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Abstract

First-principle simulations are at the heart of the high-energy physics research program.

They link the vast data output of multi-purpose detectors with fundamental theory pre-

dictions and interpretation. This review illustrates a wide range of applications of mod-

ern machine learning to event generation and simulation-based inference, including con-

ceptional developments driven by the specific requirements of particle physics. New

ideas and tools developed at the interface of particle physics and machine learning will

improve the speed and precision of forward simulations, handle the complexity of colli-

sion data, and enhance inference as an inverse simulation problem.
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derstanding will also allow us to study more and more complex signatures with an increasing

multiplicity of backgrounds and potential signals. Each of these aspects poses a challenge to

the established event generators, and we will discuss ways modern machine learning can help

us meet them in Sec. 2. Next, we will introduce end-to-end (soup-to-nuts) ML-generators,

similar in structure to ML-detector simulations in Sec. 3. Finally, we discuss conceptual bene-

fits from modern machine learning, for instance related to an invertible simulation chain and

simulation based inference, in Sec. 4. Because the main purpose of this report is to show new,

ML-driven developments in event generation, we refer to the main event generator Snowmass

white paper for a list of references and a detailed discussion of the physics background and

the classical approaches.

Executive summary

Modern machine learning is driving recent progress in event generation, simulation, and infer-

ence for high-energy colliders, as showcased in this contribution to the Snowmass community

report. Like all fields of fundamental science with a strong numerical foundation, collider

physics is benefiting in a transformative way from new ideas, concepts, and tools developed

under the broad umbrella of artificial intelligence/machine learning (AI/ML) research. Con-

crete improvements in LHC event generation and simulation, as well as new ideas for LHC

analysis and inference, are rapidly leading towards particle-physics-specific contributions to

applied machine learning. This in turn is inspiring a new generation of high-energy physics re-

searchers bridging theory, experiment, and statistics. To exploit the vast dataset of the coming

LHC runs and optimize the design of a possible future collider, we must sustain the extremely

fruitful exchange between particle physics and AI/ML research. One way to cultivate and capi-

talize on these ideas is to create a world-wide research network for AI/ML-related fundamental

physics, through targeted funding calls and long-term research structures at laboratories and

universities. Such a network would open attractive career paths for young researchers in the

high-energy physics community, establish crucial ties between particle physics and AI/ML re-

search, and foster collaborations between academia and industry.

2 Machine Learning in event generators

Current multi-purpose event generators feature a modular structure, that reflects the factor-

ization property of physics aspects at very different relevant energy scales [1–5]. While the

highest energy transfers, i.e. the hard process and QCD parton showers, can be treated by

perturbative methods, phenomenological models are used to account for the hadronization

transition, as well as non-trivial secondary interactions. The increase in perturbative precision

needed to address the physics challenges posed by current and future collider experiments,

adds a sizeable number of more specialized numerical codes to the simulation toolbox. This

includes, for example, dedicated codes to construct and evaluate higher-order tree-level or

loop amplitudes. Modern machine learning techniques can improve all aspects of event gen-

eration, ultimately making it more resource efficient and opening paths to yet more versatile

and accurate predictions. This includes important ingredients to precision predictions such

as parton densities and fragmentation functions, where neural network (NN) techniques are

routinely used already. First steps towards modeling the hadronization process with ML tech-

niques have been presented in [7]. For the tuning of non-perturbative simulation parameters,

including an underlying event model, NN-based approaches have recently shown promise [8].
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2.1 Phase space sampling

The core of any scattering event simulation is the assumed hard process configuration or par-

tonic scattering event. These are described by QFT transition amplitudes, where the physics

demands of the LHC experiments require us to consider high-multiplicity final states and one-

or even two-loop QCD and/or EW corrections. The complexity of the resulting matrix elements

and the dimensionality of their phase space severely challenge the integration of cross sections

and the generation of partonic momentum configurations. Modern NN-techniques are ideally

suited to assist in these tasks. The standard technique used so far is based on importance

sampling, employing mappings ~y : V → U ⊆ Rd for phase space integrals

I =

∫

V

dd x f (x) =

∫

U

dd y
f (x)

g(x)

�
�
�
�
x≡x(y)

with

�
�
�
�

∂ y(x)

∂ x

�
�
�
�
= g(x) . (1)

It can be chosen such that f /g ≈ const, to reduce the variance of the Monte Carlo integral

estimate. However, for complex matrix elements and high-dimensional phase spaces it is often

not possible to find a single function g that approximates the target function f sufficiently well.

Therefore, event generators use a multi-channel approach with independent mappings ~yi for

each channel i. Defining a total density g(x) =
∑

i βi gi(x), with
∑

i βi = 1 and 0 ≤ βi ≤ 1,

where βi are the channel weights, the phase space integral can be parametrized as

I =

∫

V

dd x f (x) =
∑

i

∫

V

dd x βi gi(x)
f (x)

g(x)
=
∑

i

∫

U

dd yi βi

f (x)

g(x)

�
�
�
�
x≡x(yi)

. (2)

Two ML-based approaches to phase space integration and event generation can be distin-

guished. The first directly hooks into existing phase space integrators and uses trainable maps

given for example by bijective normalizing flows to redistribute input random variables to the

mapping functions ~yi and better adapt to the integrand [9–15]. After an initial adaptation

phase these integrators can efficiently be used for generating weighted or unweighted events.

However, the very expressive NN-transformations can also deal with non-factorizable phase

space structures and correlations. Promising results in terms of efficiency improvements and

speed gains have been reported, see for example Tabs. 1 and 2. However, in particular for

high-multiplicity processes with non-trivial topologies the effective gains when comparing to

the established methods can fall below unity, cf. Tab 2. Therefore, next steps will be to better

combine NN-based approaches with multi-channel integrators [9, 13]. For example, one can

allow the channel weights to be phase space dependent, βi → αi(x), and solely start from the

condition
∑

i αi(x) = 1 and 0≤ αi(x)≤ 1,

I =

∫

V

dd x f (x) =
∑

i

∫

V

dd x αi(x) f (x) =
∑

i

∫

U

dd yi αi(x)
f (x)

gi(x)

�
�
�
�
x≡x(yi)

. (3)

top decays top-pair production g g → 3g g g → 4g

Sample εuw EN [GeV] εuw EN [fb] εuw EN [fb] εuw EN [fb]

Uniform 59 % 0.1679(2) 35 % 1.5254(8) 3.0 % 24806(55) 2.7 % 9869(20)

VEGAS 50 % 0.16782(4) 40 % 1.5251(1) 27.7 % 24813(23) 31.8 % 9868(10)

NN 84 % 0.167865(5) 78 % 1.52531(2) 64.3 % 24847(21) 48.9 % 9859(10)

Table 1: Results for sampling the top decay width, the total cross section of top-pair

production and decay in e+e− collisions, and g g → 3g and 4g production. Shown

are the integral estimate, EN , and the unweighting efficiency, εuw, for a standard

importance sampler (Uniform), VEGAS, and NN-based optimization [9].
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In fact, Eqs. (2) and (3) are mathematically equivalent, connected by αi(x) = βi gi(x)/g(x).

In NN-optimized event generation, Eq.(3) splits the optimization task into learning appropriate

phase space mappings for each channel and training another network to find optimal weights

αi(x) to connect all channels. This separation has two advantages: (i) possible missing correla-

tions between the different channels can be described and recovered by the phase-space depen-

dent channel weights, and (ii) the second network allows for a more flexible parametrization

as it does not need to be bijective.

A second approach to ML-assisted phase space sampling is based on directly learning the

phase space distribution of events from input training samples, either weighted or unweighted.

Solutions employ autoregressive flows [16], generative adversarial networks (GANs) [17–20],

or variational autoencoders (VAEs) [19]. This motivates R&D to improve training through

differentiable programming; by merging matrix element codes with automatic differentia-

tion [21], i.e. the automatic generation of derivatives of programs that is the backbone of

neural networks software frameworks. The gradients of matrix elements can be evaluated

and used as additional information for training generative models. Initial studies using dif-

ferentiable matrix elements from MADJAX have explored extending normalizing flow training

with schemes uniquely enabled by the ability to automatically compute matrix element gradi-

ents [22], and show promise in terms of improving modeling and reducing the needed scale

of simulated datasets for training.

Closely related activities attempt to facilitate faster event unweighting and reweighting

methods using NN generative models [23, 24] or fast to evaluate NN surrogates for the tran-

sition amplitudes [25].

2.2 Scattering Amplitudes

Perturbative precision calculations use interpolation methods to reduce the evaluation time for

expensive loop amplitudes, defining a task where appropriately designed neural networks can

be expected to outperform standard methods [25–29]. The challenge in NN-based surrogate

models for integrands and amplitudes is to ensure that all relevant features are indeed encoded

in the network at sufficient precision and to establish a reliable uncertainty treatment of the

network training.

A relevant test case are loop-induced amplitudes such as those for

g g → Z Z and g g → γγ+ jets . (4)

The application of simple, gradient boosted machines to g g → Z Z highlights that fast interpo-

unweighting eff. εuw LO QCD NLO QCD (RS)

process/sampling n=0 n=1 n=2 n=3 n=4 n=0 n=1

W+ + n jets SHERPA 2.8 · 10−1 3.8 · 10−2 7.5 · 10−3 1.5 · 10−3 8.3 · 10−4 9.5 · 10−2 4.5 · 10−3

NN 6.1 · 10−1 1.2 · 10−1 1.0 · 10−3 1.8 · 10−3 8.9 · 10−4 1.6 · 10−1 4.1 · 10−3

Gain 2.2 3.3 1.4 1.2 1.1 1.6 0.91

Z/γ∗ + n jets SHERPA 3.1 · 10−1 3.6 · 10−2 1.5 · 10−2 4.7 · 10−3 1.2 · 10−1 5.3 · 10−3

NN 3.8 · 10−1 1.0 · 10−1 1.4 · 10−2 2.4 · 10−3 1.8 · 10−3 5.7 · 10−3

Gain 1.2 2.9 0.91 0.51 1.5 1.1

Table 2: Unweighting efficiencies for V+jets production at the LHC. ‘SHERPA’ relies

on multi-channel importance sampling using VEGAS; ‘NN’ uses a normalizing flow;

‘Gain’ shows the improvement of NN over SHERPA. Results from Ref. [13].
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Figure 4: Relative integration error for sector one of a 2-loop triangle integral (left)

and a 2-loop box integral known to contain elliptic functions (right) using the stan-

dard pySECDEC algorithm (green), the ML-assisted Λ-glob algorithm (blue) and in-

cluding an additional normalizing flow (red). The lower panel shows the ratios to

the standard method. The figures are taken from Ref. [35].

the network precision as the key criterion for an application in the LHC simulation chain. Per-

haps of even greater interest would be the use of a single trained model to integrate over a

wide range of kinematic cuts, jet algorithms, PDF sets, scale choices, which could enable a

further order of magnitude in overall performance.

2.3 Loop integrals

Amplitudes beyond the leading order contain loop integrals, and machine learning can im-

prove the calculation of (multi-)loop integrals by optimizing the integrands in Feynman pa-

rameter space [35]. When an analytic solution to these integrals is not feasible, they must be

evaluated numerically. Before attempting a numerical evaluation, the poles of the integrand

need to be controlled. In dimensional regularization, ultraviolet and infrared poles can be

factorized efficiently with sector decomposition. After factorizing these poles, integrable sin-

gularities related, for example, to thresholds, remain. Such poles, located on the real axis in

Feynman parameter space, can be avoided by a deformation of the integration contour into the

complex plane. An automated procedure to do this has already been implemented in standard

tools like SECDEC, FIESTA, and pySECDEC. The deformation of the integration contour is not

unique and can be performed in many ways. In fact, the numerical precision of the integration

can vary by orders of magnitude depending on the chosen contour.

For standard integrals, the contour deformation procedure implemented in pySECDEC works

fast and usually produces satisfactory contours in practice. However, for more complicated

integrals and in specific phase-space regions, the chosen contour is sub-optimal and can be

optimized significantly, see Fig. 4. In this case, ML-assisted, or more specifically, NN-assisted

algorithms, offer great potential to amplify the precision. Like in the neural importance sam-

pling methods [9,12,13,16] for phase-space integrals, normalizing flows can be used to find

a better parametrization of the integration domain. As these contour integrals need to sat-

isfy certain boundary conditions, originating, for instance, from the Landau equations and

Cauchy’s theorem, the NN setup needs to be extended to obey these constraints. Furthermore,

the usage of complex-valued floats can entail the necessity to construct own implementations

9



=⇒

h(t−1) h(t)
h(t+1) · · ·· · ·

h(t−1)

h(t)

k
(t)
d1

k
(t)
d2

k
(t)
d1

k
(t)
d2

k
(t−1)
d1

k
(t−1)
d2

k
(t+1)
d1

k
(t+1)
d2

Figure 5: A promising approach to learning parton showers is to use a structure

inspired by the semi-classical approximation as a backbone for a general probability

estimator. In the JUNIPR approach, a recurrent neural network is used to emulated

the Markov-process aspect of a parton shower. Figure taken from Ref. [36].

for objects like gradients of complex determinants occurring during training and optimization.

2.4 Parton shower

The parton shower is an essential element of particle physics simulations. It describes the

evolution of particles between the hard scale of the collision ∼ 100 GeV to the hadronization

scaleΛQCD. This evolution is typically modeled as a Markov process where partons evolve semi-

classically, radiating gluons as they move with probabilities determined only by properties of

the parton splitting and perhaps one or two spectator partons in the event. Although the

semi-classical approximation can be justified in the limit where the daughter particles are

emitted at small angles with respect to the mother, parton showers are used well outside of this

regime. The use of parton showers is thus justified not by physics but by necessity: computing

the full distribution from first principles is computationally intractable. This limitation is an

opportunity for machine learning; perhaps an improved parton shower could be learned rather

than built.

The simulation of parton showers offers an interesting structure compared to other gen-

erative tasks. When simulating entire collision events, as discussed in Sec. 3, commonly a

representation encoding a small and often fixed number of 4-vectors is chosen. Simulating

showers all the way down to calorimeter sensors, or with calorimeter sensors themselves,

yields a much larger number of particles in the final state. However, the output nodes of a

generative model can still be identified with different cells of the physical detector and there-

fore allow architectures that for example use convolutional layers.

Within the semi-classical approximation and even though the probability function at each

branching in the shower is relatively simple, the overall distribution of particles produced is

quite complex. It would be seriously challenging to learn this final distribution without some

domain knowledge of its structure [37]. One approach is to scaffold a learnable model over

a semi-classical framework [36,38], as sketched in Fig. 5. Additionally, network architectures

based on sets or graphs explicitly encoding permutation symmetry of the final state particles

have been investigated [39–44].

An alternative way of improving parton shower with ML-methods might be to stick to the

fundamental splitting structure and measure the QCD splitting kernels in low-level observ-

ables. As before, the challenge of generating many particles covering several orders of mag-

nitude in energy is taken care of by the usual Monte Carlo method. A modified and shower-
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Figure 7: Fragmentation functions of up (left) and charm quarks (right) into charged

pions as a function of the time-like momentum fraction z, comparing the results of

two approaches (MAP and NNFF) based on machine learning techniques. Figure

taken from Ref. [58].

physics is being searched for, and also a challenge at the frontier of machine learning. While

several machine learning tools have been implemented with the aim of preventing overfitting,

confirming whether the PDF resulting of a fit is indeed free of overfitting still relies – at least

in part – on the fitter’s accumulated knowledge of PDFs. To illustrate this point, Fig. 6 shows

a comparison of the strange-quark PDF xs(x ,Q) at Q = 1.65 GeV, both for a good fit and a

clearly overfitted alternative. The development of reliable quantitative measures of the degree

of overfitting is a challenge, both within the context of PDF determination and more in general

in machine learning, and it is a topic of ongoing research.

2.6 Fragmentation functions

Fragmentation functions (FFs) are the time-like equivalent of PDFs and encode the probabili-

ties associated to the transition between partons produced in the hard-scattering and specific

types of hadrons. Being based on the perturbative QCD factorization framework, FFs represent

an alternative strategy to model partonic hadronization as compared to the phenomenological

models available in most MC event generators. FFs can be determined from a global analysis of

hard-scattering data from electron-positron collisions, semi-inclusive deep inelastic scattering,

and proton-proton collisions (RHIC and LHC) with identified final-state hadrons.

A phenomenological analysis of FFs requires introducing a parametrization for their initial-

scale (Q0) dependence with the momentum fraction z, zD
(h)

i
(z,Q0), where i is a partonic index

and (h) a hadronic label. To remove theory bias and model-dependence in the determination

of FFs, machine learning techniques can be adopted [58–61]. Feed-forward neural networks

are deployed as universal unbiased interpolants for zD
(h)

i
(z,Q0), whose weight and threshold

parameters are obtained from a log-likelihood maximization by comparison with experimen-

tal data. This approach can be combined with the Monte Carlo replica method, originally

deployed for PDFs [62], to estimate and propagate the uncertainties from the input data to

the output FFs. The basic strategy is to generate Nrep replicas which sample the probabil-

ity density associated to the data, and then train a separate neural network to each of these

replicas. The spread of the resulting networks (i.e. 68% CL intervals) provides then a robust

estimate of the uncertainties associated to the FFs.

Fig. 7 displays a comparison between FFs determined in two approaches (MAP and NNFF)

based on machine learning techniques. We show the FFs associated with the transition of up

and charm quarks into charged pions (π+ + π−) as a function of the time-like momentum

fraction z. The bands represent the corresponding 68% CL ranges. It is worth emphasizing
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pp→ t t̄ events at the parton level, including shower evolution, generated with MC@NLO. In

addition, normalizing flows come with significant advantages in controlling their performance

and quantifying uncertainties, as discussed in the next section. Their invertible structure is

useful for many LHC-applications, including anomaly detection or related density estimation

tasks [87–90].

An attractive application of soup-to-nuts networks can be targeted using Optimal Transport-

based probabilistic autoencoders [67]. Their structural advantage is that they learn the map-

ping from parton-level information in theory space, Z , to detected and reconstructed objects

in data space, X , without requiring paired event samples, {z, x}. The probabilistic autoen-

coder’s latent space is identified with a physically meaningful representation of parton-level

theory-space information, so the encoder and decoder networks define a simulator mapping,

Z → X , and an unfolding mapping, X → Z . Properties of the OT-based method encourage

the encoder and decoder to be conditional mappings, effectively sampling from the proba-

bility distributions pE(z|x) and pD(x |z), respectively. Over many samples, these distributions

will marginalize to the appropriate theory-space and data-space priors, p(z) and p(x), respec-

tively. Alternative methods to encode an unfolding mapping in neural networks are discussed

in Sec. 4.

Despite having no training pair information, OTUS’s learned mappings exhibit physical-

behavior, even picking up on invariant masses which were withheld during training. This sug-

gests that further development in this direction should produce physically meaningful map-

pings, even if relations are missed or unknown, and therefore not included in the training

process. On the other hand, providing known relations as inductive biases on the data inputs,

network architectures, or loss functions will likely improve performance. Figure 9 depicts the

joint distribution and marginals of OTUS’ trained simulator as well as the true simulator for

one test-case. Despite OTUS only having information about marginal-matching during train-

ing, the decoder network learns a mapping which is qualitatively similar to the true simulator.

3.2 Control and precision

If we use neural networks to encode theory predictions for the LHC, we need to ensure that

all relevant phase space features are described with the required precision [91]. For neural

networks, this problem can be split into two distinct tasks: first, we need control over the

relevant phase space features, so the network does not interpolate over relevant, but narrow

phase space regions. Second, we have to estimate the precision with which the network has

learned the underlying phase space density.

Neural networks work much like a fit and not like an interpolation in the sense that they

do not reproduce the training data faithfully and instead learn a smooth approximation [64,

65]. This is where we can gain some intuition for a NN-uncertainty treatment. For a fit,

uncertainties on the training data are crucial information in the loss function. We then monitor

the fit quality and ensure that the fit is reliable over the entire phase space.

To guarantee that all relevant features are encoded in a generative network, we can follow

the GAN inspiration and train a simple discriminator network to identify and quantify devia-

tions between training and generated data. As a post-processing step such a discriminator can

be used to reweight the events from the generative network [24,68,92]. In the GAN spirit we

can incorporate the discriminator into the generator training, either through adversarial train-

ing searching for a Nash equilibrium, or through alternative approaches for a normalizing flow

generator. Such a joint training will improve the generator, provide an uncertainty estimate,

and prepare any remaining information in the discriminator for reweighting, as illustrated for

Z+jets production at the parton level in Fig. 10.

Once we know that the neural network describes all features, we determine how well

it does. This can be done with Bayesian networks, where the learned network weights are
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their gradients to probe and learn about distributions on phase space [96]. Finally, we can

construct generative inverse simulations with conditional versions of the respective forward

generative networks [94, 97, 98]. This last approach is based on progress with soup-to-nuts

ML-generators and their essentially identical network architectures.

4.1 Particle reconstruction

The first stage of the inverse problem uses the set of energy deposits in the detector to recon-

struct the set of particles present at the first interaction with the detector, that is, following

hadronization. In its fullest sense, reconstruction also involves the prediction of the particles’

properties, in particular, their class and momenta. The difficulty of this task stems from the

busy LHC environment caused by pileup interactions and the inherently collimated signatures

associated with jets. Traditional particle flow (PF) algorithms rely on parameterized schemes

for merging and splitting to disentangle overlapping calorimeter cell clusters as well as track-

based subtraction to infer the contribution from neutral particles.

A series of publications [99–101] have established the potential for ML-based reconstruc-

tion to go beyond traditional PF algorithms. In Ref. [99], particle reconstruction was recast

as a computer vision problem using state-of-the-art ML architectures including U-net, graph

neural network (GNN) and DeepSets. A simplified dataset was used comprising overlapping

pairs of charged and neutral pions in a 6-layer calorimeter block. In comparison to a tra-

ditional PF algorithm, the ML models regress the component of neutral energy better by a

factor of two to four in terms of resolution. The study also finds significant improvements via

a super-resolution approach (see also Ref. [102]), where the network is trained to predict a

corresponding calorimeter signature with higher granularity.

This proof of concept has been extended to particle reconstruction in more realistic environ-

ments resembling multiple pileup interactions in a full-coverage simulated detector [100,101].

In both cases, GNN architectures are employed for their ability to handle the complexity of

detector data: variable numbers of input and target entities, lack of ordering, irregularity of

detector components, and sparsity of “pixels”. Moreover, GNNs are able to leverage the spatial

relationships between calorimeter cells alongside their input features to optimize the predic-

tion tasks.

Based on these developments, it can already be anticipated that ML methods will take a key

role in particle reconstruction at future runs of the LHC, especially to handle HL-LHC condi-

tions. GNN-based models in particular show potential to outperform current PF algorithms for

particle identification and regression while opening new possibilities such as super-resolution

and resolving neutral particles inside of jets. Finally, the learned deep latent representation of

detector information, which underlies the prediction tasks, should serve as a more expressive

input format for both event classification and downstream tasks in the inverse problem.

4.2 Detector unfolding

While the physical processes behind an LHC collision are described by fundamental physics

and are therefore universal, the observed data depend in an intimate way on the technical de-

tails of the detector. Detector effects like phase space coverage, detection thresholds, particle

reconstruction, efficiencies, or calibration induce not only resolution smearing in the measure-

ments, but can lead to systematic deviations between the properties of particles reaching the

detector and the objects reconstructed from actually measured data. For individual experi-

ments, these detector effects differ greatly and can only be estimated by the collaboration. It

is therefore essential for future interpretations of a measurement to unfold detector effects

so that we can compare measurements by different experiments to each other and to theory

predictions.
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Figure 12: Unfolded parton-level distributions for the process pp → ZℓℓWj j+jets

using a cINN. The unfolding covers detector effects as well as additional jet radiation.

Figure from Ref. [94].

conditional density of particle-level quantities conditioned on reconstructed inputs [94], while

another approach frames unfolding as an empirical Bayes / maximum marginal likelihood /

data-informed prior learning problem [96].

Because classification-based and density-based unfolding techniques have distinct strengths

and weaknesses, the natural next step will be to combine the two methods to benefit from

both. While there is an extensive R&D program required to integrate both methodologies

and to achieve precision, these tools are starting to be applied to data analysis in collider

physics [106]. Looking ahead, it is clear that future versions of these tools will play an im-

portant role in the data analysis of future colliders. Unfolded differential cross sections are

one of the main data products from collider experiments. By performing the unfolding with as

much information as possible, we ensure that the measurements achieve the maximal preci-

sion, making the best use of the data. Furthermore, high-dimensional and unbinned unfolding

ensures that these data products are ‘future proof’ in the sense that binning and even observ-

ables can be chosen post-hoc [103]. This enables downstream data analysis long after the data

were published, including when new theoretical insights are available.

4.3 Unfolding to parton level

Once we control ML-unfolding of detector effects, we can target other parts of the simulation

chain shown in Fig. 1 and invert them for a given LHC analysis. To probe the kinematics of

a hard scattering process we can use neural networks to unfold QCD jet radiation and heavy

particle decays to study the production kinematics of top quarks, electroweak gauge bosons, or

the Higgs without binning and with full correlations. Such measurements are standard in top

physics and provide the ideal input to global SMEFT analyses. Once we know the parton-level

configurations for a given observed event, we can use NN-techniques to evaluate observables

like CP-sensitive angular correlations in their original reference frames.

The inversion of QCD radiation or decays relies on the same classification or generative

networks as detector unfolding. For instance, we can train a normalizing flow to map random

numbers to the parton-level phase space, under the condition of a given detector-level event.

The underlying model is encoded in the forward simulation chain used to train the network.

Part of it is the assumed hard process, including the number of jets which are part of the hard

scattering and do not get unfolded. When analyzing an event and sampling into parton-level

phase space, we extract a probability distribution of parton-level configurations [94], which

we can use to define observables suitable for standard analyses.
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One challenge for such analyses are combinatorics. For the hard scattering qq̄ → ZℓℓWj j

and up to two additional QCD jets we ask how well cINN-unfolding extracts the W -kinematics.

In the left panel of Fig. 12 we illustrate how the network reproduces the momentum of the

decaying W -boson. The relation between the up to four jets and the two partonic quarks from

the W -decay is learned by the network. In the right panel of Fig. 12 we show the recon-

structed W -mass stacked for different numbers of jets. The network resolves the underlying

combinatorics such that the W -widths for the different jet multiplicities are identical, all by by

accessing correlations combined with the truth information from the forward simulation. This

corresponds to results from a systematic study which shows that deep networks outperform

classical approaches to solving the combinatorics in the reconstruction of top-quark final states

significantly [107].

High-level observables encoded into neural networks will find their way into standard

experimental analyses. They are motivated by existing top-sector measurements, and using

NN-techniques will simplify their use considerably. Moreover, the comprehensive uncertainty

treatment discussed Sec. 3.2 and the merged classification-based [95] and density-based tech-

niques from Sec. 4.2 can be applied to any part of an inverted or unfolded simulation chain.

4.4 MadMiner

The relation between data x and physics parameters θ is, fundamentally, described by the

likelihood function or normalized fully differential cross section, which we can predict in a

factorized form,

p(x |θ ) = 1

σ(θ )

dσ(x |θ )
dx

. (5)

While we can predict this likelihood at the detector level using the standard, forward simula-

tion tools, we can only compute it in a closed form at the parton level. This challenge in the

relation of simulations and inference is where neural networks might lead to transformative

progress.

Inspired by the standard simulation chain we can assume that the likelihood of Eq.(5)

approximately factorizes into the form [108,109]

p(x |θ ) =
∫

dzd

∫

dzs

∫

dzp p(x |zd) p(zd |zs) p(zs|zp) p(zp|θ )
︸ ︷︷ ︸

p(x ,z|θ )

. (6)

Here we integrate over latent variables z, where zd characterize the detector effects, zs the par-

ton shower and hadronization, and zp the partonic phase space including helicities, charges,

and flavors, etc. Given the typically large number of latent variables, it is unrealistic to inte-

grate over them or evaluate the joint-likelihood p(x , z|θ ). However, it is possible to calculate

the joint likelihood ratio relative to a reference point in terms of the ratio of squared matrix

elements from parton-level generators [108–112],

r(x , z|θ ) = p(x , z|θ )
p(x , z|θref)

=
p(zp|θ )

p(zp|θref)
∼
|M|2(zp|θ )
|M|2(zp|θref)

σ(θref)

σ(θ )
. (7)

The starting point to new ML-methods is to construct functionals in terms of the joint likelihood

ratio r(x , z|θ ), which are minimized by the true likelihood or likelihood ratio function [113,

114]. The result of this training are neural networks that approximate the true likelihood

ratio r(x |θ ). Given such a neural network, established statistical techniques can be used to

construct confidence limits in parameter space.
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The previously outlined inference strategy has been fully automated in the MadMiner

tool [112, 119]. The increase in physics sensitivity relative to a total rate or single kinematic

distribution is illustrated in Fig. 13. In the left panel we consider t t̄H production to constrain

the two SMEFT Wilson coefficients cu and cG . In the right panel we consider the same process

to constrain CP-violation in the top-Higgs coupling, as parameterized by the magnitude κt and

CP-phase α of the top Yukawa coupling [115,120].

4.5 Matrix element method

Inverting the entire simulation chain in Fig. 1 allows us to extract the transition amplitude for

an observed event and relating it to a theory prediction. This so-called matrix element method

(MEM) can be used to estimate free parameters of a fundamental physics model and has, for

instance, been applied for measure the top mass. Being defined on the level of individual

events, it is in particular suitable for low-statistics signals, where an optimal exploitation of all

kinematic features is critical.

The MEM relies on our ability to extract the likelihood for detector-level events as a func-

tion of a model parameter θ , as an ML-application through density-based unfolding or an

inverted simulation. Extending the discussion in Sec. 4.4, the transition amplitude as a func-

tion of detector-level phase space is unknown, but it can be calculated at the parton level. The

two phase spaces can be related by transfer functions T (~x , ~z), probabilities to observe parton-

level configurations ~z as detector-level signatures ~x , as part of the forward simulation. In the

N -event likelihood they appear as

L(θ ) =

N∏

i=1

p(~x (i)|θ ) =
N∏

i=1

1

σfid(θ )

dlσ(θ )

dx1... dx l

�
�
�
�
~x (i)
=

N∏

i=1

1

σfid(θ )

∫

dmz
dmσ(θ )

dz1... dzm

T (~x (i), ~z) .

(9)

Note, the dimensions of the parton-level and detector-level phase spaces are different. For

instance, longitudinal neutrino momenta are unobservable, while additional jets have to be

included with higher-order QCD corrections. Existing approaches model the transfer functions

heuristically, and for non-trivial cases the numerical convolution is impossible. The general

form of Eq.(9) indicates ways of enhancing the accuracy of the matrix element method: first,

higher-order corrections can be included at parton level, for instance using the MEM@NLO

program. Second, general and highly non-Gaussian transfer functions can account for parton

shower, hadronization, detector resolution, acceptance, and efficiency, as well as a possible

mismatch between theoretically described and actually measured quantities, event by event.

For an ML-based inverse simulation, ~x → ~z, we can assume that every detector-level event

comes from some parton-level configuration, including an efficiency, so it is easiest to approxi-

mate the transfer function by a factorized form T (~x , ~z) = p(~z|~x) ε(~x). The normalization ε(~x)

could in principle also depend on θ , just like the fiducial cross section. With the factorized

transfer function, Eq.(9) becomes

L(θ ) =

N∏

i=1

ε(~x (i))

σfid(θ )

∫

dmr

�
�
�
�

∂ (z1, . . . , zm)

∂ (r1, . . . , rm)

�
�
�
�

p(~z|~x (i)) dmσ(θ )

dz1... dzm

≡
N∏

i=1

ε(~x (i))

σfid(θ )

­
dmσ(θ )

dz1... dzm

·

~z∼p(~z|~x (i))
. (10)

The convolution integral is now reduced to an expectation value of the differential cross sec-

tion with respect to the probability density p(~z|~x). In analogy to Sec. 4.2 or Sec. 4.3, the

partonic configurations ~z for a given detector event ~x (i) can be sampled according to p(~z|~x) by
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a conditional normalizing flow or INN. This way, density-based unfolding will allow us to make

optimal use of the statistical power of the MEM, exploiting the full and correlated event kine-

matics event by event for critical LHC observables like the top mass, the Higgs self-coupling,

or CP-violating phases.

5 Synergies, transparency and reproducibility

A key paradigm in the development of simulation tools for high-energy collider experiments is

publicly accessible open source software. The versioning of code releases and the reproducibil-

ity of predictions is vital for a reliable analysis and interpretation of collider data. As we have

seen in the previous sections, ML-methods are entering all aspects of the simulations chain at

high pace. They range from initial proof-of-concept applications to well established use cases

with largely consolidated techniques, for example in the determination of parton densities.

Machine learning models efficiently encode arbitrary decision functions of a given set of

inputs, and thus offer a chance to easily exchange complex relations. This might correspond

to the value of a scattering matrix element given a set of momenta, or probability models

from simulation-based inference, like MEM or MadMiner. The sharing of neural networks

used for various generative or discriminative tasks will be of central importance and should

be further extended. This will allow researchers to critically examine and build upon previous

results more easily, enable synergies between different use cases, and facilitate reproducibility

of results.

Successfully sharing a machine learning model entails two challenges: (i) sharing the

model itself, including architectures, software versions, and weights; and (ii) sharing data

it can be used on. Exchanging models is technically relatively straightforward and several

corresponding tools exist, for example Open Neural Network Exchange (ONNX). It allows the

exchange of neural networks and BDTs between training frameworks.

Suitable input data poses the more difficult problem. On the side of results by large col-

laborations, this adds additional weight to the ongoing move towards publishing open data

along with measurements. Containerization, as enabled by software tools like Docker can be

useful in bundling the correct versions of different software packages used for data processing

and machine learning in a coherent fashion.

An opportunity exists in the realm of phenomenological studies based on the DELPHES

detector simulation [121]. Here a common specification on how quantities are translated into

the inputs to machine learning algorithms might — together with publishing the ML models —

boost sharing and meaningful exchange. Another interesting angle are generative models. As

these do not need data to evaluate, sharing the architecture and weights is already sufficient.

Generative networks themselves can even be used as an efficient alternative way of sharing

simulated data.

Publication of ML models for their reuse is not yet standard in the particle physics com-

munity. Examples where trained networks have been published in ONNX format for future

reuse are the DNNLikelihood [122], a package for cross-disciplinary training of discriminator

networks [123], and the ATLAS search for R-parity-violating supersymmetry [124, 125], the

latter also being available in the ATLAS SimpleAnalysis framework. However, detailed doc-

umentation for instance of the input variables is missing. Further development is strongly

encouraged for, e.g., the purpose of analysis preservation [126, 127], and in general for the

implementation of the Findable, Accessible, Interoperable, and Reusable (FAIR) principles for

scientific data management [128] of ML models. An example for a dataset with special em-

phasis on these aspects can be found in Ref. [129]. Making the newly developed simulation

and analysis tools, along with the required data, accessible to other scientists and future users

23



forms an essential element of open and thriving science.

6 Outlook

As a field combining vast datasets with excellent, first-principle simulations, particle physics

is benefiting tremendously from developments in data science and machine learning. While

new AI-inspired methods will not magically solve all challenges in LHC simulations and anal-

ysis, they are providing a crucial and transformative contribution to our numerical toolbox.

Moreover, given the quality of the LHC datasets, simulations, and simulation-based analysis

methods, we expect particle physics to eventually contribute to broader machine learning re-

search.

Event generation, or the simulation of signals for the LHC detectors from QFT Lagrangians,

is the main link between experimental and theoretical particle physics. It has stringent require-

ments when it comes to first principles vs modeling, control, precision, speed, and flexibility. In

this review we have shown that even within the physics-motivated modular structure of stan-

dard event generators, there is no aspect that cannot be improved through modern machine

learning. This includes phase space sampling, scattering amplitudes, loop integrals, parton

showers, parton densities, and fragmentation. Some of these ML-applications have a long

history and are accepted as standard approaches, other ML-based improvements of physics

modules are currently under rapid development and are finding their way into standard gen-

erators. All of them will be key to address the needs for example of the HL-LHC.

In addition to ML-enhanced event generators, an interesting application of generative neu-

ral networks are ML-generators at parton level and fast ML-detector simulations. They provide

an excellent testing ground for phase space generators, precision networks, and inverted sim-

ulations. This includes conceptual developments in the field of generative networks, driven by

LHC-specific requirements of controlling precision-generative networks as numerical tools and

providing a full range of uncertainties. They allow us to define, produce, and encode datasets

for phenomenological studies and serve as a compression for data entering experimental anal-

yses.

The main conceptual advantage of ML-event generation is that simulations with generative

networks are symmetric: given a fundamental physics model we can predict the probability

distributions of LHC events over phase space, or we can predict the probability distributions of

model parameters given observed LHC events. Different ML-approaches to simulation-based

inference include classification-based methods, conditional generative networks as a direct

inversion, or indirect ways of learning likelihood ratios. In combination, they will allow us to

systematically use unfolding or inverted simulations at the HL-LHC, from particle identification

and detector unfolding all the way to an event-wise matrix element method analysis.

Finally, there are many simulation-related questions in fundamental physics, where AI-

methods allow us to make significant progress. Examples going beyond immediate appli-

cations to event generation include symbolic regression [130], sample and data compres-

sion [57, 131], detection of symmetries [132–135], and many other fascinating new ideas

and concepts.
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