simulated as described in Section 6.2. These holograms are magnified by
the diverging wavefield only in one direction. From each scan of simulated one-dimensional
holograms, we generated a two-dimensional “ptychograph” in which each row represents the
one-dimensional divergent beam at the detector for each of the positions Δ𝜉𝑛 of the object.
One such ptychograph is shown in Fig. 7, simulated for 𝑧1 = 100 µm giving a magnification
𝑧1/𝑧 = 20 000. At this defocus the beam size is 2.6 µm and so only one or two bars of the test
object are illuminated. Each row of the ptychograph therefore only covers a few bars of the
object. However the simulated object was scanned in 1 µm steps, so the shadow of the object
moves by a large fraction of the illuminated region on each step, bringing new bars rapidly into
view with increasing Δ𝜉𝑛. Features of the object thereby trace out lines in the ptychograph with a
gradient dependent on the defocus. If the lens was free of wavefront aberration, the lines would



be straight. In this case, the lines are slightly curved, indicating aberrations (other than defocus).
Distinguishing features and tracking them through the ptychogram is the aim of PXST.

To explore the domain of applicability of the algorithms with regard to the defocus distance,
ptychograms were simulated for different defocus distances ranging from 20 µm to 5 mm (resulting
in magnifications of 100 000 to 400). To examine whether the performance of the algorithms
for different defoci depends on the magnitude of the wavefront aberration, the defocus series of
ptychograms was simulated for different magnitudes of the coma wavefront aberration, given
by 𝜙(𝑥) = 𝛼0 (𝑥/ 𝑓 )3 where 𝑓 is the lens focal length. Three different magnitudes were chosen:
𝛼0 = 0.01 rad/mrad3, 0.03 rad/mrad3, and 0.05 rad/mrad3. For NA = 0.013, a magnitude of
𝛼0 = 0.01 rad/mrad3 gives a peak-to-valley wavefront error of 16.9 rad or 2.7 waves. Each
ptychogram was simulated at 200 sample positions, and the step size was random, chosen from
a range spanning 0.05 µm to 0.45 µm. The total number of detected photons over each entire
PXST scan was set to 5 × 106. Poisson noise was added to the simulated holograms.

One simulated ptychograph is shown in Fig. 8 (a) for a very short defocus of 𝑧1 = 25 µm
and 𝛼0 = 0.03 rad mrad−3. This ptychogram was then processed by by the pyrost (R-PXST)
and speckle_tracking (PXST) packages to reconstruct the one-dimensional image of
the test object in Fig. 8 (b) and the pixel displacements of features, proportional to the phase
gradient of the lens wavefront, in Fig. 8 (c). R-PXST analysis was performed with the optimal
kernel bandwidth estimated by finding a minimum of the cross-validation error (ℎopt = 35.89 in
Fig. 8 (b)). The pixel map was updated using the random search algorithm with regularization
(𝜎 = 15). The reconstruction results can be compared with the ground truth shown as red dashed
lines in Fig. 8 (b) and (c). It is seen that R-PXST recovers the image and phase gradient with
good accuracy in this case, whereas the original PXST routine produces a noisy image and fails
to recover the true phase gradient. This is due to the extreme sparsity of intensity measurements
mapped to the plane of the reference image.

The results of the PXST and R-PXST reconstructions for the three defocus series for the
different aberration magnitudes are summarised in Fig. 8 (d), where the estimated third-order
aberration coefficient 𝛼 is plotted as a function of the defocus 𝑧1. The third-order coefficient
was obtained by fitting a parabola to the recovered phase gradient. These are compared with the
ground truth (𝛼0) as horizontal dashed red lines. The example of Fig. 8 (a)–(c) for 𝑧1 = 25 µm
and 𝛼0 = 0.03 rad mrad−3 is shown as the large blue and gold circles in Fig. 8 (d) for R-PXST
and PXST, respectively. It is seen that PXST underestimates the wavefront magnitude for
defocus distances less than about 200 µm. At these magnifications the pixel locations of the
intensity measurements mapped to the reference plane become so sparse that the bilinear subpixel
interpolation employed in speckle_tracking [9, Appendix A] does not yield an accurate
reference image (cf. Fig. 8 (b)). R-PXST achieves good results even at a defocus of 20 µm because
it employs the kernel regression to reconstruct the reference profile and adaptively chooses the
optimal kernel bandwidth that minimizes the MSE introduced by the estimator. Both algorithms
exhibit a degradation at high defocus. A closer look at the displacement profiles show that at
higher defoci Poisson noise becomes more prominent since the RMS value of the displacement
profile becomes comparable with the smallest resolvable angular displacement.

A common reason for failure of reconstruction of a ptychographic speckle tracking scan is
due to measurement noise as a result of low photon counts. This is particularly critical for
measurements made with laboratory X-ray sources, where a PXST dataset with a high number of
frames (to give high redundancy) together with long exposure times (to reduce noise) may be
impractical. We performed a series of simulations of ptychographs made with different numbers
of frames and a constant total detected flux to determine how best to fractionate an allotted
exposure to achieve best results. The parameters used in the simulations were the same as for the
defocus study, as listed in Table 1. Here, the defocus was chosen as 100 µm and a randomized
step size varying in a range from 0.05 µm to 0.45 µm was assumed.



Fig. 8. (a) Simulated ptychograph of the bar object imaged with a one-dimensional MLL
for a defocus 𝑧1 = 25 µm and aberration magnitude 𝛼0 = 0.03 rad/mrad3. Recovered
image of the bar object (b) and displacement profile (proportional to the wavefront
phase gradient) (c), obtained by R-PXST and PXST. (d) Plots of the estimated aberration
magnitude 𝛼 as a function of defocus, obtained by R-PXST and PXST from simulations
with 𝛼0 = 0.01 rad/mrad3, 0.03 rad/mrad3, and 0.05 rad/mrad3. The ground truth in
(b), (c), and (d) is shown with red dashed lines.

A simulated ptychograph is shown in Fig. 9 (a) for a scan that distributes the signal into 500
frames of equal exposure (of 104 detected photons). A third-order aberration magnitude of
𝛼0 = 0.05 rad mrad−3 was used. The mean number of counts per pixel in the ptychograph is about
10. This appears to be too low for the speckle_tracking program since it produces a noisy
reference image, shown in Fig. 9 (b), and fails to recover the wavefront phase gradient as shown
in Fig. 9 (c). The pyrost program obtains reasonable reconstructions, close to the ground
truth, shown as red dashed lines. Plots of the recovered wavefront third-order magnitude 𝛼 are
given in Fig. 9 (d) as a function of the number of frames from 2 to 500, and for three different
series with 𝛼0 = 0.01 rad/mrad3, 0.03 rad/mrad3 and 0.05 rad/mrad3. The reconstruction of the
simulated data fails for scans with less than 20 frames. This failure is due to a lack of redundancy
to reconstruct the undistorted reference image. In contrary, for a large number of frames, the low
counts per pixel results in a low signal to noise ratio. It becomes crucial to suppress the noise
in the regression of the reference image in order to resolve the fine structure of the sample. As
seen in Fig. 9 (b), simulated at the extreme of 500 frames, and the plots of Fig. 9 (d), the PXST
algorithm fails to yield accurate results for more than about 100 frames (signals lower than 7
photons per pixel), even when the R-PXST algorithm accurately recovers the image.



Fig. 9. (a) Simulated ptychograph of a bar object imaged with a one-dimensional MLL
with 500 frames, a defocus of 𝑧1 = 100 µm, 5 × 106 total photons detected, and an
aberration magnitude 𝛼0 = 0.05 rad/mrad3. Recovered image of the bar object (b) and
displacement profile (c), obtained by R-PXST and PXST. (d) Plots of the estimated
aberration magnitude 𝛼 as a function of the number of frames in the scan, keeping the
total counts constant. The ground truth in (b), (c), and (d) is shown with red dashed
lines.

4.2. Robustness of the the R-PXST algorithm to noise

Here we explore the robustness of R-PXST update procedure in the presence of noise in measured
holograms. For these tests we used a dataset measured at the P11 beamline at the PETRA III
synchrotron radiation facility with a pair of MLL lenses of NA equal to 0.015, focusing in
two dimensions at a photon energy of 17.4 keV, giving a similar geometry to the simulations
carried out above. The object was a 2.5 µm-thick piece of nanoporous gold [43]. This object
consists of a sponge-like reticulate structure of gold with branches that are of the order of 100 nm
in diameter infused with pores that are tens of nanometers in diameter. The focus-to-sample
distance was 65 µm where the defocused beam width was 1.9 µm. The detector, with 75 µm-wide
pixels was located 2.37 m downstream of the sample, giving a magnification of 36 500. The
scan was performed with a step size of 50 nm in a 21 × 21 grid of sample positions. The mean
photon counts per pixel per step was 160. To examine the case of low signal to noise ratio, where
the relative noise is comparable to the contrast of the holograms, we also created an artificially
“noisy” version of the dataset by dividing the photon counts by 10 and applying random noise
generated from the appropriate Poisson distribution.

The reconstructed reference images (top row) and the retrieved phase profile (bottom row) of
the measured dataset are shown in Fig. 10. The data without added noise was analysed by the
R-PXST procedure as shown in the first column of Fig. 10. The contrast of the recovered reference



Fig. 10. The reference image of the nanostructured Au sample (top left) and the
reference image of the modified dataset with lower average number of counts higher
noise (’Noisy’) obtained with the R-PXST (top center) and PXST (top right) update
algorithms. The lower row shows the retrieved phase profile for the same set of datasets
and methods, respectively. Each image is displayed on a colour map, with (min, max)
values of (0.8, 1.2), (0.9, 1.1), (0.9, 1.1) for the upper row from left to right and with
(min, max) values of (−50 rad, 80 rad) for the lower row. Also this dataset was measured
with our MLLs and experimental setup at P11 beamline (PETRA III).

image is about 20 % and shows fringes and interference due to both the branch network and pore
network structure of the nanoporous gold. The wavefront has a peak-to-valley error of 76 rad or
12 waves and is separable into vertical and horizontal components which can be attributed to the
two MLLs. Each of those separate components is dominated by a third-order polynomial with
a magnitude of 𝛼 = 0.127 rad/mrad3. The PXST update procedure of speckle_tracking
performed similarly and gave an equivalent result (not shown). This is to be expected since the
signal to noise ratio, redundancy, and defocus were all adequate to achieve good results without
having to resort to robust machine learning. However, with artificially reduced signal, we do
see a difference between PSXT and R-PXST, as apparent from the middle and right columns
of Fig. 10. Both reconstructed images have a lower contrast of only 10 %, but many of the
high-frequency features in the reference image are washed out in the PXST reconstruction. The
form of the recovered wavefront error is similar but the PXST reconstruction gives a lower
magnitude of the aberration. The results in the left and middle columns were obtained by the
R-PXST iterative reconstruction with the adaptive kernel bandwidth update. The reference profile
was evaluated by the kernel regression estimator (Eq. (13)), and the pixel map was updated by
the random search algorithm with regularization (𝜎 = 8.0) and the irrotationality constraint.



After the update, the phase profiles were retrieved from the phase gradient maps with the cosine
transform integration [41].

5. Conclusions

We have presented R-PXST, a modified and more robust analysis procedure of ptychographic
X-ray speckle tracking. The PXST method is a wavefront metrology tool capable of dealing with
highly divergent wavefields. Coupled with a high-numerical-aperture lens, PXST provides access
to nanoradian angular sensitivities as well as highly magnified images of the sample. In this
new version of PXST we addressed the problem of the outliers and noise present in the intensity
measurements and the problem of sparse sampling of the reference profile. These two problems
previously limited the domain of applicability of the PXST method.

In order to remedy the above limitations, we employed machine learning techniques in our
implementation of the speckle tracking reconstruction. For the estimation of the reference
image we chose kernel-based nonparametric regression algorithms. Nonparametric regression
methods, in contrast to the parametric estimation, require fewer assumptions about the estimated
function and thus reduce the risk of model misspecification. The bandwidth selection based on a
cross-validation approach was implemented. Using this approach, the kernel bandwidth in the
reference image update can be automatically tailored to the density of the intensity measurements
mapped to the reference plane.

The pixel map update yields the main result of the R-PXST reconstruction, the wavefront of
the lens. Computational complexity played a big role in the selection of the update algorithm. In
particular, the typical sizes of PXST datasets render an approach of updating the whole pixel map
simultaneously computationally implausible. Therefore the pixel map is updated at each pixel
in the detector grid separately. The computational burden of this approach is far less but it is
more susceptible to the noise in intensity measurements. To increase robustness of the pixel map
update procedure we substituted the least-squares criterion in Eq. (6) with the Huber error metric,
which is a hybrid of L2 norm penalties (for non-outliers) and L1 norm penalties (for outliers)
with a scale parameter that divides the PXST dataset into outliers and non-outliers. The scale
map is also updated during the reconstruction, so the Huber regression gives a trade-off between
ensuring the necessary level of robustness and maintaining a high level of accuracy.

In order to realize these capabilities and to make them available to other scientists, a software
suite called pyrost was written in Python with a C backend and with a support of concurrent
calculations. The software was designed in object-oriented manner and provides a flexible
and customizable interface for the whole R-PXST update and data processing pipelines. It is
accessible as a Python module and provided with documentation and tutorials. pyrost is
available under Version 3 or later of the GNU General Public Licence.

We tested the performance of R-PXST and compared it to PXST by recovering known
wavefronts in simulated datasets. R-PXST obtains accurate estimates over a wider range of
defocus values, especially at the low defocus values where the very high magnification leads to
a very sparse sampling of intensity measurements as mapped to the reference plane. R-PXST
also performs better with low photon counts and hence is well suited to wavefront sensing using
laboratory X-ray sources. We also compared the methods using experimental data collected from
a nanoporous gold sample at a high magnification of 36 500 and with artificially high noise. Due
to better error handling pyrost yields an accurate wavefront for the noisy dataset (as compared
with the reconstruction without additional noise) whereas PXST underestimated the wavefront
aberration and failed to recover fine features in the reference image.

There is still a need for an automatic means of choosing a kernel bandwidth for the pixel
map regularization. Moreover, feature extraction machine learning techniques such as deep
autoencoders may be employed to extract features from the PXST dataset or suppress the noise
in measured holograms. This approach would decrease the computational complexity of the



pixel map reconstruction. Also, the implementation of CUDA framework may help to boost the
performance by executing more intensive calculation on discrete GPUs.
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6. Appendix

6.1. Variance of the reference image estimator

In this section we present the analysis of the reference image estimators employed in PXST and
R-PXST, and derive their variances. We assume that the only source of variance in intensity
measures comes from the Poisson noise. Therefore, the measured intensity 𝐼𝑛𝑖 𝑗 is considered as a
random variable following the Poisson distribution with the expected value and variance equal to:

E[𝐼𝑛𝑖 𝑗 ] = 𝑊𝑖 𝑗 𝐼ref (𝑢𝑥𝑖 𝑗 − Δ𝑖𝑛, 𝑢
𝑦

𝑖 𝑗
− Δ 𝑗𝑛), Var

[
𝐼𝑛𝑖 𝑗

]
= 𝐸 [𝐼𝑛𝑖 𝑗 ], (21)

where the estimated value follows the speckle tracking approximation in Eq. (4). Furthermore for
simplicity the white-field is assumed to be uniform,𝑊𝑖 𝑗 ≡ 𝑊0.

The reference image estimator for PXST, 𝐼ref, is given by Eq. (7). Since the reference image
is discretely sampled, we are interested in the discrete representation of 𝐼ref. As explained
in [9, Appendix A], PXST uses bilinear interpolation to estimate the discrete reference profile as
follows:

𝐼ref (𝑖, 𝑗) =
∑

𝑛

∑
𝑖′
∑

𝑗′ Λ(𝑖 − 𝑢𝑥
𝑖′ 𝑗′ + Δ𝑖𝑛, 𝑗 − 𝑢𝑦𝑖′ 𝑗′ + Δ 𝑗𝑛) 𝑊𝑖′ 𝑗′ 𝐼𝑛𝑖′ 𝑗′∑

𝑛

∑
𝑖′
∑

𝑗′ Λ(𝑖 − 𝑢𝑥
𝑖′ 𝑗′ + Δ𝑖𝑛, 𝑗 − 𝑢𝑦𝑖′ 𝑗′ + Δ 𝑗𝑛, ℎ) 𝑊2

𝑖′ 𝑗′
, (22)

where Λ(𝑖, 𝑗) is the two-dimensional triangular kernel given by

Λ(𝑖, 𝑗) =
{
(1 − |𝑖 |) ∗ (1 − | 𝑗 |), |𝑖 | ≤ 1 ∧ | 𝑗 | ≤ 1,
0, |𝑖 | > 1 ∩ | 𝑗 | > 1

, (23)

and we sum over the subset Ω given by

Ω = {𝑛, 𝑖, 𝑗 : |𝑖 − 𝑢𝑥𝑖 𝑗 + Δ𝑖𝑛 | < 1, 𝑗 − |𝑢𝑦
𝑖 𝑗
+ Δ 𝑗𝑛 | < 1}. (24)



That is, we sum over intensity measurements that are directly adjacent to the pixel at the point 𝑖, 𝑗
(as mapped to the reference plane). For the case of the uniform white-field the bilinear reference
image estimator is given by

𝐼ref (𝑖, 𝑗) =
1

𝑁 (Ω)
∑︁

𝑛,𝑖′, 𝑗′∈Ω
Λ(𝑖 − 𝑢𝑥𝑖′ 𝑗′ + Δ𝑖𝑛, 𝑗 − 𝑢𝑦𝑖′ 𝑗′ + Δ 𝑗𝑛)

𝐼𝑛𝑖′ 𝑗′

𝑊0
. (25)

By performing a second-order Taylor expansion of the regression function 𝐼ref in Eq. (21) around
point 𝑖, 𝑗 , the variance of the estimator can be derived as (see Eq. (14)) [33]

Var
[
𝐼ref (𝑖, 𝑗)

]
=
𝑅(Λ)𝐼ref (𝑖, 𝑗)

𝑁 (Ω) + 𝑜{𝑁 (Ω)−1}, (26)

where 𝑅(Λ) =
∬

Λ(𝑥, 𝑦)2𝑑𝑥𝑑𝑦 = 4/9. We see that the variance of the bilinear reference image
estimator, in the case of Poisson noise, is inversely proportional to the size of the Ω subset, which
as a function of the reference coordinate 𝑖, 𝑗 represents the number of times, that a given part of
the sample is measured during the scan. We call this quantity 𝑁 (Ω) the “redundancy” of the
scan.

We now consider how the variance of the kernel regression estimator 𝐼ℎref of Eq. (13) compares
to the bilinear estimator. For the case of uniform white-field the estimator reduces to

𝐼ℎref (𝑖, 𝑗) =
1

𝑁 (Ωℎ)
∑︁

𝑛,𝑖′, 𝑗′∈Ωℎ

𝐾 (𝑖 − 𝑢𝑥𝑖′ 𝑗′ + Δ𝑖𝑛, 𝑗 − 𝑢𝑦𝑖′ 𝑗′ + Δ 𝑗𝑛, ℎ)
𝐼𝑛𝑖′ 𝑗′

𝑊0
, (27)

where we sum over the subset Ωℎ given by

Ωℎ = {𝑛, 𝑖, 𝑗 :
√︃
(𝑖 − 𝑢𝑥

𝑖 𝑗
+ Δ𝑖𝑛)2 + ( 𝑗 − 𝑢𝑦

𝑖 𝑗
+ Δ 𝑗𝑛)2 < 3ℎ}. (28)

The sum in Eq. (27) includes intensity measurements that are no more than 3ℎ away from the
point 𝑖, 𝑗 (implying a 3ℎ cut-off of the Gaussian kernel). Again, following the same procedure as
in Eq. (26), the variance of 𝐼ℎref can be estimated as

Var
[
𝐼ℎref (𝑖, 𝑗)

]
=
𝑅(𝐾)𝐼ref (𝑖, 𝑗)
𝑁 (Ωℎ)ℎ

+ 𝑜{(𝑁 (Ω)ℎ)−1}, (29)

where 𝑅(𝐾) is evaluated to 1/(2
√
𝜋). Compared to the bilinear estimator, the variance of the

kernel regression estimator is reduced by the factor 1.576 𝑁 (Ωℎ)ℎ/𝑁 (Ω). As mentioned above,
reducing the kernel size ℎ reduces the variance, at the expense of band-limiting the reconstructed
reference image.

6.2. Computer simulations

Simulations of the holograms were carried out using the Rayleigh-Sommerfeld convolution (RSC)
algorithm [44], which evaluates the general formula of the Rayleigh-Sommerfeld diffraction
using an approach based on the fast Fourier transform. In one dimension, the RSC wavefield
propagation of monochromatic light over a distance 𝑑, is given by:

𝑢(𝑥 ′) = 𝑑

𝑗
√
𝜆

∫ ∞

−∞
𝑢(𝑥) exp [− 𝑗 𝑘𝑟 (𝑥, 𝑥 ′)]

𝑟 (𝑥, 𝑥 ′)3/2 𝑑𝑥, (30)

where 𝑟 (𝑥, 𝑥 ′) ≡ |Δr| =
[
(𝑥 ′ − 𝑥)2 + 𝑑2]1/2, and now 𝑗 is the imaginary number. The X-ray

beam wavefield at the lens exit-surface was assumed to exhibit a second order focusing phase
term with a third order coma profile,

Π(𝑥0) = Π𝐴(𝑎𝑥𝑥0) exp

[
−
𝑗𝜋𝑥2

0
𝜆 𝑓

+ 𝑗𝛼
(
𝑥0
𝑓

)3
]
, (31)



where 𝛼 is the third order aberration coefficient, 𝑥0 is the coordinate in the lens and 𝑎𝑥 is the size
of the lens aperture. Π𝐴(𝑥) is the square root of the transmission of the lens. After propagating
the wavefield to the sample plane, it was modulated by the transmission profile 𝑡𝑏 (𝑥) of the
barcode, given by

𝑡𝑏 (𝑥) = 𝑡air +
√
𝑇1 − 𝑡air

2

(
tanh

(
𝑥 − 𝑥𝑏1
𝜎𝑏

)
+ tanh

(
𝑥𝑏
𝑁
− 𝑥
𝜎𝑏

))
+
√
𝑇2 −

√
𝑇1

2

(𝑁−1)/2∑︁
𝑛=1

(
tanh

(
𝑥 − 𝑥𝑏2𝑛
𝜎𝑏

)
+ tanh

(
𝑥𝑏2𝑛+1 − 𝑥
𝜎𝑏

))
, (32)

where 𝑡air = 1.0, 𝑇1, 𝑇2 is a pair of power transmission coefficients of the bilayers, 𝑥𝑏𝑛 is the
coordinate of the 𝑛th bar, and 𝜎𝑏 is the inter-diffusion length. The wavefield at the sample exit
surface is then propagated to the detector plane to generate the intensity data. The simulation also
takes into account that the X-ray source is incoherent and has a Gaussian angular distribution
given by exp(−𝜃2/2𝜎2

𝑠 ), where 𝜃 is the angle made by a ray pointing from the incoherent source
point to the lens aperture. This is accomplished by computing the image at the detector plane as

𝐼 (x, 𝑧, 𝜎𝑠) =
[

1
√

2𝜋𝜎𝑠𝑧
exp

(
x2

2𝜎2
𝑠 𝑧

2

)]
∗ 𝐼𝑐 (x, 𝑧), (33)

where 𝑧 = 𝑓 + 𝑧 + 𝑧1 is the distance between the lens and the detector, ∗ denotes the convolution
operation, and 𝐼𝑐 (x, 𝑧) is the intensity of the wavefield in the plane of the detector for an on-axis
point source of light. Lastly, we employed a pseudo-random number generator to simulate
Poisson noise which was added to the images.
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