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The water molecule occurs in two nuclear-spin isomers that differ by the value of the total nuclear spin of
the hydrogen atoms, i. e., I = 0 for para-H2O and I = 1 for ortho-H2O. Spectroscopic transitions between
rovibrational states of ortho and para water are extremely weak due to the tiny hyperfine nuclear-spin-rotation
interaction of only ∼30 kHz and so far were not observed. We report the first comprehensive theoretical
investigation of the hyperfine effects and ortho-para transitions in H2

16O due to nuclear-spin-rotation and
spin-spin interactions. We also present the details of our newly developed general variational approach to
the simulation of hyperfine effects in polyatomic molecules. Our results for water suggest that the strongest
ortho-para transitions with room-temperature intensities on the order of 10−31 cm/molecule are about an
order of magnitude larger than previously predicted values and should be detectable in the mid-infrared ν2

and near-infrared 2ν1 + ν2 and ν1 + ν2 + ν3 bands by current spectroscopy experiments.

I. INTRODUCTION

The water molecule is abundant in nature. It has two
nuclear spin isomers, ortho, with a total nuclear spin of
hydrogen atoms I = 1, and para, with a total nuclear
spin of hydrogens I = 0. In isolated-molecule conditions
the ortho and para nuclear spin isomers show tremen-
dously long-lasting stability to inter-conversion,1,2 can be
spatially separated,3,4 and exhibit distinct physical and
chemical properties.5,6 Thus the nuclear spin isomers of
water are frequently treated as distinct molecular species.

The concept of stable nuclear spin isomers is appealing
to astrophysicists, as it allows to deduce temperatures,
below 50 K, in cometary comae, star- and planet-forming
regions from the observations of relative abundance of or-

tho and para species.7–11 Some astronomical observations
however reported anomalous ortho-para ratios (OPR), cor-
responding to spin temperatures that are much lower than
gas kinetic temperatures in the same region.12–15 These
observations pose the intriguing question if the OPR val-
ues could be altered as a result of internal ortho-para

conversion, which can possibly be enhanced by natural
factors, such as molecular collisions,16–18 interaction with
catalytic surfaces,19 external fields20 and radiation.21 Low
nuclear-spin temperatures have been attributed to the
photodesorption of water from colder icy grains.22 How-
ever, this theory was benchmarked and disputed in a
number of recent laboratory experiments.23–26 Arguably
there could be another yet unknown mechanism of spin-
non-destructive desorption of water molecules from ice.

a)Email: andrey.yachmenev@cfel.de; URL: https://www.controlled-
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The OPR values can change as a result of the interac-
tion between the nuclear spins and an induced internal
magnetic field of the rotating molecule, which is called the
hyperfine spin-rotation interaction. For the main water
isotopologue H16

2 O, considered here, the 16O has zero nu-
clear spin, and the hyperfine coupling between the spins of
the protons is very weak, providing a fundamental ratio-
nale for neglecting the ortho-para conversion in practical
applications. However, it can be significantly enhanced
by the accidental resonances between the ortho and para

states, produced by molecular collisions and interactions
with strong external fields and field gradients. The accu-
rate modeling of these processes may unravel previously
unknown mechanisms contributing to the observed anoma-
lous OPR of water in space. Precise knowledge of the
molecular hyperfine states and corresponding transitions
is mandatory for the understanding of such conversion
mechanisms. This information can also be important
for cold-molecule precision spectroscopy relying on con-
trolled hyperfine transitions and hyperfine-state changing
collisions.27

Here, we report a complete linelist of rovibrational hy-
perfine transitions in H2

16O at room-temperature that we
computed using an accurate variational approach28–31

with an empirically refined potential energy surface
(PES)32 and a high-level ab initio spin-rotation tensor
surface. The spin-spin coupling was modelled as the mag-
netic dipole-dipole interaction between the two hydrogen
nuclei. We show that the strongest forbidden ortho-para

transitions are on the order of 10−31 cm/molecule, which
is about ten times stronger than previously reported calcu-
lations for the same lines.2 We also present the details of
our variational approach for computing hyperfine effects,
which is general and not restricted by the numbers and
specific magnitudes of the molecules’ nuclear spins.
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II. THEORETICAL DETAILS

A. Spin-rotation and spin-spin coupling

In this section we describe the implementation of the hy-
perfine spin-rotation and spin-spin coupling terms within
the general variational framework of the nuclear motion
approach TROVE.28–31 Implementation details of the hy-
perfine nuclear quadrupole coupling can be found in our
previous works.33,34

The spin-rotation coupling is the interaction between
the rotational angular momentum J of the molecule and
the nuclear spins In of different nuclei35

Hsr =

NI
∑

n

In ·Mn · J, (1)

where Mn is the second-rank spin-rotation tensor relative
to the nucleus n and the sum runs over all nuclei NI with
non-zero spin. The interaction between the nuclear spins
In of different nuclei is given by the spin-spin coupling as

Hss =

NI
∑

n>n′

In ·Dn,n′ · In′ , (2)

where Dn,n′ is the second-rank spin-spin tensor, which is
traceless and symmetric. Using the spherical-tensor repre-
sentation,36 the spin-rotation and spin-spin Hamiltonians
can be expressed as

Hsr =
1

2
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n

2
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(

− 1√
3
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·
(

(−1)ω
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](1)
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n

](1)
)

and

Hss =

NI
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n>n′

D
(2)
n,n′ ·

[

I
(1)
n ⊗ I

(1)
n′

](2)

, (4)

where M
(ω)
n , D

(2)
n,n′ , J

(1), and I
(1)
n denote the spherical-

tensor representations of operators in (1) and (2) and the
square brackets are used to indicate the tensor product of
two spherical-tensor operators. Because the spin-rotation
tensor is generally not symmetric, the second term in
the sum (3) is added to ensure that the Hamiltonian is
Hermitian.

The nuclear-spin operator In and the rotational-
angular-momentum operator J are coupled using a nearly-

equal coupling scheme, i. e., I1,2 = I1 + I2, I1,3 = I1,2 + I3,
. . . , I ≡ I1,N = I1,N−1 + IN , and F = J + I. The
nuclear-spin functions |I, mI , I〉 depend on the quantum
numbers I and mI of the collective nuclear-spin oper-
ator I and its projection onto the laboratory Z axis,
respectively. The set of auxiliary quantum numbers
I = {I1, I1,2, I1,3, . . . , I1,N−1} for the intermediate spin

angular momentum operators provide a unique assignment
of each nuclear-spin state. The total spin-rovibrational
wave functions |F, mF , u〉 are built as symmetry-adapted
linear combinations of the coupled products of the rovi-
brational wave functions |J, mJ , l〉 and the nuclear-spin
functions |I, mI , I〉. Here, J and F are the quantum
numbers of J and F operators with mJ and mF of their
Z-axis projections. l and u denote the rovibrational and
hyperfine state indices, respectively, and embrace all quan-
tum numbers, e. g., rotational k and vibrational quantum
numbers v1, v2, . . ., that are necessary to characterize a
nuclear spin-rovibrational state.

The symmetrization postulate requires the total wave-
function of the H2O molecule to change sign upon ex-
change of the protons, i. e., to transform as one of the
irreducible representations B1, B2 of its C2v(M) symme-
try group. Accordingly, the ortho spin state |I = 1〉 of A1

symmetry can be coupled with the rovibrational states of
B1 and B2 symmetries and the para state |I = 0〉 of B2

symmetry can be coupled with the rovibrational states of
A1 and A2 symmetries.

The matrix representations of the spin-rotation and
spin-spin Hamiltonians in the basis of the |F, mF , u〉 func-
tions are diagonal in F and mF , with the explicit expres-
sions given by

〈F, mF , u′|Hsr|F, mF , u〉 = (5)

=
1

2
(−1)I+F

√
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and

〈F, mF , u′|Hss|F, mF , u〉 = (6)
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with the normalization constant Nω = 1, −
√

3, and
√

5
for ω = 0, 1, and 2, respectively. The expressions for
the reduced matrix elements of the nuclear-spin operators

〈I ′||I(1)
n ||I〉 and 〈I ′||[I(1)

n ⊗ I
(1)
n′ ](2)||I〉 depend on the total

number of coupled spins and can be computed using a
general recursive procedure as described, for example,
in ref. 33. Here, for the two equivalent hydrogen spins
I1 = I2 = 1/2, the reduced matrix elements are

〈I ′||I(1)
n ||I〉 = (−1)Iδn,1+I′δn,2I1 (7)

×
√

(2I + 1)(2I ′ + 1)

{

I1 I ′ I1

I I1 1

} (

I1 1 I1
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)−1

,



3

with the explicit values 〈0||I(1)
n ||0〉 = 0, 〈1||I(1)

n ||1〉 =
√

3/2, 〈0||I(1)
n ||1〉 = ±

√
3/2 for n = 1 and 2, respectively,

and 〈1||I(1)
n ||0〉 = ∓

√
3/2.

The expressions for theM(J′l′,Jl)
ω,n and D(J′l′,Jl)

n,n′ tensors

in Eqs. (5) and (6) depend on the chosen rovibrational
wave functions |J, mJ , l〉, which are represented by the
molecular rovibrational eigenfunctions calculated with the
variational approach TROVE. The functions |J, mJ , l〉
are linear combinations of products of vibrational wave
functions |ν〉 = |v1, v2, . . . , vM 〉 (M is the number of vi-
brational modes) and symmetric-top rotational functions

|J, mJ , l〉 =
∑

ν,k

c
(J,l)
ν,k |ν〉 |J, k, mJ〉 . (8)

In this basis, the M(J′l′,Jl)
ω,n and D(J′l′,Jl)

n,n′ tensors are

M(J′l′,Jl)
ω,n =

∑

ν′k′

∑

νk

[

c
(J′,l′)
ν′k′

]∗

c
(J,l)
νk (−1)k′

(9)

×
ω
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σ=−ω
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(

J ω J ′

k σ −k′

)

U
(2)
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∑
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c
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c
(J,l)
νk (−1)k′

(10)

×
2
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(

J 2 J ′
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)

U
(2)
2σ,αβ〈ν′|D̄αβ,nn′ |ν〉

where M̄αβ,n and D̄αβ,nn′ (α, β = x, y, z) are spin-
rotation and spin-spin interaction tensors in the molecule-

fixed frame and the 9× 9 constant matrix U
(2)
ωσ,αβ (ω =

0, . . . , 2, σ = −ω, . . . , ω) defines the transformation of a
general second-rank Cartesian tensor operator into its
spherical-tensor representation, see, e. g., (5.41)–(5.44) in
ref. 36.

The total Hamiltonian H is composed of a sum of the
pure rovibrational Hamiltonian Hrv and hyperfine terms
Hsr and Hss. In the basis of TROVE wave functions, the
rovibrational Hamiltonian Hrv is diagonal, its elements
are given by the rovibrational energies

〈F, mF , u′|H|F, mF , u〉
= Euδu,u′ + 〈F, mF , u′|Hsr|F, mF , u〉

+ 〈F, mF , u′|Hss|F, mF , u〉, (11)

where δu,u′ = δJ,J ′δl,l′δI,I′δI,I′ .
The above equations were implemented in the hyfor

module of the Python software package Richmol,37,38

which uses rovibrational molecular states calculated in
TROVE as a variational basis. Alternative approaches
using Watson-type effective Hamiltonians39 are also im-
plemented in the Richmol package.

The hyperfine energies and wave functions are com-
puted in a three step procedure. First, we solve the full

rovibrational problem using TROVE and obtain the rovi-
brational energies and wave functions for all states with
energies below a selected threshold. In the next step,
the rovibrational matrix elements of the spin-rotation
and spin-spin tensors are computed in the form given by
Eqs. (9) and (10). These matrix elements are later used
to build the spin-rotation and spin-spin interaction Hamil-
tonians using Eqs. (5) and (6). The total Hamiltonian is
composed of the sum of a purely rovibrational part, which
is diagonal and given by the rovibrational state energies,
and non-diagonal spin-rotation and spin-spin parts. In
the final step, the hyperfine energies and wave functions
are obtained by diagonalizing the total Hamiltonian.

The computation of the dipole transition intensities
also proceeds in two steps. First, the rovibrational matrix
elements of the dipole moment surface are computed and
cast into a tensor form similar to (10),

K(J′l′,Jl)
ω =

∑

ν′k′

∑

νk

[

c
(J′,l′)
ν′k′

]∗

c
(J,l)
νk (−1)k′

(12)

×
ω

∑

σ=−ω

∑

α,β=x,y,z

(

J ω J ′

k σ −k′

)

U (1)
ωσ,α〈ν′|µ̄α|ν〉,

where µ̄α (α = x, y, z) is the permanent dipole moment
in the molecule-fixed frame and the 3× 3 constant matrix
U

(1)
ωσ,α (ω = 1, σ = −ω, . . . , ω) defines the transformation

of a general first-rank Cartesian tensor operator into its
spherical-tensor representation, see, e. g., (5.4) in ref. 36.
In the second step, the dipole matrix elements are trans-
formed into the basis of hyperfine wave functions, i. e.,

K(F ′,u′,F,u)
ω =

∑

I′,I′,J ′,l′

∑

I,I,J,l

[

c
(F ′,u′)
I′,I′,J ′,l′

]∗

c
(F,u)
I,I,J,l(−1)I

×
√

(2J ′ + 1)(2J + 1)

{

J ′ F ′ I
F J ω

}

K(J′,l′,J,l)
ω δI′,IδI′,I ,

(13)

where c
(F,u)
I,I,J,l are hyperfine wave function coefficients ob-

tained by diagonalization of the total Hamiltonian. Fi-
nally, the line strengths for transitions between hyperfine
states |f〉 =

∣

∣F ′, u′
〉

and |i〉 = |F, u〉 are computed as34

S(f ← i) = (2F ′ + 1)(2F + 1)
∣

∣

∣
K(F ′u′,F u)

1

∣

∣

∣

2

, (14)

where we sum over all degenerate mF and m′

F components.
The expression for the integrated absorption coefficient
of the dipole transition in units of cm/molecule reads

I(f ← i) =
8π3νif e−hcEi/kT

(

1− e−hcνif /kT
)

3hcZ(T )
S(f ← i),

(15)

where νif = |Ei −Ef | is the transition wavenumber, Ei

and Ef are energy term values of the initial and final states
in cm−1, Z(T ) is the temperature dependent partition
function, h (erg·s) is the Planck constant, c (cm/s) is the
speed of light and k (erg/K) is the Boltzmann constant.
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B. Electronic structure calculations

The molecule-fixed frame spin-rotation tensors M̄αβ,n

(α, β = x, y, z, n = 1, 2) were calculated ab initio on a
grid of 2000 different molecular geometries with electronic
energies ranging up to 30 000 cm−1 above the equilibrium
energy. We used the all-electron CCSD(T) (coupled-
cluster singles, doubles, and perturbative triples) method
with the augmented core-valence correlation-consistent
basis set aug-cc-pwCVTZ40 and aug-cc-pVTZ41,42 for
the oxygen and hydrogen atoms, respectively. The ba-
sis sets were downloaded from the Basis Set Exchange
library.43–45 The calculations employed second-order ana-
lytical derivatives46 together with the rotational London
orbitals,47,48 as implemented in the quantum chemistry
package CFOUR.49

The electronic structure calculations used the principal
axes of inertia coordinate frame. For variational calcu-
lations another frame was employed, defined such that
the x axis is parallel to the bisector of the valence bond
angle with the molecule lying in the xz plane at all in-
stantaneous molecular geometries. In this frame, the z
axis coincides with the molecular axis at the linear geom-
etry. The computed spin-rotation tensors were rotated
from the principal axis of inertia to the new frame. The
permutation symmetry is such, that exchange of the two
hydrogen atoms transforms M̄αβ,1 into M̄αβ,2 followed by
a sign change for non-diagonal elements (α 6= β).

The expression for the spin-rotation tensor, as com-
puted in CFOUR, contains multiplication by the inverse
of the tensor of inertia, see (3) and (7) in ref. 48. For linear
and closely linear geometries of the molecule, the inertial
tensor becomes singular, which creates a discontinuity in
the dependence of xz and zz elements of spin-rotation
tensor on the bending angle. To circumvent this problem,
we have multiplied the computed spin-rotation tensors on
the right side by the corresponding inertial tensors. The
resulting data for the inertia-scaled spin-rotation tensor
was parameterized through least-squares fitting, using a
power series expansions to fourth order in terms of va-
lence bond coordinates, with σrms ≤ 0.3 kHz for all tensor
components. Later, when computing the rovibrational
matrix elements of the spin-rotation tensor, we have mul-
tiplied the inertia-scaled tensor with the inverse moment
of inertia. The divergence of the spin-rotation tensor in
the vicinity of linear geometries is exactly canceled by the
basis functions chosen to satisfy the kinetic cusp condition
at the linear geometry.31,50

The spin-spin tensor elements were computed as mag-
netic dipole-dipole interaction between two hydrogen nu-
clei H1 and H2,

Dαβ,12 =
µ0

4π

µ1µ2

I1I2r3
12

(I− 3n⊗ n)αβ , (16)

where µ1 = µ2 = 2.79284734 are the magnetic dipole
moments of H1 and H2 in units of the nuclear magneton,
I1 = I2 = 1/2 are the corresponding hydrogen nuclear
spins, r12 is the distance between the hydrogen nuclei, and

n is the unit vector directed from one hydrogen to another.
The indirect spin-spin coupling constants mediated by
the electronic motions were not considered here, as they
are typically two orders of magnitude smaller than the
direct constants.51

C. Nuclear motion calculations

We employed TROVE to calculate the rovibrational
states using the exact kinetic-energy operator formalism
recently developed for triatomic molecules.50 This formal-
ism is based on the use of associated Laguerre polynomials
Ll

n(x) as bending basis functions, which ensures a correct
behavior of the rovibrational wave functions at linear
molecular geometry.50 The bisecting frame embedding
was selected as a non-rigid reference frame, with the x
axis oriented parallel to the bisector of the valence bond
angle and the molecule placed in the xz plane. In this
frame, the z axis coincides with the linearity axis at linear
molecular geometry. Accurate empirically refined PES of
H16

2 O was employed.32

The primitive-stretching vibrational basis functions
were generated by numerically solving the correspond-
ing one-dimensional Schrödinger equations on a grid of
2000 points using the Numerov-Cooley approach.52,53 The
primitive basis functions were then symmetry-adapted
to the irreducible representations of the C2v(M) molec-
ular symmetry group using an automated numerical
procedure.30 The total vibrational basis set was formed
as a direct product of the symmetry-adapted stretch-
ing and bending basis functions, contracted to include
states up to a polyad 48. It was used to solve the J = 0
eigenvalue problem for the complete vibrational Hamil-
tonian of H2O. A product of the J = 0 eigenfunctions
and symmetry-adapted rigid rotor wavefunctions formed
the final rovibrational basis set. The rovibrational wave-
functions |J, mJ , l〉 for rotational excitations up to J = 40
and four irreducible representations A1, A2, B1 and B2

were computed by diagonalizing the matrix representa-
tion of the total rovibrational Hamiltonian Hrv in the
rovibrational basis set. More details about the variational
approach and the basis-symmetrization procedure for the
case of triatomic molecules can be found in ref. 50.

D. Linelist simulations

The linelist of hyperfine rovibrational transitions for
H2

16O was computed with an energy cutoff at 15 000 cm−1

and includes transitions up to F = 39 (J = 40). To fur-
ther improve the accuracy of the linelist, after solving
the pure rovibrational problem and before entering the
hyperfine calculations, the rovibrational energies Eu in
(11) were replaced with the high-resolution experimental
IUPAC values from ref. 54, where available. Such empir-
ical adjustment of the rovibrational energies have been
adopted and tested, e. g., for the production of molecular
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hyperfine resolution, including forbidden ortho-para tran-
sitions. The calculations were based on accurate rovibra-
tional energy levels and wavefunctions produced using
the variational approach TROVE. The nuclear hyperfine
effects were modeled as spin-rotation and direct spin-spin
interactions, with the spin-rotation coupling surface cal-
culated at a high level of the electronic-structure theory.
We found excellent agreement between the calculated
transition frequencies and available hyperfine-resolved
spectroscopic data of allowed transitions.

The predicted ortho-para transitions are useful for guid-
ing future experimental spectroscopic studies in search of
these forbidden transitions in the laboratory as well as in
astrophysical environments. Our accurate predictions of
hyperfine effects complement the spectroscopic data for
water.

The variational approach we developed for computing
these hyperfine effects is general. It includes nuclear
quadrupole,33,34 spin-rotation, and spin-spin interactions,
and can be applied to other molecular systems without
restrictions on the number and values of nuclear spins.

SUPPLEMENTARY MATERIAL

The computed hyperfine-linelist data for H2O are avail-
able at https://doi.org/10.5281/zenodo.6337130.
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