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Abstract. One of the main challenges in obtaining predictions for collider

experiments from perturbative quantum field theory, is the direct evaluation of the

Feynman integrals it gives rise to. In this chapter, we review an alternative bootstrap

method that instead efficiently constructs physical quantities by exploiting their

analytic structure. We present in detail the setting where this method has been

originally developed, six- and seven-particle amplitudes in the large-color limit of

N = 4 super Yang-Mills theory. We discuss the class of functions these amplitudes

belong to, and the strong clues mathematical objects known as cluster algebras provide

for rendering this function space both finite and of relatively small dimension at each

loop order. We then describe how to construct this function space, as well as how

to locate the amplitude inside of it with the help of kinematic limits, and apply the

general procedure to a concrete example: The determination of the two-loop correction

to the first nontrivial six-particle amplitude. We also provide an overview of other areas

where the realm of the bootstrap paradigm is expanding, including other scattering

amplitudes, form factors and Feynman integrals, and point out the analytic properties

of potentially wider applicability that it has revealed.
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1. Introduction

The idea that analytic properties could be exploited so as to circumvent difficulties in

obtaining predictions from the traditional perturbative quantum field theory approach

is not new [1]. Yet it is only over the last decade that it has been applied so successfully

in order to compute physical quantities for general values of their kinematic parameters,

albeit mostly in the large-color limit of the simplest interacting four-dimensional gauge

theory, known as N = 4 super Yang-Mills (SYM).

In its modern reincarnation, this perturbative analytic bootstrap has been initiated

by Dixon, Drummond and Henn in order to determine the three-loop correction

to the essentially first nontrivial six-particle scattering amplitude of the theory [2],

following a remarkable earlier conjecture on the all-loop structure of amplitudes of any

multiplicity [3], as well as the exploration of its consequences at strong coupling [4–7] via

the gauge/string duality [8]. The cornerstone of the method is the construction of a finite

space of functions expected to contain the physical quantity in question, from which the

latter may then be uniquely determined from the knowledge of its behavior in special

kinematic limits. Its upgrade to higher loops [2, 9–15] and to multiplicity seven [16–19]

has been achieved in parallel with the discovery of new analytic properties [20,21] that

prune the initial space of functions, thereby making the method more efficient.

Perhaps more importantly, the discovered analytic properties have potential for

applicability to more general gauge theories [22,23]. And as a proof of concept that the

bootstrap may also work for phenomenologically relevant physical quantities, it has been

used to rederive the three-loop soft anomalous dimension in quantum chromodynamics,

up to an overall numerical factor [24]. Further areas expanding the realm of the

bootstrap paradigm include amplitudes in simpler kinematics [25–27] and three-particle

form factors inN = 4 SYM [28,29], as well as individual Feynman integrals [9,20,30–34],

or basis sets thereof [35, 36].

Given that there already exists a six-particle bootstrap review [37], as well as a

more recent amplitude bootstrap review [38] based on a talk by the author, our goal

here will be two-fold: On the one hand, to cover some of the key concepts behind the

amplitude bootstrap in more detail, and to show how it works in a concrete example;

and on the other hand, to give an overview of the new frontiers of its application. In

section 2 we briefly introduce the N = 4 SYM amplitudes of interest, and in section 3

we discuss the class of polylogarithmic functions they belong to. We also describe how

mathematical objects known as cluster algebras provide strong clues for the singularities

of these amplitudes at multiplicities n = 6, 7, as well as for how these singularities can

appear consecutively. This is the information that renders the function space finite

and of relatively small size, and we explain how to construct it and how to locate the

amplitude inside it in section 4, also working out all the steps explicitly for the two-loop

six-particle case in the simplest helicity configuration. We close with an overview of the

new frontiers in section 5.
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2. Planar N = 4 SYM Amplitudes in a Nutshell

2.1. Planar limit, color-ordering and discrete symmetries

For the most part we will be focusing on N = 4 SYM theory [39, 40], the gauge theory

containing the maximal amount of supersymmetry, and whose particle content apart

from gluons also contains their scalar and fermionic partners, all of which are in the

adjoint representation. We will also be restricting to the origin in the moduli space of

the theory, where the scalar fields have zero vacuum expectation value, and all particles

are massless. Many of the properties of the theory and of its amplitudes are discussed

in chapter 1 of the SAGEX review [41], so here we will briefly recall some of their main

features that we will need later on. Unless otherwise noted we will also be considering

’t Hooft’s planar limit [42], where the number of colors N → ∞ while its product

g2
YMN with the gauge theory coupling is held fixed. The latter is the only parameter of

the theory that survives in the limit, and in our normalization conventions we will be

denoting the perturbative expansion of any quantity F with respect to it as

F =
∞∑
L=0

g2LF (L) , g2 =
g2
YMN

16π2
. (1)

A major simplification that occurs in the planar limit, is that only a single color

structure Tr(T a1 . . . T an) of the gauge group generators T ai is the leading term in the

1/N expansion of the n-particle amplitude, as is reviewed in [41] or [43]. We may thus

restrict our attention to the coefficient of this leading color structure, the color-ordered

amplitude An. Due to its relation to the trace, it is evident that it it is invariant under

cyclic shifts i → i + 1 of the particle labels. What is less obvious, is that An is also

invariant (up to an overall sign for odd n) under reflections i → n + 1 − i, where the

equivalence n + i ∼ i is understood. At tree level, this holds both for gluons and

quarks in any gauge theory, and is a consequence of the (anti-)symmetry of the (three-)

four-point vertex of the color-ordered Feynman rules, see e.g. [44]. As a consequence

of supersymmetry, in N = 4 SYM this property also persists at loop level and for all

types of external states, after grouping them in a single superfield [45], and similarly

combining all component amplitudes in a single superamplitude [46]. Together cyclic

permutations and reflections form the discrete dihedral group, which is thus a symmetry

group of An.

2.2. Helicity dependence

Having factored out the color degrees of freedom from the amplitude in the planar limit,

the remaining physical quantities it will depend on are the momenta and helicities of

the external particles. We recall that helicity, namely the projection of a spin in the

direction of momentum is a good quantum number for massless particles, as it cannot

be altered by Lorentz transformations. With the help of spinor-helicity variables, which

as the name suggests are friendly to the aforementioned quantum number, and which
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by now have also made their way into quantum field theory textbooks [44, 47], it is

straightforward to show that all gluon amplitudes where all or all but one helicities are

positive (for example in conventions where all momenta are outgoing) vanish at tree

level. While this vanishing is lifted at loop level in generic gauge theories (see [48] for

a relatively recent example in QCD), it does persist in supersymmetric theories such as

N = 4 SYM, since it is a consequence of supersymmetric Ward identities [49, 46].

Hence the first nontrivial helicity configuration at any loop order corresponds to

the so-called Maximally Helicity Violating amplitudes, with all but two gluons having

positive helicity, and similarly amplitudes with all but (k+ 2) gluons of positive helicity

are denoted as NkMHV. As reviewed in e.g. [50], different distributions of the negative

helicity states are also simultaneously accounted for in the superamplitude, which has

a natural grading with respect to total helicity, following from the fact that the entire

aforementioned superfield it depends on has well-defined helicity. Also note that helicity

degrees k and k̄ = n− 4− k are related by a parity or spatial reflection tranformation,

which in spinor-helicity variables simply corresponds to complex conjugation of spinors.

As a result, we may always restrict k ≤ bn−4
2
c, where bxc denotes the integer part

of x. Summarizing what we have discussed so far, the nontrivial physical quantity

encoding scattering in planarN = 4 SYM is the color-ordered n-particle, helicity degree-

k superamplitude

An,k(p1, . . . pn) , n ≥ 4, 0 ≤ k ≤ bn− 4

2
c , (2)

where pi denotes the momentum of the i-th particle. In other words only An,0 or

the MHV superamplitude is needed for n = 4, 5, additionally An,1 or the NMHV

superamplitude is needed for n = 6, 7, and so on. Evidently, amplitudes obeying

k = (n− 4)/2, such as A4,0 or A6,1, will be invariant under parity.

2.3. The kinematic space: Dual conformal invariance and momentum twistors

With not only color but also helicity dependence specified as above, we now move on to

describe what is the space of kinematics of the amplitude. Remarkably, planar N = 4

SYM possesses dual conformal symmetry [51, 4, 52, 53], which acts on dual position

variables xi related to the usual momenta by

pi ≡ xi+1 − xi . (3)

This symmetry, which is also reviewed in chapter 1 of this review [41], and combines

with the usual conformal symmetry of the theory so as to form an infinite-dimensional

Yangian symmetry [54], implies that the amplitude (in the appropriate normalization,

which we will describe at the end of this section) depends on 3n− 15 instead of 3n− 10

kinematic variables‡ Said differently, instead of an algebraically independent subset of

‡ This counting corresponds to the number of independent components of the lightlike-separated points

xi, minus the dimension of the 4D conformal group or Poincaré group, for planar N = 4 SYM or a

generic massless gauge theory, respectively.
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the n(n− 3)/2 distinct Mandelstam invariants

si,...,j−1 ≡ (pi + pi+1 + . . .+ pj−1)2 = (xi − xj)2 ≡ x2
ij , j ≥ i+ 1 mod n , (4)

one must instead pick an algebraically independent subset of their distinct n(n − 5)/2

conformal cross ratios

uij ≡
x2
ij+1x

2
i+1j

x2
ijx

2
i+1j+1

, j ≥ i+ 2 mod n . (5)

The fact that dual conformal invariance reduces the number of independent kinematic

variables of the amplitude to 3n − 15 has the following important implication: Only

normalized n-particle amplitudes with n ≥ 6 have nontrivial kinematic dependence, and

will therefore be the focus of this article. For the simplest cases with n = 6, 7 the

abbreviated notation

ui ≡ ui+8−n,i+11−n (6)

for the cross ratios (5) is also used.

The algebraic relations among different Mandelstam invariants (cross ratios) are

known as (conformal) Gram determinant constraints, and simply encode the fact that

the number of independent vectors is bounded in a given spacetime dimension. In the

presence of conformal symmetry, these constraints were worked out in [55], and while

their solution yields an independent subset of cross ratios that can be used to parametrize

the kinematics, in practice this parametrization turns out to be quite complicated.

Instead, massless, planar, dual conformal invariant kinematics may be most

conveniently described in terms of momentum twistors [56], which are also very nicely

reviewed in e.g. [57, 58]. Very briefly, one way for obtaining these variables is by

representing xµ ∈ R1,3 as a projective null vector XM ∈ R2,4, X2 = 0, X ∼ λX.

This SO(2, 4) vector XM is also equivalent to an antisymmetric representation XIJ

of SU(2, 2), since the two algebras are isomorphic (in practice one representation can

be converted into the other by six-dimensional analogues of the Pauli matrices, which

may similarly be used in order to transform Lorentz vectors to 2 × 2 antisymmetric

matrices). The antisymmetric representation can in turn be built out of two copies

of the fundamental representation ZI of SU(2, 2), or, after complexifying, SL(4,C).

Momentum twistors precisely correspond to these Z’s, and we see that our original

point xµ ∈ R1,3 is mapped to a pair of points, i.e. a line in momentum twistor space. As

is the case for the vector X they originate from, momentum twistors are also defined up

to rescalings Z ∼ tZ, thus they may be equivalently viewed as homogeneous coordinates

on complex projective space P3. It is then possible to show that the usual Mandelstam

invariants (4) can be expressed in terms of momentum twistors as

x2
ij ∝ 〈i− 1ij − 1j〉 , (7)

up to proportionality factors that drop out from conformally invariant quantities, where

〈ijkl〉 ≡ 〈ZiZjZkZl〉 = det(ZiZjZkZl) (8)



Analytic Bootstraps for Scattering Amplitudes and Beyond 7

is a four-bracket of momentum twistors.

The advantage of momentum twistor variables is that they automatically satisfy

both momentum conservation and the constraint on external lightlike momenta, p2
i =

x2
ii+1 = 0: Indeed, from eq. (3) it is evident that the former already holds for the

dual space coordinates giving rise to them, and the latter follows from eqs. (7)-(8).

Furthermore, conformal transformations of the dual space coordinates x map to SO(2, 4)

rotations of X, and in turn to SL(4,C) transformations of the momentum twistors.

Therefore the space of dual conformal invariant kinematics can be written as a 4 × n
matrix, whose columns are the cyclically ordered momentum twistors/homogeneous CP3

coordinates defined up to rescalings, and modulo SL(4,C) transformations. Fixing this

gauge redundancy, so as to obtain explicit parametrizations of the kinematics in terms

of 3n− 15 independent variables is then very straightforward; one such example are the

web variables, that may be algorithmically constructed for any n [59], see also [60, 61]

for a simplified reformulation.

Let’s see how these types of kinematic parametrizations may be used in practice in

the n = 6 case. The matrix of momentum twistors in terms of web variables is

(Z1, . . . , Z6) =


1 0 0 0 −1 −1− x1 − x1x2 − x1x2x3

0 1 0 0 1 1 + x1 + x1x2

0 0 1 0 −1 −1− x1

0 0 0 1 1 1

 , (9)

from which we can compute any four-bracket by choosing the corresponding 4×4 minor

according to eq. 8, such that e.g.

〈1346〉 = 1 + x1 + x1x2 , (10)

and similarly evaluate any other kinematic variable that depends on them. For example

due to eq.(7), the cross ratios (6) become

u1 =
x2x3

(1 + x1 + x1x2) (1 + x2 + x2x3)
, u2 =

x1x2

1 + x1 + x1x2

, u3 =
1

1 + x2 + x2x3

.

It is worth noting that the space of kinematics in momentum twistor variables is also

very closely related to the Graßmannian Gr(m,n), defined as the space ofm-dimensional

planes going through the origin in n-dimensional space: From this definition, it follows

that Gr(m,n) may also be realized as an m × n matrix, this time modulo GL(m)

transformations. As was first noted in [62], based on the previously discovered relevance

of the Graßmannian for the amplitude integrand [63], the comparison of their matrix

realizations reveals that the space of external momentum kinematics is in fact equivalent

to the quotient Gr(4, n)/(C∗)n−1.

2.4. Amplitude normalizations

Let us finally come to address the question of the normalization of the amplitude.

In any massless gauge theory, loop amplitudes have infrared divergences, arising from
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integration regions where the loop momenta become soft or collinear. It can be shown

that these divergences exponentiate quite universally [64], and that particularly in

planar N = 4 SYM they are captured to all loops by the Bern-Dixon-Smirnov (BDS)

ansatz [3]. The latter is essentially the exponential of the one-loop amplitude times the

cusp anomalous dimension Γcusp,

1

4
Γcusp(g2) = g2 − 2 ζ2 g

4 + 22 ζ4 g
6 −

[
219 ζ6 + 8 (ζ3)2

]
g8 + · · · , (11)

also known to all loops [65] thanks to the integrability of the theory, as reviewed

for example in [66]§. So the BDS ansatz by construction satisfies the exponentiation

property of infrared divergences, but also includes additional one-loop contributions.

From the above discussion, it therefore follows that it is possible to obtain an

infrared-finite normalized amplitude by dividing out An,k by the BDS ansatz. It should

also make apparent, however, that this normalization is not unique: Similarly to the

difference between renormalization schemes in any gauge theory, there is still freedom

in the finite, dual conformal invariant terms that the infrared-divergent factor may be

chosen to absorb. While this choice ultimately leads to just equivalent representations

of the amplitude, it proves advantageous to tune it such that the normalized amplitude

inherits certain important physical properties of An,k, and hence becomes simpler to

compute. Indeed, when n is not a multiple of 4, choosing to factor out the closely

related BDS-like ansatz, which naturally appears in the strong-coupling description

of the amplitude [6], ensures that the normalized amplitude respects the Steinmann

relations, whose significance will be discussed in subsection 3.3.

In what follows, whenever possible we will will thus focus on BDS-like normalized

amplitude, denoted as

En,k ≡
An,k

A
(0)
n,0A

BDS-like
n

, nmod 4 6= 0 , (12)

where for convenience we have also additionally divided by the tree-level MHV

superamplitude, A
(0)
n,0. Since the precise form of the BDS and BDS-like ansätze will

not be important for our purposes, we will refrain from quoting them here, and refer the

interested reader to the original references, or e.g. [68,69]. The ratio of the two ansätze

is however closely related to the one-loop correction to En,0 ,

ABDS
n

ABDS-like
n

= exp

[
Γcusp

4
E (1)
n,0

]
, (13)

where for n = 6, 7 we explicitly have,

E (1)
6,0 =

3∑
i=1

Li2

(
1− 1

ui

)
, (14)

E (1)
7,0 =

7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
. (15)

§ The integrability of a deformmation of N = 4 SYM theory is also described in chapter 9 of the

SAGEX review [67].
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Converting between BDS and BDS-like normalizations also follows immediately from

eq. (13). For example, the BDS-normalized MHV amplitude, which in the original

literature was expressed in terms of an exponentiated remainder function Rn, is related

to En,0 by

eRn = e−
Γcusp

4
E(1)
n,0En,0 . (16)

To recapitulate the main lesson of this section, infrared-normalized, color-ordered,

superamplitudes in the planar limit of N = 4 SYM only depend on the particle number

n, the helicity degree k, 3n − 15 variables in the space of dual conformally invariant

kinematics, and the order L of loops or perturbative corrections.

3. Cluster Polylogarithmic Functions

Having reviewed the parameters that normalized amplitudes E (L)
n,k in planar N = 4 SYM

theory depend on, here we will continue to describe the type of functions they evaluate

to. As we will recall in subsection (3.1), the latter fall in the general class of multiple

polylogarithms, which are also relevant for a wide range of Standard Model processes at

the forefront of precision phenomenology, especially when mediated by internal particles

that can be considered as massless, see for example [48,70,22,71,72]. Within this class,

however, there still exists an infinite number of these functions at each loop order,

depending on where they are allowed to have singularities. In subsection (3.2) we

will then see that beautiful mathematical objects known as cluster algebras appear to

correctly predict these singularities at multiplicity n = 6, 7, thereby making the function

spaces expected to contain E (L)
n,k finite. Furthermore, in subsection (3.3) we will see that

cluster algebras also dictate how these singularities are allowed to appear consecutively,

and how these additional restrictions can be physically interpreted as the (extended)

Steinmann relations of axiomatic quantum field theory. The finite function spaces that

are further reduced by the latter restrictions will be the starting point for bootstrapping

the corresponding amplitudes in the most efficient manner, to be discussed in the next

section.

3.1. Multiple polylogarithms and symbols

All explicit calculations to date, as well as an analysis at the level of the integrand [73]

(note however the subtleties pointed out in [74]), suggest that at least for k = 0, 1,

E (L)
n,k can be expressed in terms of generalized or Goncharov or multiple polylogarithms

(MPL) [75–77] of weight m = 2L. There functions are also mentioned in chapters 3 [78]

and 4 [79] of the SAGEX review, and in addition they are discussed in great detail in

the recent textbook [80]. Let us briefly collect here the definitions and properties that

will be useful for our purposes.

A function Fm is defined as an MPL of weight m if its total differential obeys

dFm =
∑
φβ∈Φ

F
φβ
m−1 d log φβ , (17)
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such that that F φα
m−1 is an MPL of weight m− 1,

dF
φβ
m−1 =

∑
φα∈Φ

F
φα,φβ
m−2 d log φα , (18)

and so on, with this recursive definition (17) terminating at m = 1 with the usual

logarithms on the left-hand side, and rational numbers as coefficients of the total

differentials on the right-hand side. The arguments of the dlogs φαi are algebraic

functions of the independent variables of Fm known as the (symbol) letters, and

similarly their collection Φ from all steps of the recursion is called the (symbol) alphabet.

Evidently, it encodes the positions of the possible branch point singularities of Fm, which

may appear when φαi = 0,∞.

The iterative structure we have described forms part of the coaction operation

∆ [81–84] (also loosely referred to as the coproduct), which ‘decomposes’ an MPL of

weight m into linear combinations of pairs of MPLs with weight {m − m1,m1} for

m1 = 0, 1, . . .m. Concretely, the total differential (17) is essentially equivalent to the

{m− 1, 1} component of ∆,

∆m−1,1Fm =
∑
φβ∈Φ

F
φβ
m−1 ⊗

[
log φβ mod (iπ)

]
. (19)

The coaction may be repeatedly applied to either the first or the second factor of the

{m−m1,m1} pair when m1 > 1, yielding a decomposition of an MPL of weight m into

subspaces of MPLs with weight {m1, . . . ,mr},
∑r

i=1 mi = m, that is unique thanks to

the coassociativity property of the coaction. Denoting the projection of the coaction on

each of these subspaces by ∆m1,...,mr , for example the equations (17) and (18) combine

to yield the {m− 2, 1, 1} coproduct,

∆m−2,1,1Fm =
∑

φα,φβ∈Φ

F
φα,φβ
m−2 ⊗ log φα ⊗ log φβ , (20)

where from eq. (20) onwards, identification of log φ factors up to iπ will be implied.

Furthermore, the maximal iteration of the coaction defines the symbol [85, 86],

S[Fm] = ∆1, . . . , 1︸ ︷︷ ︸
m times

Fm =
∑

φα1 ,...,φαm

F
φα1 ,...,φαn
0 [log φα1 ⊗ · · · ⊗ log φαm ] , (21)

where it is also customary to adopt a more compact notation by replacing log φαi → φαi .

To make the above general definitions more tangible, we will also apply them to a

concrete example towards the end of this subsection.

Comparing (17) and (19), we see that derivatives only act on the rightmost factor

of the coaction, and the same carries over to the symbol. Similarly, the discontinuities of

MPLs can be shown to be encoded in the leftmost factor of their coaction. For example,

at the level of the symbol the discontinuity of Fm when going around a potential branch

point φβ = 0 with no other letter vanishing simultaneously is given by

S[Discφβ(Fm)] = 2πi
∑

φα1 ,...,φαm

F
φα1 ,...,φαn
0 δα1β [φα2 ⊗ · · · ⊗ φαm ] , (22)



Analytic Bootstraps for Scattering Amplitudes and Beyond 11

in other words it is equivalent to clipping off the first entry.

We now move on to present some further definitions that we will only need when

we perform the sample bootstrap computation of E (2)
6,0 in subsection 4.4. The reader

only interested in conceptual aspects may thus choose to skip to the next subsection.

Alternatively to the differential definition of MPLs presented above, one may also reverse

the direction and define them as iterated integrals. Choosing the integration contour in

the simplest possible manner, leads to the (G-function) definition

G(a1, . . . , am; z) =

∫ z

0

dt

t− a1

G(a2, . . . , am; t) , (23)

where the recursion starts with G(; z) = 1, and for the special case where all the ai are

zero, we define

G(0, . . . , 0︸ ︷︷ ︸
m times

; z) =
1

m!
logm z . (24)

Indeed, by differentiating eq. (23), applying the identity

∂

∂a

1

t− a
= − ∂

∂t

1

t− a
(25)

and partial fractioning, it can be shown that dG takes the general form of eq. (17).

In the integral definition (23), we see that the weight m corresponds to the

number of iterated integrations. The single-variable case with ai ∈ {−1, 0, 1} has

also independently appeared in the physics literature under the name of harmonic

polylogarithms (HPL) [87], up to the different sign convention,

H(a1, . . . , am; z) = (−1)pG(a1, . . . , am; z) , ai ∈ {−1, 0, 1} (26)

where p counts how many ai are equal to +1. Since HPLs only depend on the outermost

integration bound z in eq. (23), their differentiation is trivial, and it is easy to show

that the definitions (17)-(21) specialize to

∆m−1,1H(a1, . . . , am; z) = (−1)sgn(a1)H(a2, . . . , am; z)⊗ (z − a1) , (27)

∆m−2,1,1H(a1, . . . , am; z) = (−1)sgn(a1)+sgn(a2)H(a3, . . . , am; z)⊗ (z − a2)⊗ (z − a1) ,

...

S [H(a1, . . . , am; z)] = (−1)p [(z − am)⊗ . . .⊗ (z − a1)] . (28)

For latter convenience let us also note that a more compact notation for all ai arguments

can be adopted, whereby a string of subsequent zeros is replaced by

0, 0, . . . 0︸ ︷︷ ︸
m−1 times

,±1→ ±m, (29)

and the resulting, shorter string of arguments is placed as indices of the function. For

example, classical logarithms, that are contained in HPLs, in this notation correspond

to

Lim(z) = Hm(z) = H(0, . . . , 0, 1︸ ︷︷ ︸
m−1 times

; z) (30)
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and again for completeness their symbol will be (recalling that d log(z−1) = d log(1−z))

S [Lim(z)] = −
[
(1− z)⊗ z ⊗ . . .⊗ z︸ ︷︷ ︸

m−1 times

]
. (31)

Finally, let us mention that G-functions with the same rightmost argument, and thus

also HPLs, may be reexpressed by linear combinations thereof. Namely they form a

(shuffle) algebra, as can be simply inferred from the definition (23), by appropriately

splitting the integration range so that all dummy variables have a specific order.

In practice, by now there exist a variety of software tools that allow the

evaluation of the functions presented in this subsection, as well as the application

of their transformation properties, either in free computer algebra systems such as

GiNaC [88], or in proprietary ones such as Mathematica and Maple, by SAGEX industry

partners Wolfram Research and Maplesoft, respectively. These for example include

the Mathematica paclages HPL [89] and PolyLogTools [90], as well as the native

functionality of GiNaC (Maple [91]) with respect to the numerical evaluation (and

symbolic manipulation) of the latter.

3.2. Cluster algebras and amplitude singularities

Once we have identified MPLs as the general class of functions that contain the

amplitude, the next step is to clarify what the corresponding symbol alphabet is. For

n = 6, this came as a result of an explicit Feynman diagram computation [92, 93] at

two loops, and was further supported by the analysis of closely related integrals [94,95].

For general n, strong motivation is provided by the cluster algebra structure [62] of the

space of kinematics.

More precisely, we recall that in section 2 we mentioned that the space of kinematics

in terms of momentum twistors can be realized as the quotient Gr(4, n)/(C∗)n−1 of a

Graßmannian. It is the latter space that is naturally endowed with a cluster algebra

structure [96], thus making it sensible to explore any implications this may have on the

symbol alphabet. Before we spell that out, we will begin with a brief introduction on

cluster algebras [97–100], which have become a very active research area in contemporary

mathematics since their inception in early 2000’s. It is also worth noting that they

have already found applications in other areas of mathematical physics in the past,

such as the proof of periodicicy of Y -systems and associated thermodynamic Bethe

ansätze of certain integrable models [101], or the determination of BPS state spectra

in supersymmetric field theories [102–104]. In the realm of scattering amplitudes, their

role was first appreciated at the level of the integrand, which also exhibits Graßmannian

structure [63]. For more recent work relating cluster algebras and tree-level amplitudes

or loop integrals, see also [105,106].

3.2.1. Basics of cluster algebras. With many excellent introductory articles on cluster

algebras available in the literature, as well as articles with detailed review sections on
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Figure 1. Left: The quiver diagram for the Gr(4, 6) initial cluster. Right: The quiver

that arises by mutating 〈1245〉 of the initial cluster, where the effect of the mutation

is described in eqs. (32) and (33) for the variable, and below eq. (34) for the arrows of

the quiver.

their connection to scattering amplitudes [107, 108], here will simply aim to highlight

some of their features while mostly following one concrete example that will be relevant

later on.

The building blocks of cluster algebras are certain variables ai, known as (Fomin-

Zelevinsky) clusterA-coordinates, that are grouped into overlapping subsets {a1, . . . , ad}
of rank d, the clusters. Starting from an initial cluster, cluster algebras are constructively

defined by a mutation operation on the A-coordinates. They can also be generalized

so as to contain frozen variables or coefficients {ad+1, . . . , ad+m}, whose main difference

from the A-coordinates is that they do not mutate.

In the simplest case, which is also sufficient for N = 4 SYM amplitudes, cluster

algebras can be described by directed graphs or quivers. On the left-hand side of figure

1, the initial cluster of the Gr(4, 6) cluster algebra, relevant for six-particle scattering, is

shown. Unboxed and boxed vertices of the quiver denote the A-coordinates and frozen

variables, respectively, and we observe that they are all four-brackets, or equivalently

Plücker coordinates, namely 4×4 minors of the 4×n matrix realization of Gr(4, n), here

for n = 6. The observant reader may however notice two differences between frozen and

cluster variables, which turn out to hold more generally: First, that the former always

have consecutive indices 〈i, i+ 1, i+ 2, i+ 3〉, modulo n+ i ∼ i identifications, whereas

this is not the case for the latter. And second, that the former are not allowed to have

arrows between them.

The arrows of the quiver encode how its A-coordinates will transform under

mutation. Concretely, if ak a cluster A-coordinate, mutating it replaces it by

ak → a′k =
1

ak

( ∏
arrows i→k

ai +
∏

arrows k→j

aj

)
. (32)

Let us see this in action in the Gr(4, 6) initial cluster, but for reasons that will become
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apparent very shortly, let us first switch to shorthand notation where each four-bracket

is expressed in terms of the complement of the twistor labels it contains, for example

〈1235〉 = (46), 〈1345〉 = (26), with the sign convention chosen such that increasing

order of labels on the left is mapped to increasing order of labels on the right (this

is an instance of the more general Gr(k, n) ' Gr(n − k, n) duality exchanging k- and

(n− k)-planes). Then, the mutation of 〈1245〉 on the left-hand side of figure 1 yields

〈1245〉 = (36)→ (46)(23) + (26)(34)

(36)
= (24) , (33)

where the shorthand notation allowed us to arrive at the last equality by using the

familiar also in other contexts three-term Plücker relation or SL(2,C) Schouten identity,

(ik)(jl) = (ij)(kl) + (il)(jk) , (34)

for i = 2, j = 3, k = 4 and l = 6.

Except for ak → a′k, in the new quiver produced by this mutation, all the rest of

the A-coordinates and coefficients remain unchanged. However, the arrows of the new

quiver will differ, and may be obtained by those of the quiver before the mutation of ak
by applying the following rules‖:

• For each path i → k → j add an arrow i → j, except if both i and j are frozen

variables.

• Reverse the direction of all arrows pointing to or originating from k.

• Remove any pairs of arrows pointing in opposite directions, �.

Going back to our example, we see that by virtue of these rules the mutation of 〈1245〉
in the Gr(4, 6) initial cluster leads to the new cluster shown on the right-hand side of

figure 1.

We have thus specified all the rules of the game, and obtaining the entire cluster

algebra is a matter of applying them over and over at each vertex of every quiver we

encounter. While the graphical representation and rules we described so far are more

accessible for a first exposure to cluster algebras, to this end it proves more efficient to

exploit the fact that every quiver is in bijection with a skew-symmetric exchange matrix

matrix B with elements

bij = (# arrows i→ j)− (# arrows j → i) . (35)

In this manner, e.g. the exchange matrices B,B′ associated to the left- and right-hand

side quivers of figure 1, respectively, have nonzero elements with i > j that are equal to

b12 = b15 = b23 = b26 = b37 = b39 = −b14 = −b16 = −b27 = −b38 = 1 ,

b′13 = b′15 = b′27 = b′39 = −b′12 = −b′14 = −b′23 = −b′26 = −b′38 = −b′67 = 1 ,
(36)

‖ It is very interesting to note that essentially the same quiver (but not cluster variable) mutation

rules were independently proposed in the context of N = 1 quiver gauge theories so as to describe their

Seiberg duality [109], which generalizes the usual electric-magnetic duality of abelian gauge theory.
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Figure 2. Left: Geometric interpretation of the Gr(4, 6) ' Gr(2, 6) cluster shown in

the left of figure 1, where 〈1234〉 corresponds to the edge (56) etc, as a triangulation

of a hexagon by non-crossing diagonals. Right: Mutations of this cluster algebra

may be similarly geometrically interpreted as flips (ik)↔ (jl) of the diagonals of any

quadrilateral subdiagram, see also eq. (34).

when ordering our A-coordinates and frozen variables as {〈1235〉, 〈1245〉, 〈1345〉, 〈1234〉,
〈1236〉, 〈1256〉, 〈1456〉, 〈3456〉, 〈2345〉} for B, and similarly with 〈1245〉 → 〈1356〉 for

B′. With this rearrangement of information, it can be shown that the A-coordinate

mutation (32) becomes

a′k = a−1
k

(
d+m∏
i=1

a
[bik]+
i +

d+m∏
i=1

a
[−bik]+
i

)
, (37)

with [x]+ = max (0, x). Similarly, the rules we discussed below eq. (34) for the

transformation of the quiver translate into the following mutation rule for the exchange

matrix,

b′ij =

{
−bij , if i = k or j = k ,

bij + [−bik]+ bkj + bik [bkj]+ otherwise ,
(38)

as can be readily verified in the example of eq. (36).

Apart from the fact that the alternative definitions (37)-(38) are more amenable to

computer implementation, they can be also generalized so as to describe cluster algebras

with skew-symmetrizable instead of skew-symmetric exchange matrices (more precisely,

their principal part with indices i, j ≤ d)¶. In this more general setting, it is possible

to prove that finite cluster algebras are classified by Dynkin diagrams, and that a skew-

symmetric cluster algebra is finite if and only if one of its clusters takes the form of the

associated Dynkin diagram when dropping arrow orientations as well as frozen variables

and arrows from/to them [98]. Inspecting figure (1), we can thereby infer that the

Gr(4, 6) cluster algebra is of finite A3 type.

Despite the relative simplicity of the definitions and properties of cluster algebras,

the reader may perhaps be left wondering where they come from, if there is any physical

or mathematical intuition behind them. To address this, drawing from [97] let us return

¶ Alternatively, skew-symmetrizable cluster algebras may be defined by generalizing quivers to so-called

valued quivers [110].
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Figure 3. The cluster polytope of the Gr(4, 6) ' A3 cluster algebra, with clusters

representing the different triangulations of a hexagon, as discussed in the text and in

figure (2), where also the vertex labels may be found. The initial and mutated cluster

in the left- and right-hand side of figure 1 are color-coded in red and blue, respectively.

The parity invariant plane is also drawn in pink. Adapted from refs. [108,23].

to ourGr(4, 6) example, and note that the labels of the dual two-component brackets (ij)

can be interpreted as the vertices of a hexagon, such that the frozen variables correspond

to its edges, whereas the A coordinates of the clusters we have encountered so far to

non-crossing diagonals. This observation in fact extends to the entire cluster algebra,

since it can be shown that all mutations have the form of the three-term identity (34)

with 1 ≤ i < j < k < l ≤ 6, and hence they are geometrically equivalent to flipping

the diagonal of a quadrilateral inside the hexagon, see figure 2. Therefore the Gr(4, 6)

cluster algebra is in natural bijection with all triangulations of the hexagon with non-

crossing diagonals. Note that this bijection also includes the exchange matrix B in

eq.(35), or in other words the arrows of the quivers as seen e.g. in figure 1, which

become arrows between adjacent sides of any triangle of the triangulation (not allowing

arrows between two edges), with the orientation chosen in the anti-clockwise direction.

This geometric picture of cluster algebras as triangulations is in fact a very profound

and universal one, as up to 18 exceptional cases, it has been shown to hold for all cluster

algebras with a finite number of exchange matrices, even if they have an infinite number

of clusters/variables [111].

Before concluding this introduction on cluster algebras, let us mention one further

connection they have with geometry, that will be useful for us in what follows:

Representing each cluster with a vertex, and each mutation with an edge yields the

exchange graph of a finite rank-d cluster algebra, which in fact defines a simple

polytope [101], namely a geometric object with flat faces generalizing the polygon to

higher dimensions, whose vertices are in addition adjacent to exactly d edges. As an

example, the cluster polytope of the Gr(4, 6) ' A3 cluster algebra is shown in figure

3. The bijection with triangulations discussed in the previous paragraph allows one
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Figure 4. Quiver diagram for the initial Gr(4, n) cluster.

to easily work this out, and infer that it has a total of 9 diagonals/cluster variables

spread into 14 vertices/clusters, as well as 21 edges and 9 faces. In addition to its

topological and combinatorial nature, this polytope also geometrically describes the

compactification of the positive region of Gr(4, n)/(C∗)n−1, defined as the region where

〈ijkl〉 > 0 for i < j < k < l. In particular, each edge of the polytope can be assigned a

(Fock-Goncharov) X -coordinate, related to the A-coordinates by [112]

xi ≡
d+m∏
l=1

ablil , i = 1, . . . d , (39)

such that each cluster provides a local coordinate chart describing this compactification,

with the interior of the positive region corresponding to all∞ > xi > 0. The significance

of the positive region will also be highlighted in Chapter 7 of the SAGEX Review [113].

3.2.2. Symbol letters from cluster variables. With this background knowledge on

cluster algebras, we can now state their role in N = 4 SYM amplitudes: In [62] the

remarkable observation was made, based on the then-known explicit computations, that

Gr(4, n) cluster A-coordinates appear as symbol letters of the n-particle amplitude.

That is, for the examples considered, the amplitude could be expressed in terms of

polylogarithmic functions as defined in eq. (17), with φαi coinciding with A-coordinates,

or more precisely multiplicative combinations thereof, also including the frozen variables,

that respect the scale and hence dual conformal invariance of the theory.

For the six-particle amplitude, as we have seen the associated Gr(4, 6) cluster

algebra consists of 9 A-coordinates, and these precisely coincide with the symbol

alphabet of the two-loop correction to the amplitude [92, 93, 86]. The six-particle

or hexagon bootstrap was initiated in [2] based on the assumption that this alphabet

also remains stable at higher loops, and in this case its cluster algebraic structure may
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be considered as evidence backing this assumption. Explicitly, in the usual four-bracket

notation a convenient choice for the six-particle alphabet reads [21], +

a1 =
〈1245〉2〈3456〉2〈6123〉2

〈1234〉〈2345〉 . . . 〈6123〉
, m1 =

〈1356〉〈2346〉
〈1236〉〈3456〉

, y1 =
〈1345〉〈2456〉〈1236〉
〈1235〉〈1246〉〈3456〉

,

(40)

with the cluster A-coordinates are color-coded in blue, together with two more cyclic

transformations l1 → l1+i with l ∈ {a,m, y} induced by shifting Zm → Zm−2i on the

right-hand side. The discrete parity and flip transformations of the letters may be

inferred by the cluster polytope of figure 3, where they correspond to up-down and

left-right reflection, respectively. For example parity is equivalent to a i→ i+ 3 shift of

momentum twistor labels, and thus transforms yi → 1/yi, while leaving ai,mi invariant.

The initial quiver for generic Gr(4, n), from which the next nontrivial n = 7 case

may be studied with the same set of rules we spelled out, is depicted in figure 4.

While for the latter case the initial quiver does not have the topology of a Dynkin

diagram, mutating 〈1256〉, 〈1456〉 and 〈1345〉 does lead to an E6-shaped cluster, and

hence Gr(4, 7) is also a finite cluster algebra. In particular, one finds 42 different A-

coordinates distributed in 833 distinct clusters (the order of the variables in each cluster

does not matter). Again, these A-coordinates exactly match the symbol alphabet of the

two-loop correction to the seven-particle amplitude [114], and this observation was of

central importance for generalizing the bootstrap program to higher multiplicity n = 7

in [16]. The choice for the corresponding symbol alphabet adopted in the latter reference

is

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉

, a41 =
〈2457〉〈3456〉
〈2345〉〈4567〉

,

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉

, a51 =
〈1(23)(45)(67)〉
〈1234〉〈1567〉

, (41)

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉

, a61 =
〈1(34)(56)(72)〉
〈1234〉〈1567〉

,

where we have again denoted the cluster A-coordinates in blue, and

〈a(bc)(de)(fg)〉 ≡ 〈abde〉〈acfg〉 − 〈abfg〉〈acde〉 , (42)

together with aij obtained from ai1 by cyclically relabeling the momentum twistors

Zm → Zm+j−1. It is interesting to note that for n = 7, and more generally when n

is odd, any individual cluster A-coordinate can be rendered invariant under rescalings

Zi → tZi by suitable products of powers of frozen variables. Here it is slightly more

nontrivial to show that parity transformations map a2i ↔ a3,i−1 and a4i ↔ a5i.

The appearance of not only Plücker variables but also homogeneous polynomi-

als (42) thereof as A-coordinates is a qualitatively new feature that persists for Gr(4, n)

+ Note that any set of equal size, consisting of multiplicatively independent combinations of these

letters, would make an equally valid choice. Indeed, in the original literature [2,9–12] the letters ui and

1−ui were used. The relation with the presently used alphabet is ai = ui/(ui−1ui+1) and mi = 1−1/ui.
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Figure 5. Pairs of Gr(4, 6) A-coordinates not found in a cluster together, and hence

not allowed to appear consecutively in the symbol of the six-particle amplitude, up to

cyclic permutations and order reversal.

cluster algebras with n ≥ 8. However the relation of these cluster algebras with n-

particle alphabets is a significantly more subtle issue which we will address in subsection

5.1.

Before closing this subsection, let us mention that there exist two more connections

between cluster algebras and scattering amplitudes. The first one also pertains to planar

n-particle amplitudes in N = 4 SYM, and focuses on identifying appropriate cluster X -

coordinates as arguments of the MPLs needed to describe them [115–118], based on their

Poisson structure [119]. This approach has been used very successfully in promoting

symbols of two-loop MHV amplitudes [114] to functions [120–122], yet there is evidence

that this is no longer possible at different MHV degree [123], and furthermore it is

unclear how to generalize to higher loops. Finally, cluster algebras may also be used in

order to define natural generalizations of string amplitudes [124–126].

3.3. Cluster adjacency and extended Steinmann relations

So far we have seen that cluster variables dictate the singularities of scattering

amplitudes. However cluster algebras have more structure than just the variables, for

instance the clusters. It is thus natural to ask, do they also play a role in this context?

Very interestingly, there is evidence that they do, in the form of [20]

Cluster adjacency: In a symbol whose alphabet contains Gr(4, n) cluster A-coordinates,

two of them can appear consecutively only if there exists a cluster where they both appear.

Let us distill the implications of cluster adjacency∗ in our familiar Gr(4, 6) cluster

algebra example. From our discussion of the geometric interpretation of the clusters as

triangulations of a hexagon with non-crossing diagonals, it is evident that pairs of A-

coordinates not found in a cluster together will in turn correspond to crossing diagonals,

and are thus forbidden from appearing next to each other in the symbol of the six-particle

amplitude, as shown in figure 5.

∗ Note that in the mathematics literature, there exists a related notion of simultaneous inclusion in a

cluster which is known as ‘compatibility’ [101].
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The same information may be alternatively described by a neighbor set [108] of

an A-coordinate, that is the union of all clusters containing it, which in other words

contains all the other variables (including the frozen ones), that can appear next to it

in the symbol. For the n = 6 case, reverting to the usual four-bracket notation these

are

〈1245〉 = {〈1245〉, 〈2456〉, 〈1345〉, 〈1246〉, 〈1235〉, & frozen variables.} , (43)

〈1235〉 = {〈1235〉, 〈2456〉, 〈2356〉, 〈1356〉, 〈1345〉, 〈1245〉, & frozen variables.} , (44)

as well as their cyclic permutations, two for the first line and five for the second. Then,

as a constraint on a polylogarithmic function F , and in the notation of eq. (20), cluster

adjacency may be formulated as

F φβ ,φβ = 0 , (45)

where φβ does not belong to the neighbor set of φβ, with the same condition also holding

recursively for all left factors in the coproduct of F .

As we’ve discussed, actual symbol letters are dual conformal invariant, namely

products of the cluster and frozen variables that are invariant under rescalings of

the twistors, i.e. homogeneous. It is thus more conventient to take this information

into account on the right-hand side of eqs. (43)-(44), by defining the corresponding

homogeneous neighbor sets,

hns[〈1245〉] = hns[a1] = {a1,m2,m3, y1, y2y3} , (46)

hns[〈1235〉] = {a1, a2,
m1

y2

,
m2

y2y3

,m3, y1y2y3} . (47)

again plus cyclic permutations. In the first line we could also promote the left-hand side

to the conformally invariant letter a1, since 〈1245〉 is the only cluster variable it depends

on. This is not possible for the second line, relevant for the remaining letters mi, yi.

Moving on to the case n = 7, all letters (42) depend on a single A-coordinate, so

we can directly focus on the homogeneous neighbor sets. These are generated by

hns[a11] = {a11, a14, a15, a21, a22, a24, a25, a26, a31, a33, a34, a35, a37, a41, a43, a46, a51, (48)

a53, a56, a62, a67}
hns[a21] = {a11, a13, a14, a15, a17, a21, a23, a24, a25, a26, a31, a33, a34, a36, a37, a41, a43, (49)

a45, a46, a52, a53, a55, a57, a62, a64, a66}
hns[a41] = {a11, a13, a16, a21, a23, a24, a26, a31, a33, a35, a36, a41, a43, a46, a51, a62, a67} (50)

hns[a61] = {a12, a17, a23, a25, a27, a32, a34, a36, a42, a47, a52, a57, a61} , (51)

together with images under parity transformations and cyclic permutations. we will also

comment on higher-multiplicity generalizations towards the end of this subsection.

What about the physical interpretation of cluster adjacency? It turns out that some

of its restrictions can be understood as the extended Steinmann relations [31,21], as we

will now explain. These are generalizations of the usual Steinmann relations [127–129],
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Figure 6. Channels s345 ∝ 〈2356〉 = (14) and s234 ∝ 〈1245〉 = (36) for 3 → 3

kinematics. The Steinmann relations state that the discontinuity in one channel

should not know about the discontinuity in the other channel, and this yields the

same constraint as the non-cluster adjacent pair on the right of figure 5. Adapted

from [14].

which demand that the double discontinuities of any Feynman diagram (and thus of the

amplitude they contribute to) vanish when taken in overlapping channels. In section 3.1

we’ve seen that a discontinuity may be labeled by a Mandelstam invariant si,...,j−1 which

is analytically continued around its branch point. At the same time, by virtue of the

Cutkosky rules [130] this discontinuity may be obtained by placing on-shell the internal

particles whose total energy equals si,...,j−1, that is by replacing their propagators with

delta functions. This is the notion of a cut, which splits the Feynman diagram into two

parts, as seen in figure 6.

By the same logic, overlapping channels correspond to cut lines that intersect, in

other words they divide the external particles of the Feynman diagram into four non-

empty sets. In the example of the figure, these sets are {2}, {3, 4}, {5}, and {6, 1}.
Focusing on three-particle Mandelstam invariants, but allowing the number of external

particles n to be arbitrary, the Steinmann relations at the level of the amplitude then

imply

Discsj,j+1,j+2

(
Discsi,i+1,i+2

(An,k)
)

= 0 , for j = i± 1, i± 2 , (52)

with an obvious generalization to higher-particle Mandelstam invariants. Note that we

refrain from considering two-particle invariants, since it is necessary for an invariant to

be independent for the sake of analytic continuation. That is, no other Mandelstam

invariant is allowed to change sign but the one we analytically continue, and this is

generically not the case with two-particle invariants.

As eq. (22) reveals, at the level of the symbol a discontinuity around φβ = 0 amounts

to clipping off this particular letter from its first entry, with iterated discontinuities

obtained by applying this procedure repeatedly. That is, if no other letter vanishes

simultaneously, which can be ensured for rational alphabets such as the n = 6, 7 ones,

due to the multiplicative independence of the letters. In this case, the Steinmann

relations are therefore statements about which letters can appear next to each other

in the first two entries of the symbol, and in the past they have been exploited in the

amplitude bootstrap so as to simplify the construction of the function spaces containing
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the amplitude [14, 17]. Particularly for n = 6, we then notice that the unique, up to

cyclic permutations, double discontinuity shown in figure 6 precicely coincides with the

non-cluster adjacent pair restriction shown on the right of figure 5.

Then, the analysis of a wealth of data obtained by the amplitude bootstrap,

independently revealed that these restrictions on consecutive pairs of symbol letters

apply not only in the first two slots, but to all depths in the symbol, and they were

thereby coined the extended Steinmann relations] [31, 21]. Given that in the n = 6, 7

alphabets (40)-(41) only ai and a1i are proportional to three-particle invariants, letting

F denote the appropriately normalized amplitudes, or any of their coproducts, or any

finite integral within the space of MPLs with these alphabets, in this case they may

thus concretely be expressed as††

Extended Steinmann Relations:

{
F ai,ai+1 = 0 , 1 ≤ i ≤ 3 , for n = 6 .

F a1i,a1i+δ = 0 , δ = 1, 2 , 1 ≤ i ≤ 7 , for n = 7 .

(53)

As physical quantities in perturbative quantum field theory are multivalued functions,

whose different branches represent different kinematic regions, it is plausible that the

extended Steinmann relations follow from the validity of the usual Steinmann relations

in all branches. That is, since moving from one branch to another involves shifting

functions by their discontinuities, and since this operation at the level of the symbol

amounts to removing first entries, a condition between any pair of adjacent entries could

be converted to the same one between the first two entries. In this manner, the bootstrap

may point, for the first time, to a more general property of quantum field theory, at least

in the planar limit. Indeed, the extended Steinmann relations have been confirmed to

hold also for all planar two-loop five-point master integrals [22], though not for a family

of non-planar integrals with the same external kinematics [72].

Also in the form (53), it is clear that the extended Steinmann relations are contained

in the cluster adjacency constraints (46),(48) and (45). What is less obvious but

also true, is that for well-defined functions with physical branch cuts built out of the

n = 6, 7 alphabets (40)-(41), the extended Steinmann relations also automatically reply

all remaining cluster adjacency restrictions. In other words there exists a quite nontrivial

equivalence between the former and the latter with respect to the trancendental part of

amplitudes. On the other hand, cluster adjacency also has important implications for

the rational parts of amplitudes [108, 132–135], as well as how these correlate with

the transcendental parts, and this additional information has been very useful for

bootstrapping A
(4)
7,1 [18]. Note that the relation between symbol letters and rational

parts of amplitudes is not only confined to N = 4 SYM, as is has also been observed in

five-gluon amplitudes in QCD [136].

Apart from a mathematical curiosity or a formal physical property, it is also

] These results for n = 6 were initially reported at Amplitudes 2017, in a talk by the author [131].
†† Imposing these equations in combination with the integrability conditions, to be discussed in the

next section, automatically implies that they hold also with the order of letters reversed.
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

First entry 1 3 9 26 75 218 643 1929 5897 ? ? ? ? ?

Steinmann 1 3 6 13 29 63 134 277 562 1117 2192 4263 8240 ?

Ext. Stein. 1 3 6 13 26 51 98 184 340 613 1085 1887 3224 5431

Table 1. Dimensions of spaces of integrable symbols containing the six-particle

amplitude, refined as one moves from top to bottom by successively imposing the

analytic properties indicated on the left-hand side.

weight n 0 1 2 3 4 5 6 7

First entry 1 7 42 237 1288 6763 ? ?

Steinmann 1 7 28 97 322 1030 3192 9570

Ext. Stein. 1 7 28 97 308 911 2555 6826

Table 2. Dimensions of spaces of integrable symbols containing the seven-particle

amplitude, refined as one moves from top to bottom by successively imposing the

analytic properties indicated on the left-hand side.

reasonable to ask what the practical significance of cluster adjacency/extended

Steinmann relations is. The answer to this is that they drastically reduce the size

of the function space containing the amplitude, thus making it far simpler to construct

the former, and uniquely identify the latter. By now they have thus been incorporated

in the construction of this function space, which we will detail in the next section, but

just to give a illustrate their power, in tables 1 and 2, we provide its dimension as

weight increases, in comparison with the dimensions of the more redundant spaces used

at earlier stages of the bootstrap.

Finally, let us comment on the status of cluster adjacency and extended Steinmann

relations at multiplicity n ≥ 8. While cluster adjacency has been confirmed for all MHV

amplitudes at L = 1, 2 with the help of the Sklyanin bracket [137], as we will see in

subsection 5.1 for n ≥ 8 the symbol letters do not in general quite coincide with the

cluster variables, and this creates several subtleties. For example a naive application

of cluster adjacency appears to be violated in certain integrals [138]. As understood

also in the latter reference, on this front it is the extended Steinmann relations that

are on a firmer footing when expressed as a statement about multiple discontinuities

generalizing eq. (52), however in this case this does not simply translate into a statement

about adjacent pairs in the symbol, analogous to eq. (53).

4. The Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes

In the previous section, we described the essential characteristics of the function spaces

containing six- and seven-particle amplitudes in N = 4 SYM theory. Here, we will start

subsection 4.1 by presenting certain additional analytic properties these spaces obey,
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and in subsection 4.2 we will explain how these spaces can be constructed iteratively

in the weight. Subsection 4.3 will then focus on how the amplitude may be singled

out from this space with the help of independent information on its behavior in certain

kinematic limits. Finally in subsection 4.4 we will apply all this knowledge in order

to bootstrap the two-loop six-particle MHV amplitude E (2
6,0. While the bootstrap has

currently been applied to multiplicity n = 6, 7, whenever possible we will keep n general

in the presentation.

4.1. Restrictions on the first and last symbol entries

In local perturbative quantum field theories, amplitudes can only have singularities when

intermediate particles go on shell, corresponding to vanishing propagator denominators

in contributing Feynman diagrams (vertices can either be constant or polynomial in the

momenta). In massless theories, this can only happen when a Mandelstam invariant

vanishes, and in the planar limit this is further restricted to the subset of Mandelstam

invariants of cyclically adjacent momenta si,...,j−1 = x2
ij defined in eq. (4). Given that the

singularities of multiple polylogarithms are encoded in the first entry of their symbols,

this implies that only the subset of letters formed exclusively out of products and ratios

of the aforementioned Mandelstam variables is allowed to appear in the latter [139]. In

N = 4 SYM this subset precisely corresponds to the n(n− 5)/2 conformal cross ratios

defined in eq. (5), so concretely the first entry condition becomes

First symbol entry of An,k ∈ uij . (54)

As a consequence of eq. (7), in momentum twistor language the equivalent statement

is that the first symbol entries are restricted to multiplicative dual conformal invariant

combinations of the 〈i − 1ij − 1j〉 Plücker variables, and of no other Plücker variable

or algebraic function thereof. In this manner, one can for example immediately identify

that for the particular choices (40) and (41) of n = 6, 7 alphabets we have made, (54)

specializes to

First symbol entry of An,k ∈


ai , i = 1, . . . , 3 , for n = 6 ,

a1i , i = 1, . . . , 7 , for n = 7 .

(55)

Similarly to the first entry, the last entry of the symbol of N = 4 amplitudes is

also constrained, this time by the Q̄-equation [140], which encodes how their Yangian

symmetry is broken at loop level by infrared divergences. The precise form of the

constraint depends on the helicity k, in line with the fact that beyond the k = 0 or

MHV case the trascendental functions associated to loop corrections to the amplitude

are also multiplied by rational functions of helicities and momenta with tree-level origin

(recall that in our normalized amplitude definition (12) we have divided out by the

corresponding MHV rational factors). Hence every linearly independent rational factor
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in the superamplitude, whose number for the first few helicity configurations has been

found to be [46]†,

# linearly independent components of An,k for

k = 0 : 1 ,

k = 1 :

(
n− 1

4

)
,

k = 2 :
(n− 5)(n− 4)2(n− 3)2(n− 2)2(n− 1)

4!5!
,

(56)

will also come with a nontrivial transcendental function multiplying it, and in general

it will be the final entries of these functions times the rational factors that are related

to each other by the Q̄-equation.

For simplicity here we will thus only quote the MHV final entry condition,

Final symbol entry of An,0 ∈ 〈ij − 1jj + 1〉 , (57)

which we can again specialize to

Final symbol entry of An,0 ∈


mi, yi , i = 1, . . . , 3 , for n = 6 ,

a2i, a3i , i = 1, . . . , 7 , for n = 7 .

(58)

in our choices of dual conformal invariant alphabets (40) and (41). The NMHV final

entries entries may be found in [13], [17] for n = 6, 7, and [141] for arbitrary n.

Finally, it is worth noting that the Q̄-equation in fact contains significantly more

information than these final entry conditions, as it provides alternative representations

for amplitudes, as integrals over a collinear limit of amplitudes with higher multiplicity

and MHV degree, and lower loop order. In this manner, not only does it predict similar

constraints deeper inside the symbol, such as MHV next-to-final-entry conditions [138],

but it also offers an alternative route for the direct computation of amplitudes, as was

successfully done in [142,141,143].

4.2. Constructing the function space containing the n-particle amplitude

How about the remaining symbol entries? One may be tempted to think that all possible

combinations of letters or ‘words’ of a given alphabet give rise to well-defined functions

(so that for an alphabet of size |Φ| at weight k we would obtain |Φ|k such functions).

However this is not true, since any well-defined function F must satisfy the property that

double derivatives with respect to two different independent variables xi, xj commute,

∂2F

∂xi∂xj
− ∂2F

∂xj∂xi
= 0 , i 6= j. (59)

† Just to get a sense of these numbers, the NMHV amplitude has 5, 15, 35 and 70 NMHV components

for n = 6, 7, 8, 9 and the N2MHV one 105 and 490 components for n = 8, 9, respectively. The complete

classification of these Yangian invariant rational functions, according to n, k and cyclic class, has been

carried out in [63].
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When F is an MPL, due to eqs. (17) and (18) this requirement implies the existence of

linear relations between its double coproducts F φα,φβ ,

|Φ|∑
α,β=1

Diαβ F
φα,φβ = 0 , i = 1, 2, . . . , l , (60)

where D is a tensor with purely numeric entries, and l counts the number of independent

equations, which generally depends on the choice of alphabet. These equations are

known as the integrability conditions, and from eq. (20) we see that they are also

equivalent to the fact that of all |Φ|2 combinations of letters, only a subset of weight-two

symbols can appear at the last two slots.

Further focusing on the MPL function spaces containing An,k, as we have mentioned

the variables xi in eq. (59) can be chosen to be an algebraic independent subset of cross

ratios, or more conveniently the variables of any momentum twistor parametrization,

such as the Gr(4, n) X -coordinates of a given cluster. For the known six- and seven-

particle alphabets, in this manner it can be shown that there exist l = 26 equations

for the 92 = 81 double coproducts and l = 729 equations for the 422 = 1764 double

coproducts, respectively [17]. Their explicit form may be found in the ancillary file

accompanying the arXiv submission of [38], together with the extended Steinmann

relations (53), which also assume the general form (60) and thus may be described by

an enlarged matrix D.

With the knowledge of the n-particle alphabet as a starting point, the above

properties allow us to recursively construct the space of (extended Steinmann/cluster

adjacent) n-gon functions containing the L-loop amplitude amplitude at weight m = 2L,

which we shall denote Hn,m, as follows: Given that a basis of functions on Hn,m−1 is

known, we consider their {m− 2, 1} coproduct representation (19), and attach another

letter to them to the right in all possible ways. From this {m− 2, 1, 1} tensor product

space that resembles eq. (20), we then obtain Hn,m by imposing the integrability and

extended Steinmann relations (60) on its elements. The procedure starts at m = 1 with

the functions dictated by the first entry condition (54), and terminates at the desired

weight m = 2L, where also the final entry condition (57) (for k = 0) or its generalization

(for k > 0) may be imposed if one is interested in a particular helicity configuration.

Hence the bootstrap method simplifies amplitude computations by transforming

them into linear algebra, and has so far successfully been applied to determine An,k
for n = 6, 7 to unprecedented loop orders, that would have been completely out of

reach with traditional Feynman diagram methods [2, 9–12, 16, 13, 14, 17, 18, 15, 21, 19].

The construction of Hn,m is computationally the most challenging part of the bootstrap

program as m increases, but still the resulting systems of linear equations are many

orders of magnitude smaller than, e.g. the integration-by-parts identities needed to

determine the basis of master integrals at the same loop order. As first proposed

and applied in [16], they can be most efficiently solved by finite field methods that

avoid intermediate expression swell, implemented for example in software such as

IML [144], SageMath [145] or SpaSM [146] has been used the past. More recently,
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the SymBuild [147] package and the FiniteFlow framework [148], with dedicated

capabilities for constructing integrable symbols, have also been made available.

The procedure we have described works equally well for functions or for their

symbols, and ensures that if Hn,m−1 has physical branch cuts, so will Hn,m, with the

following exception for the case of functions: The space of solutions of the integrability

conditions (60) also contains functions such as

ζm−1 log φα (61)

where ζm−1 is the Riemann zeta function and φα is a letter that is not an allowed first

entry (54), which do not have physical branch cuts.

It is therefore necessary to eliminate such functions from our space, and one way

to do so is by noting that the branch point at φα = 0 also manifests itself as a pole in

the derivative of the function. So ensuring that the function is analytic at φα = 0 can

be achieved by requiring that the corresponding residue of its derivative, or by virtue of

eq. (17) its left coproduct factor, vanishes as φα → 0.

In practice, it is simpler to impose such branch cut conditions on kinematic limits

where more letters vanish simultaneously. For the purposes of this review, it will be

sufficient to mention one such limit that has been used in the literature for n = 6, the

soft limit. In the choice (40) for the six-particle alphabet and in the i-th orientation it

amounts to†

softi :

ai →∞ , ai−1 →
1

ai+1

,

mi+1 →
√
ai√
ai+1

, mi−1 →
√
ai
√
ai+1 , yi → 1 ,

with ai+1, yi+1, yi−1,mi

√
ai fixed , i = 1, 2, 3 ,

(62)

with each of the soft limits corresponding to one square face, that also intersect the

parity-even surface, of the Gr(4, 6) cluster polytope shown in figure 3. In these limits,

functions in H6,m should additionally satisfy the following branch cut conditions [10,13]

Fmi
∣∣
softi

= F yi−1
∣∣
softi

= F yi+1
∣∣
softi

= 0 , i = 1, 2, 3 . (63)

Analogous conditions for n = 7 have been obtained in [19].

4.3. Singling out the amplitude: Special kinematic limits

Once the space of n-gon functions Hn,m containing the n-particle amplitude has been

constructed, the final step of the bootstrap method it to uniquely identify the latter

from within this space, using information from kinematic limits where the behavior of

the amplitude is already known. The simplest of these special kinematic configurations

† This limit may also be expressed in terms of the more conventional cross ratios (6) as ui →
1, ui−1, ui+1 → 0 with uj/(1− ui) held fixed for j 6= i.
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is the limit where the momenta of two consecutive external particles become collinear:

Indeed, the BDS ansatz correctly captures not just the infrared singularity structure of

the amplitude, but also its behavior under collinear factorization. As a consequence, in

this limit the BDS-normalized amplitude smoothly reduces to the same amplitude with

one leg less, for example for the MHV case this immediately carries over directly for the

remainder function (16),

lim
i+1‖i
R(L)
n = R(L)

n−1 , (64)

with the cascade terminating at R(L)
5 = 0. As an example that will also be useful to us

in the next subsection, let us quote here how the symbol alphabet behaves in the case

of the n = 6 collinear limit,

collineari :

mi →∞ , mi−1 →
1

mi+1

,

ai →
(1 +mi+1)2

mimi+1

, ai−1 →
mi

mi−1

, ai+1 → mimi−1 ,

yi−1 → 1 , yi+1 → 1 , with mi+1, yi−1 fixed, i = 1, 2, 3 .

(65)

The three collinear limits correspond to the three edges Gr(4, 6) cluster polytope shown

in figure 3, that lie on the parity-even surface.

Beyond the strict collinear limit, Mellin-Barnes-like integral representations for

every term in the series expansion around an (n−5)-fold collinear limit may be predicted

with the help of the integrability-based Wilson loop or Pentagon Operator Product

Expansion (OPE) [149–159], to all loops. These integral representations can then be

systematically evaluated in closed form [160, 161, 15], thus providing direct input for

the amplitude bootstrap, and in some cases the entire series expansion or certain well-

defined subsector thereof may even be resummed so as to access more general kinematic

configurations [162–168].

Last but not least, an excellent source of boundary kinematic data for the bootstrap

is offered by the high energy or multi-Regge kinematics (MRK), a very rich subject

in its own right, which will be the focus of chapter 15 of this review [169]. This

owes to the development of an effective description of the latter by Balitsky, Fadin,

Lipatov and Kuraev originally in QCD, that was later extended also to planar N = 4

SYM [170–173, 25, 174, 12, 162, 175, 176]. Interestingly, the dual conformal invariance of

the theory renders it equivalent to the soft limit, so in order for the normalized amplitude

to have nontrivial kinematic dependence there, it is necessary to first analytically

continue away from the Euclidean region. At multiplicity n = 6 we have already seen

the soft/multi-Regge limit in eq. (62), from where it becomes apparent that is natural

to organize the weak coupling expansion of the amplitude also with respect to the order

of the divergent logarithm, logL−p−1 a1, denoted as the (next-to)p-leading-logarithmic

(NpLL) approximation. Remarkably, this double expansion can be computed at any

loop order and logarithmic approximation, not only for n = 6 [177], but also at arbitrary

multiplicity [178], thanks to an analytic continuation connecting the multi-Regge with
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the near-collinear limit mentioned above. For n = 7, these all-loop results have been

recently checked against all available bootstrap data [179].

4.4. A simple example: Bootstrapping the two-loop six-particle MHV amplitude

With all the bootstrap technology in place, let us now see it at work in a concrete

example, the computation of the first nontrivial correction at L = 2 loops (since the

L = 1 correction is by construction part of the BDS ansatz) to the six-particle amplitude

in the MHV helicity configuration. This subsection is thus intended for the reader who is

interested in learning how to perform actual bootstrap computations, and may otherwise

be skipped.

In the first instance, we will construct the space of hexagon functions H6,m

containing the amplitude and its derivatives, for 1 ≤ m ≤ 2L = 4. At m = 1, the

first entry condition (55) requires this space to be

H6,1 : log ai , i = 1, 2, 3 . (66)

To go to higher weight, we first need to determine the integrability conditions in our

choice (40) for the six-particle alphabet. To this end, for a generic function F ∈ H6,m we

compute the commutator of double derivatives with the help of the definitions (17)-(18),

which generically takes the form∑
φα,φβ∈Φ

F φα,φβ

[
∂ log φα
∂xi

∂ log φβ
∂xj

− ∂ log φα
∂xj

∂ log φβ
∂xi

]
, (67)

where terms with both derivatives acting on the letters φ automatically commute and

cancel out. Next, we express the letters in terms of the three independent variables

of any momentum twistor parametrization, such as the Gr(4, 6) X -coordinates of the

initial cluster, which we quoted in eq. 9, from which the term in brackets in the above

equation is trivial to compute. This gives three equations for each 1 ≤ i < j ≤ 3, which

should hold for any value of the ci. We can therefore convert them into equations for

the double coproducts F φα,φβ with purely numeric coefficients, either by collecting all

terms under a common denominator and demanding that they hold separately for each

coefficient of the xi polynomials in the numerator, or by evaluating them for sufficiently

many values of the xi. Explicitly, and in the shorthand notation F [x,y] = F x,y − F y,x

these read

F [a1,a2] = F [a1,m1] = F [a1,y1] = F [a1,y2] − F [a1,y3] = F [m1,y2] − F [m1,y3] = 0 , i = 1, 2, 3 ,

F [m1,m2] + F [m1,m3] = F [m3,a1] + F [a2,m3] + F [m1,m3] + F [y1,y2] = 0 , i = 1, 2,

F [a2,y1] + F [a3,y1] + F [m1,y1] = F [a1,y2] + F [a3,y1] + F [m2,y2] = 0 ,

F [a1,y2] + F [a2,y1] + F [m3,y3] = F [a2,y1] − F [a3,y1] − F [m2,y1] + F [m3,y1] = 0 ,

F [a1,y2] − F [a3,y1] − F [m1,y2] + F [m3,y1] = F [m2,a1] + F [a3,m2] + F [m1,m2] + F [y1,y3] = 0 ,

F [m1,m2] − F [y1,y2] + F [y1,y3] − F [y2,y3] = 0 .
(68)
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With the six-particle integrability conditions (68) at hand, constructing the weight-

2 function space is now simply a matter of constructing an ansatz for the most general

form of their ∆1,1 coproduct by adding another hexagon letter in all possible ways,

3∑
i=1

9∑
j=1

cijai ⊗ φj , (69)

and imposing them simultaneously with the extended Steinmann relations (53) on this

ansatz.† In general these are 29 homogeneous linear equations, but when applied to

the above ansatz only 21 of them are linearly independent, and fix an equal number of

the 27 unknowns cij. Thus the coefficients of the remaining six unknowns will span the

allowed weight-two space, and explicitly we find these to be

H6,2 :

{
− [(ai+1ai−1)⊗mi] = − [(1 +mi)

2 ⊗mi]→ −2H−2(mi) ,

ai ⊗ ai → 1
2

log2 ai ,
i = 1, 2, 3 . (70)

In the first line we chose to express the letters using the mi as the independent variables,

ai =
(1 +mi+1)(1 +mi−1)

1 +mi

. (71)

The simple form of the ∆1,1 coproducts also allows us to immediately identify the

corresponding functions, see in particular eq. (27) for the first line, indicated with

arrows in the above equation. More precisely, the ∆1,1 coproduct is equivalent to the

total differential of a function and thus specifies it up to a constant, which we are

free to choose for example so as to simplify the functional expression, as is done here.

This choice is tantamount to the choice of base point for the integration of the total

differential, which is usually chosen as a potentially singular point of the functions. So

if we wish our basis to be independent of this choice of singular base point, it is natural

to also include the transcentental constants the above functions evaluate to at these

points, in this case ζ2 = H2(1).

Moving on to weight three, to find a basis of functions we similarly form an ansatz

of the six functions of eq. (70) tensored with the nine hexagon letters, giving rise to

a total of 54 unknowns. We do not need to include ζ2 log φj in our ansatz since these

functions have identically vanishing double coproducts, and hence correspond to trivial

solutions of the integrability conditions and extended Steinmann relations, which we

know beforehand. We then apply the aforementioned constraints on the right two slots

of the ∆1,1,1 coproduct of the ansatz, in the first instance obtaining 29×3 = 87 equations,

since these should hold separately for each of the leftmost coproduct slots, which are

† Note that cluster adjacency may be exploited so as to reduce the number of initial unknowns and

equations, by attaching a letter φj to only those functions whose final entries belong to the neighbor

set (46)-(47) of φj [108,18]. While this increases the efficiency of the method, for the sake of simplicity

we will refrain from applying it here.
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algebraically independent. However these reduce to 41 linearly independent equations,

whose solution space is then found to be,

H6,3 :



2H−2(mi)⊗mi → 2H−3(mi) ,

−2H−2(mi)⊗ (1 +mi)
2 → −4H−1,−2(mi) ,

1
2

log2 ai ⊗ ai → 1
6

log3 ai ,

−H−2(mi)⊗ ai−1

ai+1
− 1

2
(log2 ai−1 − log2 ai+1)⊗mi → −H−2(mi) log ai−1

ai+1
,

F̃ ≡
3∑
i=1

[
1
2
(log2 ai−1 + log2 ai+1)− 2H−2(m1)− 2H−2(m2)− 2H−2(m3)

]
⊗ yi ,

.

(72)

with i = 1, 2, 3. Notice that unlike all functions encountered thus far, F̃ is parity odd,

owing to the appearance of the parity-odd letters yi for the first time. Of the remaining

even functions, only the last one is not immediately identifiable with the help of the

usual HPL definitions, and requires expressing the difference of the squares of logarithms

as a product thereof, using the mi as the independent variables, and applying the shuffle

algebra relations mentioned in subsection 3.1.

At this stage all functions are defined modulo ζ2 log φj, the trivial solution we chose

not to include in our ansatz. This ambiguity may be fixed by further imposing the

branch cut conditions (63), which were automatically satisfied at lower weight since no

analogous ambiguity existed. While it is easy to check that all even H6,3 functions in

eq. (72) satisfy them, for F̃ we find that in the soft limits (62)

F̃ yi−1
∣∣
softi

= F̃ yi+1
∣∣
softi

= −4ζ2 . (73)

The only slightly nontrivial step needed to show this, and more generally to evaluate all

kinematic limits we will consider later in this subsection, are HPL x → 1/x argument

inversion identities, which for example can be obtained with the package HPL [89]. From

the above equation, it is clear that in order to ensure that F̃ has good branch cuts, we

need to redefine it as

F̃ ≡
3∑
i=1

[
1

2
(log2 ai−1 + log2 ai+1)− 2H−2(m1)− 2H−2(m2)− 2H−2(m3) + 4ζ2

]
⊗ yi ,

(74)

and now the only ambiguity remaining in its definition is its value at a point. This may

then be fixed by picking this point anywhere on the parity-invariant surface, where by

definition any parity-odd function vanishes. In our choice of basis, F̃ is in fact equal

to twice the transcendental part of the six-dimensional hexagon integral studied in [95],

where also an explicit expression of the latter in terms of classical polylogarithms may

be found. Finally, in H6,3 we may additionally include the part of the trivial solution

which obviously also satisfies the branch cut conditions, ζ2 log ai, as well as ζ3, by the

same reasoning that led to the inclusion of ζ2 at one weight lower.

Arriving at weight 4, since our goal here is MHV amplitude, which is parity even and

obeys the final entry condition (58), we may simplify the calculation by incorporating
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these constraints directly in our initial ansatz, namely by tensoring the even H6,2

functions with mi, and F̃ with yi. For this subspace of H6,4, which we shall denote

H+,MHV
6,4 , we find the basis

H+,MHV
6,4 :


−2H−3(mi)⊗mi → −2H−4(mi) ,

4H−1,−2(mi)⊗mi → 4H−2,−2(mi) ,

Ω̂
(2)
i ,

−2ζ2H−2(mi) ,

i = 1, 2, 3 , (75)

where

∆3,1Ω̂
(2)
i =Ω̂

(2),mi
i ⊗mi + Ω̂

(2),mi+1

i ⊗mi+1 − F̃ ⊗ (yiyi+1) , (76)

Ω̂
(2),mi
i ≡− 4H−3 (mi) + 2 [H−1,−2 (mi) +H−1,−2 (mi+1)−H−1,−2 (mi−1)] +

1

3
log3 ai+1

(77)

−H−2 (mi−1) log ai+1

ai
+H−2 (mi) log ai−1

ai+1
−H−2 (mi+1) log ai

ai−1
+ 4ζ2 log ai+1

Ω̂
(2),mi+1

i =Ω
(2),mi
i

∣∣∣mj↔mi+1
ai↔ai+1

. (78)

Clearly, Ω̂
(2)
i is symmetric under exchange of letters with indices i↔ (i+ 1). Recalling

that F̃ vanishes in the parity-invariant surface containing (intersecting) the collinear

(soft) limit, and using HPL argument inversion identities as before, it’s a straightforward

exercise to show that the above functions already satisfy the branch cut conditions (63),

and thus require no further modification. As with lower weights, we also include the

constant ζ4 in H+,MHV
6,4 .

Therefore the only thing remaining in order to fully specify our H+,MHV
6,4 basis in the

value of Ω̂
(2)
i at a point. We can do this by noting that its ∆3,1 coproduct vanishes in

the mi−1 →∞ orientation of the collinear limit (65), therefore it reduces to a constant

which is natural to also set to zero. This choice in fact renders Ω̂
(2)
i four times the double

pentagon integral Ω(2), which we will encounter again in section 5.2, in its three possible

orientations.

Having fully specified Ω̂
(2)
i in this manner, it is not difficult to similarly obtain its

other two nontrivial collinear limits, which we will need later on, from the coproduct

representation (76). In the mi →∞ orientation in particular we find

∆3,1Ω̂
(2)
i →4

[
(H−3 (mi+1) +H−2,0 (mi+1)− 2H−2,−1 (mi+1) + logmiH−2 (mi+1))⊗mi

+
(
H−2,0 (mi+1)− 2H−2,−1 (mi+1)−H−1,−2 (mi+1) + 4H−1,−1,−1 (mi+1)

− 2H−1,−1,0 (mi+1)− 2 logmi(H−1,−1 (mi+1) +H−1,0 (mi+1) +H−2 (mi+1))

+
(

1
2

log2mi + ζ2

)
H−1 (mi+1)

)
⊗mi+1

]
. (79)

This expression can be trivially integrated to yield Ω̂
(2)
i up to a constant, since it

equivalent to an ordinary differential equation for the function with respect to the only



Analytic Bootstraps for Scattering Amplitudes and Beyond 33

surviving finite variablemi+1. That is, focusing on the coproduct component in question,

eq. (27) allows us to replace

H~l(mi+1)⊗mi+1 → H0,~l(mi+1) + c . (80)

The integration constant is then fixed by the fact that Ω̂
(2)
i should vanish at themi+1 → 0

endpoint of the mi → ∞ collinear line: Indeed, this point is an overlap with the

mi−1,mi → ∞, mi+1 → 0 soft limit, and the latter in turn also overlaps with the

mi−1 →∞ collinear limit, where as we have seen the function vanishes. In this manner,

we finally obtain

Ω̂
(2)
i

4

coll.−−−−→
mi→∞

H−3,0 (mi+1)− 2H−3,−1 (mi+1)−H−2,−2 (mi+1) + 4H−2,−1,−1 (mi+1)

− 2H−2,−1,0 (mi+1)− 2 logmi [H−2,−1 (mi+1) +H−2,0 (mi+1) +H−3 (mi+1)]

+
(

1
2

log2mi + ζ2

)
H−2 (mi+1) , (81)

whereas the third collinear limit orientation follows for free by exploiting the flip

symmetry of the function so as to replace mi ↔ mi+1 in the above formula.

Now that the hard part of constructing the function space containing the amplitude

is over, all that is left to determine the latter is to form an ansatz from all the basis

functions, and determine the coefficients by comparing it to special kinematic limits

where we have independent information on the behavior of the amplitude. Taking into

account the dihedral symmetry of the BDS-like normalized six-particle amplitude, our

initial ansatz containes merely five unknowns,

E (2)
6,0 = c1

3∑
i=1

[−2H−4(mi)]+c2

3∑
i=1

4H−2,−2(mi)+c3

3∑
i=1

Ω̂
(2)
i +c4

3∑
i=1

[−2ζ2H−2(mi)]+c5ζ4 ,

(82)

where we remind the reader that the function Ω̂
(2)
i is defined by its ∆3,1 coproduct (76)

and the fact that it vanishes in the wi−1 →∞ collinear limit (65).

In order to fix the coefficients of the ansatz we will also consider the collinear limit,

where eqs.(16),(11) and (64) imply that at this loop order the amplitude has the simple

behavior

E (2)
6,0

collinear−−−−→ 1

2

(
E (1)

6,0

)2

. (83)

More precisely, given that our ansatz has already taken dihedral symmetry into account,

we may focus on a single orientation, say m3 →∞, where the one-loop correction (14)

reduces to

E (1)
6,0

collinear−−−−→
m3→∞

−1

2
log2m1 −

1

2
log2m3 − 2ζ2 . (84)

All that remains is to also evaluate our ansatz in the limit. For Ω̂
(2)
i this has already

been done in eq. (81), and for the other functions we proceed similarly. After the dust

settles, and recalling also the MPL identity (24), the difference of the right-hand sides of

eqs. (83) and (82), evaluated on the m3 →∞ collinear limit will be a sum of functions

logi(m3) ζjH−l1,−l2,...−lk(m1) , (85)
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Constraint L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1. H6 6 27 105 372 1214 3692?

2. Symmetry (2,4) (7,16) (22,56) (66,190) (197,602) (567,1795?)

3. Final-entry (1,1) (4,3) (11,6) (30,16) (85,39) (236,102)

4. Collinear (0,0) (0,0) (0∗, 0∗) (0∗, 2∗) (1∗3, 5∗3) (6∗2, 17∗2)

5. LL MRK (0,0) (0,0) (0,0) (0,0) (0∗, 0∗) (1∗2,2∗2)

6. NLL MRK (0,0) (0,0) (0,0) (0,0) (0∗, 0∗) (1∗, 0∗2)

7. NNLL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1, 0∗)

8. N3LL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

9. Full MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

10. T 1 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

11. T 2 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Table 3. Remaining parameters in the ansätze for the (MHV, NMHV) amplitude after

each constraint is applied, at each loop order. The superscript “∗” (“∗n”) denotes an

additional ambiguity (n ambiguities) which arises only due to lack of knowledge of the

cosmic normalization constant ρ at the given stage. The “?” indicates an ambiguity

about the number of weight 12 odd functions that are “dropouts”; they are allowed at

symbol level but not function level. From ref. [15].

of total weight four, with coefficients depending on the unknowns ci. Since each of these

functions is algebraically independent, their coefficients should vanish separately, and

solving this set of equations yields the unique solution

c1 = −2 , c2 = −1

4
, c3 =

1

4
, c4 = 1 , c5 = 8 . (86)

Congratulations, you have just bootstrapped the two-loop correction to the planar six-

particle amplitude, or equivalently lightlike hexagon Wilson loop in planar N = 4

SYM theory! Its initial computation in terms of Feynman diagrams required a rather

nontrivial effort, and resulted in a 17-page long sum of multiple polylogarithms, that is

equivalent to the expressions (82),(86).

Let us close this section with a few remarks on how the bootstrap ideas we have

presented in this example apply more generally.

• For the hexagon bootstrap we have considered here, it is possible to further reduce

the size of H6,m, and thus to facilitate the identitication of the amplitude, by only

including the constants ζ2n with n ≥ 2 as independent functions. This requires

a further modification of the amplitude normalization by a coupling-dependent

constant, dictated by what is known as a (cosmic Galois) coaction principle [21],

initially carried out order by order in perturbation theory, and later conjectured to

all loops in [168]. The number of functions remaining after applying consecutive
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constraints, so as to uniquely determine the amplitude together with this ‘cosmic’

normalization through six loops, is summarized in table 3. The difference between

our count of 5 unknowns in our ansatz (82) and the 4 unknowns quoted for the MHV

case in the L = 2 column and final-entry row, is precisely due to our redundant

inclusion of ζ2 as an independent constant. Through it does not appear in the table,

E (7)
6,0 has also been determined in [15], and E (7)

6,1 is also known [180].

• Similarly to what we did for the more complicated functions encountered in our

example, in general it proves more economical to recursively represent each weight-

m MPL in terms of its differential or ∆m−1,1 coproduct, together with its value

at a point [10]. As is discussed in chapter 3 of the SAGEX review [78], this is

not a restriction however, since explicit G-function representations may be found

algorithmically when there exists a choice of variables such that the symbol letters

are rational functions thereof. This is even simpler when these functions are further

restricted to be linear, where algorithmic integration via fibration bases [181, 182],

see also [183,184], has been implemented in the software packages HyperInt [185],

MPL [186] and PolyLogTools [90] (with the first of the three in fact based in a

further refinement of this algorithm).

• Building on the aforementioned coproduct representation, a significant efficiency

upgrade that becomes necessary at higher loops is to encode all the information on

integrable symbols and functions, as well as of the equations needed to construct

them, in terms of tensors with purely numeric entries [17], see also [21]. The

latter tensor has already appeared when expressing the integrability and Steinmann

relations as we did in eq. (60), and the former tensor simply relates a function

basis element at weight m to a basis element at weight m − 1 as well as to

the position of a letter of an ordered alphabet. The advantage of this approach

is that it not only provides the most compact way of storing all function data,

but most importantly that it reduces the iterative construction of the function

space exclusively to matrix operations. At the level of the symbol, it has been

implemented in the package SymBuild [147].

5. New Frontiers

5.1. n > 7 singularities from tropical Graßmannians

In the previous sections, we have seen the spectacular success of the bootstrap program

for determining scattering amplitudes in planar N = 4 SYM theory at multiplicity

n = 6, 7. A key idea is that given a finite set of singularities, or more precisely

symbol letters, the space of polylogarithmic functions containing the amplitude is also

finite at each loop order, and thus one can efficiently construct it and single out the

actual amplitude. For the aforementioned multiplicities, this set of symbol letters

exactly matches the variables of a Gr(4, n) cluster algebra, thus lending support to

the expectation that it should remain stable as the loop order increases.
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j

k

l

i

Figure 7. The one-loop four-mass box formed by n ≥ 8 cyclically ordered momentum

twistors, distributed in the four corners as indicated by four of their labels.

However even in the ideal setting of the simplest interacting gauge theory, the

following significant conceptual and practical challenges prevented the application of

the bootstrap in order to efficiently determine amplitudes at higher multiplicity n in

general kinematics:

(i) Gr(4, n) cluster algebras with n ≥ 8 become infinite [96], and thus provide no

predictability on what the symbol alphabet should be.

(ii) By construction, cluster A-coordinates are rational functions of the Plücker

coordinates 〈ijkl〉.‡ Yet for n ≥ 8 symbol letters that also contain square roots

thereof are known to appear, and can hence not be captured by cluster algebras.

A prototypical example of an integral yielding square-root letters is the one-loop four-

mass box depicted in figure 7, which in particular contains
√

∆ijkl with

∆ijkl ≡ (fijfkl − fikfjl + filfjk)
2 − 4fijfjkfklfil , fij ≡ 〈i i+1 j j+1〉 , (87)

see for example [187]. While one could hope that individual Feynman diagram

contributions would cancel out so as to yield a simpler result for the amplitude, it

can be shown that this is the only diagram contributing to a particular component of

A
(1)
8,2 [32].

Very similar natural resolutions of these longstanding problems were simultaneously

proposed in [60, 188, 189] based on the relation of cluster algebras with geometric

objects known as positive tropical Graßmannians [190, 59], or equivalently their duals

as constructed by ‘stringy canonical form’ integrals [124]. In the first instance, this

resolution, which we will describe in more detail in the next subsections, may be

pictorially represented as in figure 8. It boils down to explicit predictions for the n = 8

alphabet, and more recently it has been generalized in principle to any n, and in practice

to n = 9 [61]. These predictions are in agreement with all currently known data for

amplitudes at these multiplicities [142, 141, 143] and for n = 8 they are also backed by

‡ This is a direct consequence of the mutation rule (32) or (37), although in fact all denominators

cancel, and in the end A-coordinates simplify to homogeneous polynomials of the four-brackets or

Plücker coordinates, as seen e.g. in eq.(42).
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Figure 8. Rough sketch of how a finite subset of variables of Gr(k, n) cluster algebras

may be selected with the help of their associated positive tropical Graßmannians.

a related but distinct approach based on scattering diagrams and wall-crossing [191]§.
They thus pave the way for bootstrapping new results.

5.1.1. The positive tropical Graßmannian. Let us begin by defining this object, before

explaining how it leads to finite alphabet predictions. The simplest way to define the

positive part [59] of the tropical Graßmannian [190] Tr+(k, n), is by first expressing

all Gr(k, n) Plücker variables in terms of the X -coordinates of the initial cluster of

the corresponding cluster algebra, which can be constructed with the web algorithm

presented in the former paper. Then, one tropicalizes this parametrization of the Plücker

variables, which practically means one replaces

Tropicalization :

addition −→ minimum

multiplication −→ addition

C∗ constants −→ 0

0 −→ ∞

(88)

We have already seen the Gr(4, 6) X -coordinate parametrization in eq.(9), so to be

concrete let’s tropicalize the Plücker variable shown in eq.(10),

〈1346〉 = 1 + x1 + x1x2 → min(0, x1, x1 + x2) . (89)

The tropical hypersurface for any such tropicalized polynomial is the (d−1)-dimensional

surface in Rd where the minimum is attained twice simultaneously‖, see the left-hand

§ It has been observed that an alternative means for reproducing the square-root letters found in the

known data, is by solving polynomial equations associated to certain plabic graphs [192–194]. As soon

as one attempts to also incorporate rational letters in this approach, however, non-plabic graphs are

required as well [195]. In this case the solution space includes all cluster variables of G(4, n), that is

the alphabet becomes infinite again.
‖ For Gr(k, n), d = (k − 1)(n− k − 1), but from this point onwards we will specialize to k = 4.
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Figure 9. Left: The 〈1346〉 tropical hypersurface, given by the half-planes (in the

transverse x3 direction) (x1 = 0, x2 > 0), (x1 = −x2, x2 < 0), (x2 = 0, x1 < 0)

where min(0, x1, x1 +x2) is attained twice simultaneously. From ref. [189]. Right: The

Tr+(4, 6) fan.

side of figure 9 for the case of 〈1346〉. Since the (in)equalities enforcing these are

invariant under rescaling, we may equivalently describe the hypersurface with integer-

valued vectors

g = (−1, 0, 0) g′ = (0, 1, 0) , g′′ = (1,−1, 0) . (90)

The positive tropical Graßmannian Tr+(4, n) is then defined as the union of tropical

hypersurfaces for all 〈ijkl〉. Being a solution of linear (in)equalities, it is inherently finite-

dimensional. Its building blocks are 1-dimensional intersections of tropical hypersurfaces

emanating from the origin, known as rays. A positive span of certain sets of rays then

yields the regions in Rd bounded by the tropical hypersurfaces, where all tropicalized

〈ijkl〉 are continuous. These are the cones, and the set of all cones then forms a (tropical)

fan. The full Tr+(4, 6) fan is illustrated on the right-hand side of figure 9.

One may also consider further generalizations of Tr+(4, n) where any subset of

〈ijkl〉 (or in fact any A-coordinate of the corresponding cluster algebra) is tropicalized,

leading to different fans but with similar properties with what we have described

above. Since Tr+(4, n) is not invariant under parity, which is a symmetry of the MHV

amplitudes, a particularly natural choice is to tropicalize the maximal parity-invariant

subset of Plücker variables 〈i − 1ij − 1j〉, 〈ij − 1jj + 1〉. It is therefore this choice

of partial tropicalization of the positive Graßmannian that we will adopt from now on,

and we will denote it as pTr+(4, n). Further choices and their implications are discussed

in [196].

5.1.2. A tropical sieve for rational letters. Now that we have defined (p)Tr+(4, n), we

can describe their relation to cluster algebras. Starting with the pTr+(4, 6) = Tr+(4, 6)

fan to the right of figure 9, careful observation reveals that it dual to the Gr(4, 6) cluster

polytope shown in figure 3! This can be seen by drawing a vertex inside each cone, and

connecting them with lines if they are separated by a plane. More rigorously, it can be
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Figure 10. Illustrative examples of the (redundant) triangulation of a tropical fan

by a (a) finite and (b) infinite cluster algebra. Each of the figures depicts two cones

of a 3-dimensional fan intersected with the unit sphere S2 in black. The cones and

the redundant rays from the redundant triangulation are drawn in red, those from the

non-redundant triangulation in blue. Adapted from ref. [61].

proven that any cluster A-coordinate a may be uniquely written as [100]

a =
d∏
i=1

agii ·
F (x1, . . . , xd)

FT (y1, . . . , yd)
, (91)

where ai, xi are the A-coordinates and X -coordinates of the initial cluster, and the

precise definition of the so called coefficients yi and (tropical) F(T)-polynomial will not

be important for our purposes. What matters in the above formula is that each A-

coordinate is in one-to-one correspondence with an integer vector (g1, . . . , gd) that defines

a ray similarly to eq. (90), each cluster then defines a cone spanned by the rays of its

A-coordinates, and finally the entire cluster algebra defines a cluster fan.

So in the Gr(4, 6) example the cluster fan coincides with the tropical fan, and more

generally the former triangulates the latter¶ [59]. This fact has already been used to

compute tree-level amplitudes of generalized biadjoint scalar theory [198], defined as a

natural extension of the Cachazo-He-Yuan formulation [199, 200] for the corresponing

amplitudes in ordinary biadjoint scalar theory, which are essentially given by the volume

of the tropical Graßmannian [201]. There, it was also pointed out that the fan of finite

cluster algebras may contain not only additional boundaries compared to the tropical

fan, but also additional or redundant rays, as shown on the left of figure of figure 10.

A key insight behind the works [60,188,189] is to turn this logic around in the case

of infinite cluster algebras, where it is natural to expect that their infinities are due to

inifitely redundant triangulations, as shown on the right of figure 10. Therefore we may

prevent this from happening by selecting the finite subset of cluster variables whose

rays coincide with the tropical rays! Concretely, starting from the initial cluster of the

Gr(4, n) cluster algebra, where all cluster variables have non-redundant rays, after every

mutation we compare the ray of the resulting cluster variable to the set of all pTr(4, n)

rays, which may be computed independently e.g. with the program polymake [202].

¶ More precisely, due to different choice of conventions it is the fan of the dual cluster algebra,

obtained by transposing its exchange matrices or inverting the arrow direction in its quivers [197],

that triangulates the tropical fan. Combinatorially, the cluster fan and its dual are equivalent.
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Figure 11. The A
(1)
1 cluster algebra, where up to orientation each quiver is mapped

back to itself after one mutation.

x3 x2 x8

x1

x6 x4 x7

x9 x5

Figure 12. Quiver of a Gr(4, 8) cluster containing an A
(1)
1 subalgebra highlighted

by the blue nodes, where xi label the X -coordinates of the cluster. Adapted from

ref. [189].

We then stop mutating whenever a redundant ray is reached. It is in this sense that

pTr(4, n) acts as a sieve as shown in figure 8.

5.1.3. Square-root letters from infinite mutation sequences. At this point, we have

resolved the first challenge we have discussed at the beginning of this section. How

about the second challenge, associated to the appearance of square-root letters in the

alphabet of the amplitude? To this end, an important observation comes from existing

studies in the mathematical literature, of sequences of cluster mutations that map a

quiver back to itself, and thereby lead to recursion relations between the A-coordinates.

In figure 11 we present the simplest example of an infinite cluster algebra where this

occurs, of affine rank-2, or A
(1)
1 in the extended Dynkin diagram classification, type.

Very interestingly, the limit of consecutive A-coordinates along this infinite mutation

sequence becomes [203],

lim
i→∞

ai
ai−1

=
a2

2a1

(
1 + x1 + x1x2 +

√
(1 + x1 + x1x2)2 − 4x1x2

)
(92)

with x1 = 1/a2
2, x1 = a2

1.

The second main idea of refs. [60,188,189] was to thus also consider infinite mutation

sequences, so as to obtain generalized cluster variables of the form (92), which should

correspond to square-root symbol letters of amplitudes! Indeed, Gr(4, n) cluster algebras

with n ≥ 8 do contain A
(1)
1 subalgebras+, as shown in figure 12. The fine print is that the

analogous to eq. (92) limit value also depends on all the cluster variables held frozen in

the infinite mutation sequence, hence in the language of frozen variables one would have

to separately analyze these for every cluster of Gr(4, n) containing an A
(1)
1 subalgebra.

Nevertheless there exists a framework for simultaneously describing any choice of

+ A subalgebra of a cluster algebra is obtained by freezing, i.e. not mutating certain variables in one

of its clusters. For the A
(1)
1 subalgebra of figure 12, this would be all variables but x1, x9.
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frozen variables [100]: It involves grouping them into coefficients,

yi =

∏
arrows j →i

aj

∏
arrows j ←i

aj
, (93)

associated to the unfrozen variable they connect to, and defining mutation rules for

them analogous to those of the A- or X coordinates, independently of their constituent

frozen coordinates. The simplest case of principal coefficients amounts to yi = ad+i,

i = 1, . . . d, namely one frozen variable attached to every unfrozen one.

In [189], infinite A
(1)
1 mutation sequences with principal coefficients were analyzed

as a proof of concept, see also [204]. References [60] and [188] additionally found

the generating functional of the mutation sequences for the particular case of frozen

variables needed to embed them inside the Gr(4, 8) cluster algebra. In [60] it was

furthermore noticed that when embedding A
(1)
1 in a larger cluster algebra it is possible

to also take the direction of approach to the limit ray into account, so as to associate

many square-root letters to each limit ray∗. It was also proposed how to do this in a

particular fashion, that was subsequently supported by a complementary approach based

on scattering diagrams [191]. In this manner, one obtains a candidate eight-particle

alphabet consisting of 272 rational and 18 square-root dual conformal invariant letters,

which as a highly nontrivial check contains all those found in explicit computations of

A
(2)
8,1 [142] and more recently A

(3)
8,0 [143].

Finally, infinite higher-rank A
(m)
1 mutation sequences with general coefficients were

worked out in [61], and this provides the missing link for predicting finite symbol

alphabets in principle at any multiplicity n. In the latter reference these general results

were also specialized to the n = 9 case, yielding 3078 rational and 2349 square-root

letters expected to appear in the amplitude. Support for the correctness of this proposal

comes again from the fact that it contains the alphabet appearing in the independent

determination of A
(2)
9,1 [141], as well as that the entire rational part agrees with an

alternative proposal based on tensor diagrams [205]. The n = 8 and n = 9 alphabets

are too length too quote here, but they may be found in the ancillary files of [61].

While resolving the longstanding issues we presented at the beginning of this

subsection, the line of research we have described has also led to very interesting open

questions that deserve further inquiry. For example, at n = 9 we have for the first time

the appearance of square-root letters whose radicand does not correspond to that of

the one-loop box (87), and it would thus be worthwhile to identify specific Feynman

integrals giving rise to them. Perhaps more importantly, a new qualitative feature

starting at this multiplicity is the existence of pTr(4, n) rays which are inaccessible

from the Gr(4, n) cluster algebra even when enlarging the latter so as to also include

∗ As with the selection of cluster variables/rational letters, also the limit ray must coincide with a

pTr(4, n) ray so as not to discard the associated square-root letters.
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L1 2 · · ·

Figure 13. Examples of planar, four-dimensional finite dual conformal integrals that

have been bootstrapped. Top left: Six-point double pentagon ladder Ω(L) [9, 31] (see

also [33] for its generalization to massive left- and right-most legs through L = 4).

Bottom: Seven-point double pentagons [20](B,C, the latter also at L = 3), [32] (A,C).

Top right: Eight-point L = 3 wheel [34]. Adapted from refs. [212,33,34]

.

limits of infinite mutation sequences. It is currently unclear if the missing rays are

associated to more intricate algebraic letters beyond square roots, or point towards the

need for more complicated, elliptic generalizations of MPLs starting to contribute at

n = 9. Indeed, while it is known that such functions certainly appear at n = 10 [206],

the possibility that these also appear at lower multiplicity cannot be excluded at the

moment.

Even in the latter case, as we have stressed the key prerequisite for the bootstrap

approach is the finiteness of the expected space of functions at each loop order, which is

not necessarily restricted to MPLs. For example, the symbol calculus has been developed

also for elliptic generalizations of MPLs [207], and its application on the elliptic double

box in fact reveals that it is more similar to the non-elliptic case than previously

expected [208]. The coaction and hence also the symbol contained in it has in fact been

defined for even more general classes of periods and Feynman integrals [209, 210], see

additionally the recent review [211] on Feynman integrals involving special functions

beyond MPLs. Therefore also for quantities expressible in terms of these types of

functions, what is needed to render them amenable to the bootstrap is a principle

dictating a finite set of integration kernels contributing to them. In light of this, it would

be very exciting to find a means to associate this type of generalized symbol letters to

the pTr(4, n) missing rays, and explore their relevance for scattering amplitudes and

Feynman integrals.

5.2. Bootstrapping Feynman integrals

While the analytic bootstrap approach to perturbative quantum field theory has been

initiated and more extensively developed in the context of N = 4 SYM amplitudes,

that we have presented so far, the same methodology is applicable in many other

situations as well. This in particular includes individual Feynman integrals that belong
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to the class of multiple polylogarithms defined in section 3.1, especially if the are pure,

meaning that they have uniform weight, and their rational coefficients do not depend

on the kinematics. Identifying such integrals is possible at the level of the integrand by

examining their leading singularities [213], and if necessary modifying the integrals by

taking out any overall factors, or by choosing the numerators appropriately, such that

these leading singularities are constant [57].

5.2.1. Survey of explicit results. The constant leading singularity criterion was

originally understood in the realm of N = 4 SYM as well, and so the first pure weight

integrals that were thus identified, and later on bootstrapped, were planar, finite and

dual conformal in strictly four dimensions. These most notably contain the six-point

double pentagon integral Ω(2), that has already appeared in the construction of our

hexagon function space in subsection 4.4, as well as its generalizations to higher loops

or legs, some of which are depicted in figure 13.] The wavy lines denote numerators

carefully chosen so as to render the integrals pure, see also chapter 7 of the SAGEX

review [113] for a concrete one-loop example. The fact that at consecutive loop orders

these integrals are related by differential equations [215] or equivalently recursive integral

representations [216], allows one to easily locate them inside the expected function space.

Combined with integrability, bootstrap methods have also led to a closed form expression

for a doubly infinite class of four-point fishnet integrals [217].

As with many computational tools first developed in the laboratory of the simplest

gauge theory, also the leading singularity analysis for finding pure weight integrals is

generally applicable, and for integrands only having simple poles in the integration

varibles [218], it has in fact been automated in the DlogBasis package [219]. With the

help of this analysis, the integral bootstrap has also been applied to the nonplanar cases

relevant for massless five-point scattering shown in figure 14 [30], under the additional

assumption that the corresponding symbol alphabet may be obtained from permutations

of the known planar two-loop alphabet [48]. In order to fix an ansatz for the integral,

additional information may be generically obtained by taking limits where it reduces

to other simpler integrals that are already known or can be computed simply, either

exactly or as series expansions, or by taking discontinuities that decrease the weight

and hence also the complexity.

Finally, it is worth mentioning another type of bootstrap that is closely related

to the differential equations obeyed by a basis of master integrals contributing to a

particular process, and represented by the vector f , with respect to the independent

kinematic variables ~x. If the integrals in question are expressible in terms of MPLs,

then finding the transformation that brings the differential equations to canonical

] Many of these integrals may be also computed by direct methods, see for example [214] for Ω(L)

through L = 10, and [212] for the type A,B seven-point double pentagon ladders through L = 4, as

well as their eight-point generalizations through L = 3 and L = 2, respectively.
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Figure 14. Nonplanar two-loop five-point massless integrals that have been

bootstrapped up to O(ε0) in dimensional regularization. Adapted from ref. [30].

.

form [220]††,

d f(~x; ε) = ε
[∑

i
Aid log φi(~x)

]
f(~x; ε) , (94)

where d =
∑

j dxj∂xj , φi are the letters and Ai are constant matrices, is a very

powerful method for algorithnmically evaluating them in closed form to arbitrary

order in the dimensional regulator ε = (4 − D)/2, when supplemented with boundary

conditions and provided that the letters are rational functions of the kinematic

variables. If algebraic letters such as the square roots we saw in the previous

section appear, under certain conditions variable transformations that rationalize

them may also be found algorithmically [226] and have been implemented in the

package RationalizeRoots [227]. Given that this however doesn’t always work, an

alternative presented in [35,36], as also reviewed in the textbook [80], is to match f and

its derivatives to an ansatz built out of MPLs with the known alphabet, constructed by

searching for admissible arguments of these MPLs. In particular, this search is guided

by the requirement that the letters of the candidate MPLs should factorize over the

known alphabet, and builds on analogous methods previously developed for rational

alphabets [228].

5.2.2. The role of cluster algebras. It is important to note that a prior knowledge (or

educated guess) of the symbol alphabet is either strictly necessary for the amplitude

or integral bootstrap, or tremendously helpful for bringing the differential equations of

master integrals to canonical form, as the remaining dependence of (94) on the purely

numeric matrices Ai can be determined much more easily. We have seen in sections 3.3

and (5.1) that cluster algebras and their generalizations may give strong clues about

the right alphabet, however until recently their appearance was confined to the realm of

N = 4 SYM theory. Excitingly, this changed with a recent publication [23], where it was

††The notion of master integrals and the (canonical) differential equations they obey are discussed in

more detail in chapter 3 of the SAGEX review [78]. Different strategies for transforming differential

equations to canonical form have been implemented in publicly available software such as epsilon [221],

Fuchsia [222], Canonica [223], Initial [224] and Libra [225].
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Figure 15. Left: The exchange graph of the C2 cluster algebra, with cluster

coordinates ordered as ai, ai+1. Right: Examples of four-point one-mass integrals

whose alphabet is given by the C2 cluster coordinates. Adapted from ref. [23].

discovered that cluster algebras underlie the analytic structure of a host of Feynman

integrals in dimensional regularization. This most notably includes all known four-

point integrals with one off-shell (or equivalently massive) leg, two-loop planar and

nonplanar [229, 230], L-loop ladders [231, 232], and more recently the three-loop tennis

court [233, 234], see also figure 15 for some examples. Specifically, the alphanet of this

entire class of integrals is described by a C2 cluster algebra.

In the remainder of this subsection, let us discuss how the latter connection was

established, and what it implies. The C2 cluster algebra is the first non-simply laced

case we encounter, so since it has no standard quiver representation, we will define it

directly in terms of the exchange matrix of its initial cluster B. The elements bij of

(the principal part of) the latter are essentially given by those of the associated Cartan

matrix C by [98]

bij = (−1)sign(i−j) (cij − δijcii) , (95)

therefore for the C2 case without frozen variables we have,

C =

 2 −1

−2 2

 ⇒ B =

 0 1

−2 0

 . (96)

Mutating the initial A-coordinates {a1, a2} according to the rules (37)-(38), then yields

in total six A-coordinates, arranged in six clusters as depicted in the corresponding

exchange graph on the left of figure 15.

One the other hand, the aforementioned integrals are expressible in terms of the

well-studied class of two-dimensional harmonic polylogarithms (2dHPLs) [229,84], which

have the alphabet, in the dimensionless variables z1 = 2(p1 ·p2)/P 2 and z2 = 2(p2 ·p3)/P 2

where the momentum labels as shown in the above figure,

Φ2dHPL = {z1, z2, z3, 1− z1, 1− z2, 1− z3} , (97)

with z1 + z2 + z3 = 1. Remarkably, the 2dHPL alphabet (97) is equivalent to the C2

alphabet given in the left of figure 15, as can be readily verified by applying the variable

transformation

z1 = − a2
2

1 + a1

, z2 = −1 + a1 + a2
2

a1(1 + a1)
. (98)
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Transformations of this type between equivalent alphabets may be searched for

systematically in a fashion analogous to the search for admissible MPL arguments,

discussed a few paragraphs above. For example, the fact that z1, z2 are both variables

and symbol letters implies that their logarithm should be a linear combination of

logarithms of the A-coordinate alphabet of figure 15, and that 1 − zi should factorize

over this alphabet.

It is very interesting to note that this cluster algebra connection also extends

to a variety of processes in Quantum Chromodynamics, where the aforementioned

integrals contribute as master integrals at two loops. These include for example three-

jet production in electron-positron annihilation [235], as well as vector boson plus jet

production, or perhaps more importantly, the heavy-top limit of Higgs boson plus

jet production [236] in proton-proton collisions. As is also reviewed in chapter 1 of

the SAGEX review [41], the latter amplitude is in fact a three-particle form factor.

These quantities are defined as vacuum expectation values of local operators between

the vacuum and an n-particle external state, so they are between the fully on-shell

amplitudes and the fully off-shell correlators.†. In the case at hand, the operator

H TrF 2, where H is the Higgs boson and F the gauge field strength, is the leading

effective vertex in the effective field theory that arises when integrating out the top

mass. The analogous quantity in N = 4 SYM, which will be the focus of the next

subsection, replaces this operator with any component of the stress-tensor multiplet of

the theory, can also be expressed in terms of the same set of master integrals, and was

first computed in [28].

Finally, we turn to the implications of the C2 cluster algebra for the 2dHPL master

integrals and the physical quantities they compute. We have seen in subsection 3.3 that

in N = 4 SYM theory cluster algebras additionally restrict which symbol letters can

appear next to each other, is this the case here as well? Surprisingly, it turns out that

the following subset of cluster adjacency restrictions hold

(((((((((((((
. . .⊗ a2l+1 ⊗ a2m+1 ⊗ . . . ⇔

((((((((((((((

. . .⊗ 1− zl ⊗ 1− zm ⊗ . . . , l 6= m, (99)

to all orders in ε! The same restrictions were also independently observed when

bootstrapping the N = 4 SYM three-particle form factor [29], and as in the case of

amplitudes they considerably reduce the size of the corresponding function space.

Can we understand why only this subset and not all of the adjacencies occur? To

this end, it is very suggestive that C2 is the parity-invariant surface of the A3 cluster

algebra, relevant for six-particle scattering: This readily follows by inspecting their

cluster polytopes, shown in figures 15 and 3.‡. In more detail, with the help of X -

coordinates it can be shown that the six nonvanishing A3 letters of eq. (40) (to avoid

† Protected correlators, their connection to scattering amplitudes inN = 4 SYM, and related bootstrap

approaches for computing them are also discussed in chapter 8 of the SAGEX review [237].
‡ This is an instance of a more general folding procedure, which carries over from Dynkin diagrams

to cluster algebras, and allows one to embed Bn, Cn, F4 and G2 inside A2n−1, Dn+1, E6 and D4,

respectively [101].
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clash of notation, in the latter equation we switch a1 → a, a2 → b, a3 → c), are related

to the C2 cluster variables as

a1 =
√
a , a3 =

√
c , a5 =

√
b , a2i =

√
m3−i , i = 1, 2, 3 . (100)

With this identification, we observe that the adjacency restrictions (99) precisely

become the extended Steinmann relations for six-particle massless scattering (53)! This

observation may point towards the right formulation of the (extended) Steinmann

relations at lower multiplicity n < 6, which is currently not well understood.§ Further

aspects of cluster-algebraic structures and their generalizations to Feynman integrals

have been discussed in [238, 27, 33, 138, 34], and providing a first-principle derivation of

their presence would be a very interesting goal for the future.

5.3. Bootstrapping a three-particle form factor

In the previous subsection, we saw that two-loop three-particle form factors are

expressible in terms of the 2dHPL alphabet (97), whose equivalent description in terms

of a C2 cluster algebra makes plausible that the same holds true also at higher loops.

In N = 4 SYM theory, while the computation of the two-loop form factor of the stress

tensor multiplet was carried out by unitarity methods, at the same time it was also

shown that its symbol may also be uniquely determined by a bootstrap approach very

much alike the one we have described for scattering amplitudes [28]. However what

prevented the application of this approach at higher loops was the absence of enough

independent information on the behavior of the form factor in kinematics limits, in

order to uniquely identify it inside the expected space of functions. This limitation has

been recently overcome, with the extension of the integrability-based Pentagon OPE for

predicting the near-collinear limit expansion of amplitudes and Wilson loops, mentioned

in subsection 4.3, also to form factors [239–241]. As a result, the form factor in question

has been computed through five loops in [29], with results through eight loops also

announced to appear [242].

While a detailed exposition of the three-particle form factor bootstrap would be out

of the scope of this review, let us present some of the main features, to also illustrate

the close similarity to the amplitudes case. The quantity of interest is the infrared-finite

part of the form factor, which was originally obtained by factoring out the exponentiated

one-loop form factor [28], in other words the corresponding BDS ansatz,

F3 = FBDS
3 exp[R] . (101)

In this normalization, by convention the finite part was chosen to be represented by its

logarithm, or remainder function R. However it turns out to be advantageous to pull

out the finite kinematic-dependent part of the one-loop form factor, so as to define the

§ We emphasize however that the adjacency conditions (99) do not correspond to discontinuities with

respect to two-particle Mandelstam invariants.
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BDS-like normalized form-factor E [29]‖,

E = e
1
4

ΓcuspE(1)+R , (102)

where its one-loop contribution is given by

E(1) = −
3∑
i=1

[2Li2(1− zi) + ln zi ln zi+1] + 4ζ2 , (103)

in terms of the kinematic variables we have defined above eq. (97). Then, at weight 1

the space of functions F1 containing E and its derivatives is dictated by the first entry

condition,

F1 = {log zi} , i = 1, 2, 3 , (104)

and at higher weight it is constructed from the alphabet (97), ensuring that it obeys

the integrability condition (59) or (60), the adjacency condition (99), which may be

equivalently formulated as

F 1−zl,1−zm = 0 , l 6= m, (105)

as well a branch cut condition analogous to eq. (62),

F 1−zi
∣∣∣ zi→1

zi+1→0
= 0, , i = 1, 2, 3 , (106)

An important difference between amplitudes and form factors, however, is that in the

latter case the branch cut condition also removes symbol-level functions.

Once the function space at the desired weight has been constructed, then an ansatz

for E is uniquely fixed by imposing its full zi → zj permutation symmetry, the restriction

on the

final symbol entry of E ∈ 1− zi
zi

, (107)

the fact that in the strict collinear limit in one orientation, e.g.

lim
z2→0

R = 0 , (108)

and finally constraints coming from the aforementioned near-collinear OPE.

A few final remarks are in order: First, in [28] the surprising observation was

made, that when normalized in the same fashion, the maximal transcendental part of

the leading-color term of the two-loop Higgs amplitude [236] discussed in the previous

subsection, coincides with R(2) at symbol level (but not quite at function level [84]).

It would be very interesting to find out if this agreement persists also at higher loops.

Second, in the previous subsection we saw that the alphabet of the six-particle amplitude

reduces to the alphabet of the form factor in the parity invariant surface. Quite

‖ Further refinement of the normalization so as to reduce the number of independent constants is

possible, but we will not describe this here.
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remarkably, this kinematic relation also extends to the level of dynamics: From the

existing data on both sides, it was observed that the MHV six-particle amplitude on the

parity-even surface coincides with the form factor, up to certain variable substitution and

the reversal of the order of letters in its symbol [243]! More precisely, the latter symbol-

level order reversal also extends to functions up to factors of π, and is captured by the

antipode operation on the Hopf algebra structure of MPLs, as is reviewed e.g. in [84]. It

would be very interesting to understand the physical origin of this correspondence, and

explore whether it persists for amplitudes and form factors with more legs or different

MHV degree.
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[60] Drummond J, Foster J, Gürdogan O and Kalousios C 2021 JHEP 04 002 (Preprint 1912.08217)

[61] Henke N and Papathanasiou G 2021 JHEP 10 007 (Preprint 2106.01392)

[62] Golden J, Goncharov A B, Spradlin M, Vergu C and Volovich A 2014 JHEP 01 091 (Preprint

1305.1617)

https://arxiv.org/abs/1706.10162
https://arxiv.org/abs/1207.0186
https://arxiv.org/abs/2012.15855
https://arxiv.org/abs/2106.03709
https://arxiv.org/abs/1201.4170
https://arxiv.org/abs/2012.12286
https://arxiv.org/abs/1712.09610
https://arxiv.org/abs/1806.01361
https://arxiv.org/abs/1806.06072
https://arxiv.org/abs/2106.09314
https://arxiv.org/abs/2112.11842
https://arxiv.org/abs/1907.00491
https://arxiv.org/abs/2105.08046
https://arxiv.org/abs/1407.4724
https://arxiv.org/abs/2005.06735
https://arxiv.org/abs/2103.XXXXX
https://arxiv.org/abs/1105.0771
https://cds.cern.ch/record/1019751
https://cds.cern.ch/record/1019751
https://arxiv.org/abs/0911.3169
https://arxiv.org/abs/1511.05409
https://arxiv.org/abs/1012.4002
https://arxiv.org/abs/hep-th/0607160
https://arxiv.org/abs/0707.0243
https://arxiv.org/abs/0712.1223
https://arxiv.org/abs/0902.2987
https://arxiv.org/abs/1201.5329
https://arxiv.org/abs/0905.1473
https://arxiv.org/abs/1012.6032
https://arxiv.org/abs/math/0312297
https://doi.org/10.1007/s10801-005-2513-3
https://arxiv.org/abs/1912.08217
https://arxiv.org/abs/2106.01392
https://arxiv.org/abs/1305.1617


Analytic Bootstraps for Scattering Amplitudes and Beyond 51

[63] Arkani-Hamed N, Bourjaily J L, Cachazo F, Goncharov A B, Postnikov A and Trnka J 2016

Grassmannian Geometry of Scattering Amplitudes (Cambridge University Press) ISBN 978-1-

107-08658-6, 978-1-316-57296-2 (Preprint 1212.5605)

[64] Sterman G F and Tejeda-Yeomans M E 2003 Phys. Lett. B 552 48–56 (Preprint hep-ph/0210130)

[65] Beisert N, Eden B and Staudacher M 2007 J. Stat. Mech. 0701 P01021 (Preprint hep-th/0610251)

[66] Freyhult L 2012 Lett. Math. Phys. 99 255–276 (Preprint 1012.3993)

[67] Chicherin D and Korchemsky G 2022 (Preprint 2103.XXXXX)

[68] Alday L F and Roiban R 2008 Phys. Rept. 468 153–211 (Preprint 0807.1889)

[69] Yang G 2011 JHEP 03 087 (Preprint 1006.3306)

[70] Papadopoulos C G, Tommasini D and Wever C 2016 JHEP 04 078 (Preprint 1511.09404)

[71] Canko D D, Papadopoulos C G and Syrrakos N 2021 JHEP 01 199 (Preprint 2009.13917)

[72] Abreu S, Ita H, Page B and Tschernow W 2021 (Preprint 2107.14180)

[73] Arkani-Hamed N, Bourjaily J L, Cachazo F, Goncharov A B, Postnikov A and Trnka J 2016

Grassmannian Geometry of Scattering Amplitudes (Cambridge University Press) ISBN

9781107086586, 9781316572962 (Preprint 1212.5605) URL http://www.cambridge.org/

us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/

grassmannian-geometry-scattering-amplitudes?format=HB&isbn=9781107086586

[74] Brown F and Duhr C 2020 A double integral of dlog forms which is not polylogarithmic (Preprint

2006.09413)

[75] Chen K T 1977 Bull. Amer. Math. Soc. 83 831–879 URL http://projecteuclid.org/euclid.

bams/1183539443

[76] Goncharov A B 1995 Adv. Math. 114 197–318 ISSN 0001-8708 URL http://www.

sciencedirect.com/science/article/pii/S0001870885710456

[77] Goncharov A B 1998 Math. Res. Lett. 5 497–516 (Preprint 1105.2076)

[78] Abreu S, Britto R and Duhr C 2022 (Preprint 2103.XXXXX)
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