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Abstract

The recent diversification of macromolecular crystallographic experiments including the

use of pink beams, convergent electron diffraction and serial snapshot crystallography

has shown the limitations of using the Laue equations for diffraction prediction. Here we

give a computationally efficient way of calculating approximate crystal diffraction pat-

terns given varying distributions of the incoming beam, crystal shapes and other poten-

tially hidden parameters. This approach models each pixel of a diffraction pattern and

improves data processing of integrated peak intensities by enabling the correction of par-

tially recorded reflections. The fundamental idea is to express the distributions asweighted

sums of Gaussian functions. The approach is demonstrated on serial femtosecond crys-

tallography datasets, showing a significant decrease in the required number of patterns to

refine a structure to a given error.
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1. Introduction

Macromolecular crystallography ismost commonly performedusing amonochromatic X-

ray or electron source and with at most a few crystals. In conventional rotation measure-

ments each crystal is rotated, exposing it to the beam over a range of about 180 degrees,

integrating the diffraction over small angular wedges. Under those circumstances the

Laue equations have been sufficient approximations for the diffraction condition. They

stipulate that the difference ∆
⇀
𝑘 of the wave vector of the diffracted beam

⇀
𝑘out and the

wave vector of the incident beam
⇀
𝑘in are integer linear combinations of the reciprocal

unit cell vectors ⇀𝑎∗,
⇀
𝑏∗ and ⇀𝑐∗:

⎛
⎜
⎝

𝑎∗0 𝑎∗1 𝑎∗2
𝑏∗0 𝑏∗1 𝑏∗2
𝑐∗0 𝑐∗1 𝑐∗2

⎞
⎟
⎠
∆

⇀
𝑘 =

⎛
⎜
⎝

ℎ
𝑘
𝑙

⎞
⎟
⎠

(1)

Given the unit cell parameters, initial crystal orientation and experimental geometry, the

equation can be rearranged, to give the crystal orientation and the point on the detector

where a given reflection can be observed most intensely. Conversely, for a random ori-

entation of the crystal, the probability of any reflection (except the direct beam) being in

its optimal diffraction condition is zero because the integer indices on the right side of

equation 1 are an infinitesimal subset of the attainable rational vectors on the left side.

Experimentally however, there is a neighbourhood close to the ideal diffraction condition

where diffraction can be observed at reduced intensity even though the Laue equations

are not satisfied. Not knowing which reflections will be observable for a given orientation

and how intensely, is known as the partiality problem. Several definitions of partiality are

conceivable. In the following the partiality of an observation will be the ratio between

the measured intensity and the maximally attainable intensity given crystal and beam

but changing the orientation of the crystal. This paper introduces a way to estimate that

neighbourhood and the reduction in intensity, thereby addressing the partiality problem
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computationally.

Exposing the crystal to the radiation during rotation and recording images over small

angular wedges solves this problem too, which is why the rotationmethodwas adopted in

the first place. The rotation ensures that almost all reflections within the observable reso-

lution range of the diffractometer will reach their optimum at some point during the rota-

tion and can be fully recorded. The process of calculating any or all aspects of diffraction

patterns (peak position, shape, intensity or full diffraction patterns), given unit cell param-

eters and experimental geometry is called “prediction” in the context of macromolecular

crystallography data processing. Formonochromatic rotational crystallography the devia-

tions between measured and predicted peak positions are usually small, except for reflec-

tions whose reflection condition is not affected significantly by the rotation. (Those few

measurements are typically discarded.) The rotation of the crystal during the exposure

about a known axis and with a known angular increment acts as a strong constraint for

parameter estimation during the processing of rotational crystallographic data. Using this

information, the intensity of a reflection can be integrated and corrected to yield the cor-

responding squared structure factor amplitude.

In the last decades in macromolecular crystallography, methods have been employed,

which, for various reasons, deviate from the rotational crystallography setup in signifi-

cant ways. The most notable among these methods is serial crystallography, where crys-

tals are recorded once each and consequently many crystals are needed for a complete

dataset (Schlichting, 2015; Spence, 2017). An important subclass is serial snapshot crys-

tallography, where the crystals are illuminated without rotation. Without the rotation it

becomes indispensable to consider not just the ideal diffraction condition, but the par-

tial intensity that can be observed when close enough to the ideal diffraction condition.

We know there is a steep fall off of intensity with deviation from the exact condition in

a monochromatic experiment with well ordered crystals. This steep fall off makes it easy
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to define a small range that contains almost all observations of the same structure fac-

tor and hardly any observations of anything else, even without knowing the shape of the

fall off. Computing the average of these observations with unknown partiality is called

Monte Carlo integration in the context of serial crystallogrpahy. It has been used to work

around the problem of unknown partial intensities with great success (Kirian et al., 2011).

However, for theMonte Carlo integration to converge to an average with a small standard

deviation, each reflection needs to be measured multiple times. This approach assumes

that the partialities follow the same distribution, with finite first and secondmoments, for

all reflections of a given resolution shell. From this assumption it follows that the average

converges to a value proportional to the non-partial intensity, that is the structure factor

amplitudes squared. Assuming polarization correction has been applied before averaging,

no additional correction factors are needed, unless the inclusion criterion varies or fails

to capture a significant portion of the intensity, and in fact no Lorentz factor is applied in

practice. The development of new methods has not stopped there however. Serial snap-

shot crystallography has since been carried out with polychromatic, or so-called pink

beam sources (Meents et al., 2017), electron beams (Bücker et al., 2020) and mosaic crys-

tals. More exotic experiments are surely already planned. In these more general cases the

Laue equations are not sufficient, because inaccurate predictions of the peak positions and

elongated peak shapes cannot necessarily be overcome by just measuring several times

more data to make use of Monte Carlo integration. The Laue equations assume point-like

peak shapes. Inmonochromatic experiments the peaks are narrow and compact, so small

integration radii or boxes are typically employed, and the Laue equations are sufficient.

But when two ormore different and equally significant distributions are at play, elongated

peak shapes can be observed.

Figure 1 depicts the distributions that are assumed to be relevant and their effect on

the diffraction geometry. In polychromatic experiments the distribution of wavelengths,
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of which the width is called bandwidth, together with a distribution in crystal orienta-

tion, calledmosaicity can lead to elongated peak shapes. The other relevant distributions

affecting the diffraction are the size and shape of the crystal (reciprocal peak size), con-

vergence (or divergence) of the beam, and different strain throughout the crystal (that is a

variation of unit cell parameters throughout the crystal volume). Once there is more than

one relevant distribution, the exact location of the peak on the detector can no longer be

determined solely by rearranging the Laue equations. This paper shows how to model

diffraction efficiently in a way that generalizes to these different conditions, by first intro-

ducing an approximation for calculating full diffraction patterns and then deriving from

that peak locations, shapes, and estimates for their total intensity. Two applications of this

model are presented in section 4 and 5. In section 4 diffraction patterns are approximated

in full detail, pixel by pixel. Optimizing the free parameters of the model to fit the diffrac-

tion pattern in each pixel should determine the structure factor amplitudes in the most

efficient way, in terms of diffraction data needed and achievable precision. This may pro-

vide an insight into the relatively small heterogeneity between samples, which has proven

to be elusive in the presence of large data processing artifacts and measurement errors.

The second application is more conventional. In section 5 an expression for the partial

intensity of a reflection in a “still” diffraction pattern (that is, one recorded from a static

crystal without rotation) is derived and used to correct serial crystallographic datasets,

improving the convergence rate of merging the intensity data to determine the structure

factors.
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Fig. 1. The geometry to visualize the construction of the covariance matrices of the distri-
butions of diffractive power in reciprocal space and the volume probed by an incident
beam. The arrows indicate the components, akin to error bars, that the different distri-
butions contribute to the covariance matrix in a 2D cut. The same contributions have
a different effect on

⇀
𝑘in, ∆

⇀
𝑘 and

⇀
𝑘out, and where they have an effect they are indicated

with the same color as where they were introduced. The distribution of wavelengths
in the incident beam leads to a distribution of lengths of

⇀
𝑘𝑖𝑛, the standard deviation

is drawn with pink arrows. The distribution of incident beam directions leads to dif-
ferent starting points of

⇀
𝑘𝑖𝑛 in the Ewald construction, its standard deviation is drawn

in red. The scattering power of the crystal is smeared rotationally by mosaicity, drawn
with brown arrows and smeared radially by (a simplified) strain, drawn in cyan. The
reciprocal peak shape as depicted in light green is a stylized shape transform, which too
will be approximated as a Gaussian. To smooth the prediction over a range of output
directions in order to simulate the detector point spread function and facilitate effi-
cient sampling of the signal, a distribution of diffraction directions can be introduced,
the standard deviation of which is drawn in dark blue.

2. Previous Approaches

The earliest approaches to dealing with partially recorded reflections relied upon the

redundancy afforded by rotation experiments, which makes them unapplicable in serial

crystallography. Under those conditions the partiality as a function of the crystal rotation

can be reconstructed as a smooth function, because it is overdetermined by the diffrac-

tion data. And using the reconstructed profile, the partially observed reflections can be

corrected (Diamond, 1969; Grant & Gabe, 1978; Winkler et al., 1979).
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Anearly approach in dealingwith partial reflections that can be applied to single diffrac-

tion patterns (Rossmann et al., 1979) assumed reciprocal peaks to be spheres. While the

diffraction process is modelled similar to the earlier approaches with the intersection of

these small spheres with the Ewald sphere, here the rocking curve is determined entirely

by the intersection of the Ewald sphere with the reciprocal lattice spheres. The reduc-

tion allows us to use this model even for single diffraction patterns. T. J. Greenhough

and J. R. Helliwell continued this approach and have generalized it to ellipsoidal shapes

(Greenhough & Helliwell, 1982b; Greenhough & Helliwell, 1982a; Gre, 1983). Andrews

et al. (1987) showed that this approach can even be applied to Laue diffraction (with very

high polychromaticity). The model of Rossmann et al. was generalized by Ginn et al.

(2015) with a super-Gaussian distribution of Ewald spheres given by the distribution of

wavelengths and incidence angles, requiring a numerical integration that is efficiently

implemented inCrystFEL (White et al., 2016) as the partialitymodel xsphere. Thismodel

has 11 free parameters per crystal in total: 9 for the unavoidable unit cell matrix and one

each for the mosaicity radius and the profile radius.

Holton et al. (2014) modelled the most relevant contributions, save the crystal shape

transform, based on the principles layd out in Greenhough & Helliwell (1983) and Win-

kler et al. (1979) (modelling mosaicity with the intersection of a disk with the Ewald

sphere). They also used Gaussian basis functions, but instead of analytical integration

of the different distributions, they computed numerical integrals to combine different

effects with automatic sampling. No attempt to match measured diffraction data with

the proposed model was described, on the contrary the message of the publication was

the “untapped potential” that should be realized if a method could be found to fit the

simulation to experimental data.

The program package nXDS (Kabsch, 2014) is another software suite to process serial

crystallographic data. The partiality model used assumes an isotropic Gaussian decay of
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the partiality with the angular offset from the ideal diffraction condition, making for sim-

ple symbolic expressions using Gaussians in one dimension and a straightforward opti-

mization of the parameters.

A different approach to computing the integrals that are required for estimating the par-

tiality of reflections in still diffraction patterns uses ray-tracing principles (Kroon-Batenburg

et al., 2015). This approach is much closer to what would be called Monte-Carlo integra-

tion outside of crystallography.

An isotropic and simplified partialitymodel usingmultidimensional but isotropicGaus-

sian basis functions has been implemented in CrystFEL and is the default for predicting

spot locations and qualitative visibility since version 0.9.0. It uses a simplified version of

equation 33 below, butwithout squaring the exponential term. The scalar projection of the

covariance matrix orthogonal to the Ewald sphere is especially simple to calculate in this

case. This model can also be used as a partiality model like xsphere and it is selected with

the keyword ggpm. Thismodel ismost comparable to the one used in nXDS (Kabsch, 2014).

Notable differences to that model are the formulation using the three-dimensional Gaus-

sian function and the concept of reciprocal peak width, which ascribes an additional con-

stant width to peaks in reciprocal space independent of beam parameters and mosaicity,

an effect that is especially significant at low resolution.

The Gaussian-like appearance of peaks on the detector possibly inspired Mendez et al.

(2020) to impose a Gaussian decay of intensity with distance from the ideal diffraction

condition on the detector. The result in equation 4 of Mendez et al. (2020) is seen to be

proportional to a special case of equation 14 of this work when the covariance matrix Σ◦

is uniform in all dimensions and scaled appropriately. Conversely, the result presented in

this paper can be seen as a multidimensional generalization of the approach of Mendez

et al. (2020). The significance of this difference becomes most obvious when consider-

ing elongated peak shapes in pink-beam experiments, which cannot be modelled by the
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approach of Mendez et al. (2020), owing to the isotropic nature of that model.

Dilanian et al. (2016) imposed a peak shape on the detector to fit the whole pattern in

a similar manner to Mendez et al. (2020), but instead of an isotropic Gaussian shape they

used an isotropic pseudo-Voigt shape. Pseudo-Voigt functions allow more heavy tailed

shapes, and are thereby able to match shape transforms better with their asymptotically

inverse-quadratic decay. However, their derivation does not connect these peakshapes

with anything but the shape transform of the crystals. Our method generalizes a similar

approach tonon-isotropic peak-shapes and connects them tomosaicity, non-monochromaticity,

the crystal shape transform, the convergence and allows arbitrary compositions thereof.

However, it is less general in the sense that only Gaussian shapes are employed. This is

a deliberate limitation, because of the analytical difficulties that would be encountered

with operations on anisotropic Cauchy distributions.

3. Derivation

3.1. Underlying Diffraction Theory

The incident wave interacts with a three-dimensional object, which is described by its

scattering potential, which in turn is mainly determined by its electron density 𝜌. In the

Born approximation and a monochromatic incident wave with flux 𝐽0 (in units of energy

per area), the photon flux density 𝑗 (in units of energy density as a function of solid angle)

at each point on the detector can be described as the Fourier transform of the electron

density O(∆
⇀
𝑘), evaluated at points corresponding to the difference ∆

⇀
𝑘 of the incident

wave vector
⇀
𝑘in and scatteringwave vector

⇀
𝑘out, a term𝐶 correcting for polarization effects

(Cowley, 1995) and the scattering cross-section as a proportionality constant. The vectors

∆
⇀
𝑘 lie on a sphere with a radius 𝜈 reciprocal to the wavelength 𝜆. This sphere is called

the Ewald sphere and an equivalent result is known as the Fourier diffraction theorem

(Slaney & Kak, 1985):
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𝑗(∆
⇀
𝑘) ∝ 𝐽0𝐶

|||||O
(
∆

⇀
𝑘
)|||||
2

(2)

In this approximation diffraction is a linear operation, which means that the superpo-

sition principle applies to the complex wave function of the diffraction. The diffraction of

several objects is the sum of the diffraction of these objects. The diffraction of an object

by multiple sources is the sum of the diffraction of the object by each source. Depending

on whether there is a fixed phase relation between the different contributions to the total

diffraction, the contributions add incoherently (assuming an integration over a time inter-

val several times the duration of the oscillation of the wave), that is asmodulus squares, or

coherently, which is in the complex domain, before the modulus square operation. For a

derivation of the resulting average amplitudes of coherently and incoherently interacting

waves see section 1.3.2. of Cowley (1995).

3.2. Decomposition Into Gaussian Basis Functions

Distributions of the sources and the objects are just an even further generalization of

the superposition principle; combining these distributions amounts to convolutions of the

distributions. Three-dimensional integrals of distributions over potentially curved paths

however do not, in general, have a closed solution. Numerical solutions are easy to deter-

mine, but compounded, derivative or derived properties (such as those required for least

squares minimisation) grow in complexity, exponentially. Once one step is numerical,

the next steps will most likely have to be numerical too. It is therefore useful and more

insightful to have simple closed-form approximations. Gaussian distributions, as well as

products and sums thereof, have closed and simple integrals when integrated over the

whole domain or along a cut or a projection. Such integrals can likewise be expressed as

a sum of Gaussian functions and a constant term. Also their Fourier transforms are well

behaved. This way, integrating over multiple distributions still increases the complexity
IUCr macros version 2.1.11: 2019/01/14
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of the result, but starting from a less complex baseline. This means that if one can express

all distributions in the model as a sum or series of Gaussian kernels, the conditional inte-

gration of the resulting distribution can be achieved symbolically. While not every distri-

bution is suitably expressed as a weighted sum of Gaussian distributions, a large family

is (Sorenson & Alspach, 1971). Many natural distributions belong to this family. And for

most distributions used in the application of the method discussed here, the number of

Gaussian basis functions, for sufficient approximation, is very low. The probability density

function of a Gaussian distribution will be abbreviated with 𝜙
(⇀𝑥, ⇀𝜇,Σ

)
when convenient.

All vectors are identified with an arrow and are column vectors unless transposed with a

superscript T. The multiplication sign is always omitted and all multiplications between

vectors or matrices are matrix multiplications.

𝜙
(⇀𝑥, ⇀𝜇,Σ

)
= exp (−12 (

(⇀𝑥 − ⇀𝜇
)⊤
Σ−1

(⇀𝑥 − ⇀𝜇
)
− log (|2𝜋Σ|))) (3)

where

𝜙 = probability density function of a Gaussian distribution

⇀𝑥 = point in space

⇀𝜇 = mean vector

Σ = covariance matrix

When the Gaussian basis functions are scaled appropriately, we refer to them as Gaus-

sian kernels, as they are not normalized to one, like Gaussian distributions would be. This

paper uses some common properties of probability distributions in general and Gaussian

distributions in particular, which are summarized here: The joint probability of several

uncorrelated outcomes is given by the product of their probabilities. By analogy, the prob-

ability density that satisfies all individual probability distributions is computed by a point-

wise product of the individual densities. The product of Gaussian distributions is a scaled
IUCr macros version 2.1.11: 2019/01/14
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Gaussianwith amean given by theΣ−1weighted arithmeticmean of the individualmeans

and a new covariance given by the inverse of the sum of those weights:

𝜙
(⇀𝑥, ⇀𝜇1,Σ1

)
𝜙
(⇀𝑥, ⇀𝜇2,Σ2

)
=

𝜙
(⇀𝜇1,

⇀𝜇2,Σ1 + Σ2
)
𝜙 (⇀𝑥,

(
Σ−11 + Σ−12

)−1 (
Σ−11

⇀𝜇1 + Σ−12
⇀𝜇2
)
,
(
Σ−11 + Σ−12

)−1
) (4)

This result can be simplified further, when both densities are identical:

𝜙
(⇀𝑥, ⇀𝜇,Σ

)2
= 𝜙

(⇀𝜇, ⇀𝜇, 2Σ
)
𝜙 (⇀𝑥, ⇀𝜇, 12Σ) (5)

The probability distribution for the sum of two independent random variables is given

by the convolution of the individual distributions. The rules for combining the means

and variances are equivalent to the commonly employed error propagation: the means

add, just like the variances.

𝜙
(⇀𝑥, ⇀𝜇1,Σ1

)
∗ 𝜙

(⇀𝑥, ⇀𝜇2,Σ2
)
= 𝜙

(⇀𝑥, ⇀𝜇1 +
⇀𝜇2,Σ1 + Σ2

)
(6)

If the individual distributions are correlated, themeans still add to form the sum, but there

is an additional summand for the variance of the sum, Σ𝑋+𝑌 = Σ𝑋 +Σ𝑌 +2 cov (𝑋,𝑌). In

case of a correlation of 1 this reduces to
(√

Σ𝑋 +
√
Σ𝑌
)2
.

The identities of equations 4 and 5 can be used to compose the expected flux in a par-

ticular diffraction direction from the individual contributions of the source and of the

object (see figure 1). As mentioned above, the formulation of this composition depends

on whether the distributions are assumed to be in a fixed phase relation (coherent), or

to have a randomly varying and uncorrelated phase shift (incoherent). The following two

identities, each first expressed using exponential functions and then in terms of 𝜙, are at

the core of the method for analytical integration used in this work. The first is the integral
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of the product of twoGaussian densities, which is then squared (for coherent integration):

[∫
ℝ𝑛

exp (−12 (
(⇀𝑥 − ⇀𝜇1

)⊤
Σ−11

(⇀𝑥 − ⇀𝜇1
)
+ log (|2𝜋Σ1|)))

exp (−12 (
(⇀𝑥 − ⇀𝜇2

)⊤
Σ−12

(⇀𝑥 − ⇀𝜇1
)
+ log (|2𝜋Σ2|)))𝑑

⇀𝑥]
2

=exp (−
(⇀𝜇1 −

⇀𝜇2
)⊤
Σ−1◦

(⇀𝜇1 −
⇀𝜇2
)
− log (|2𝜋Σ◦|)) (7)

[∫
ℝ𝑛
𝜙
(⇀𝑥, ⇀𝜇1,Σ1

)
𝜙
(⇀𝑥, ⇀𝜇2,Σ2

)
𝑑⇀𝑥]

2

=
[
𝜙
(⇀𝜇1,

⇀𝜇2,Σ◦
)]2

= 𝜙
(⇀
0,

⇀
0, 2Σ◦

)
𝜙 (⇀𝜇1,

⇀𝜇2,
1
2Σ◦)

For incoherent integration the integration and squaring operations are reversed:

∫
ℝ𝑛
exp (−12 (

(⇀𝑥 − ⇀𝜇1
)⊤
Σ−11

(⇀𝑥 − ⇀𝜇1
)
+ log (|2𝜋Σ1|)))

2

exp (−12 (
(⇀𝑥 − ⇀𝜇2

)⊤
Σ−12

(⇀𝑥 − ⇀𝜇1
)
+ log (|2𝜋Σ2|)))

2 ⇀
𝑑𝑥

=exp (−
(⇀𝜇1 −

⇀𝜇2
)⊤
Σ−1◦

(⇀𝜇1 −
⇀𝜇2
)
− log (|2𝜋Σ◦|) −

1
2 log (|4𝜋Σ∗|)) (8)

∫
ℝ𝑛
𝜙
(⇀𝑥, ⇀𝜇1,Σ1

)2
𝜙
(⇀𝑥, ⇀𝜇2,Σ2

)2
𝑑⇀𝑥

=∫
ℝ𝑛
𝜙
(⇀𝜇1,

⇀𝜇1, 2Σ1
)
𝜙 (⇀𝑥, ⇀𝜇1,

1
2Σ1)𝜙

(⇀𝜇2,
⇀𝜇2, 2Σ2

)
𝜙 (⇀𝑥, ⇀𝜇2,

1
2Σ2)𝑑

⇀𝑥

=𝜙
(⇀𝜇1,

⇀𝜇1, 2Σ1
)
𝜙
(⇀𝜇2,

⇀𝜇2, 2Σ2
)
∫𝜙 (⇀𝑥, ⇀𝜇1,

1
2Σ1)𝜙 (

⇀𝑥, ⇀𝜇2,
1
2Σ2)𝑑

⇀𝑥

=𝜙
(⇀𝜇1,

⇀𝜇1, 2Σ1
)
𝜙
(⇀𝜇2,

⇀𝜇2, 2Σ2
)
𝜙 (⇀𝜇1,

⇀𝜇2,
1
2 (Σ1 + Σ2))

In equations 7 and 8 we have used the definitions:

Σ◦ = Σ1 + Σ2

Σ∗ =
(
Σ−11 + Σ−12

)−1

⇀𝜇∗ = Σ∗
(
Σ−11

⇀𝜇1 + Σ−12
⇀𝜇2
)

As can be seen from the above expressions, the difference between coherent and incoher-

ent integration amounts to only a difference in scaling when both of the two distributions
IUCr macros version 2.1.11: 2019/01/14
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are single Gaussian distributions (that is, not sums of several Gaussians). As a simpli-

fication and because the linear scaling factor is hardly of any consequence, incoherent

integration will be the default in the following, but the procedure can be applied with

minor modifications for coherent integration as well. Partial coherence can be dealt with

by splitting the coherent and the incoherent component into separate Gaussian functions

and propagating them appropriately, or by interpolating between the coherent and the

incoherent solution based on the degree of coherence, but this will not be considered any

further in this work.

3.3. Parametrization of the Basis Functions

3.3.1. The Illumination The diffraction condition, indicating the spatial frequencies of the

object that contribute to the diffraction pattern and given by equation 2, forms a spherical

shell that passes through the origin, which we have referred to above as the Ewald sphere.

If the incident beam is convergent or divergent, there is a distribution of incoming direc-

tions, leading to a nest of spherical shells of equal radius in reciprocal space,whose centres

lie on a spherical cap such that they all intersect at the origin. The normal at the center

of this cap is parallel to the mean beam direction, see figure 2. The covariance matrix Σin

of
⇀
𝑘in due to convergence or divergence alone cannot really be simplified in general, but

if the distribution is isotropic, it can be written as:

Σin = 𝜎2in𝜈
2 (𝐼 − ⇀𝑤in

⇀𝑤⊤
in
)

(9)

where 𝜎in is the standard deviation of the incidence angles (i.e. the convergence), I is the

identity matrix and vectors ⇀𝑤 are unit vectors describing beam directions, derived from

the wave vectors
⇀
𝑘:

⇀𝑤in =
⇀
𝑘in
|
⇀
𝑘in|

⇀𝑤out =
⇀
𝑘out
|
⇀
𝑘out|
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Each beamdirection, in theory, would need its ownpolarization correction, and this could

be achieved by integrating the polarization correction term for all the beam directions,

but as small angles are assumed, the polarization correction of the main beam direction

is deemed sufficient for all.

If there are multiple sources with different wavelengths, i.e. if the wavelength distribu-

tion has a finite bandwidth, the Ewald spheres have different radii and consequently the

distribution of sphere centres, previously on a spherical cap, is broadened radially. The

3D distribution of sphere-centres is approximated as a sum of Gaussian kernels. If the

angular distribution is assumed to be small and independent of the distribution of wave-

lengths, it can be calculated by convolving the angle and wavelength distributions to form

a cumulative distribution. The convolution of Gaussian kernels amounts to a summation

of the respective covariance matrices, see equation 6.

Fig. 2. Illustration for the effect of divergence or convergence. Multiple (depicted three)
incident beamdirectionswith the samewavelegth all lie on a spherical cap and produce
a nest of Ewald spheres.

The distribution of
⇀
∆𝑘 that sample the Fourier transform of the object in equation 2 and

contribute to diffraction in a given direction, i.e. a point on the detector, can be derived

from the distribution of sphere centres. The distribution of
⇀
∆𝑘 will be approximated as
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a Gaussian distribution with mean ⇀𝜇𝐴 and covariance matrix Σ𝐴. Since the diffraction

process does not change the wavelength, the outgoing wave distribution is perfectly cor-

related in wavelength with the corresponding incoming wave distribution. Differences of

fully correlated Gaussian distributions require taking the difference of the square root of

the respective covariance matrices. Given
⇀
𝑘in and

⇀
𝑘out are approximated as Gaussian dis-

tributions,
⇀
∆𝑘 is distributed as a Gaussian around themean value ⇀𝜇𝐴 corresponding to the

difference of the mean of
⇀
𝑘out and

⇀
𝑘in. The covariance matrix Σ𝐴 of the distribution of

⇀
∆𝑘

can be computed as the correlated difference between the distribution of
⇀
𝑘in with covari-

ance matrix Σin and the distribution of
⇀
𝑘out with covariance matrix Σout in that particular

direction:

√
Σ𝐴 =

√
Σin −

√
Σout (10)

The distribution of
⇀
𝑘out with the covariance matrix Σout = 𝜎2𝜈

⇀𝑤out
⇀𝑤⊤
out is not affected by

divergence and only contains the wavelength distribution along
⇀
𝑘out, and where 𝜎𝜈 is the

bandwidth. The distribution of
⇀
𝑘in is affected by both the wavelength distribution and the

angular distribution of incident beams, possibly correlated. In the slightly less general

case, where it is assumed that the angular distribution of the incident beam is isotropic

and is not correlated to its wavelength, the distribution of
⇀
∆𝑘 entirely due to polychro-

maticity is:

Σ𝐴 = 𝜎2𝜈∆
⇀𝑤∆ ⇀𝑤⊤ (11)

Combining this equation with equation 9 gives a way to estimate Σ𝐴 under simplified

conditions:

Σ𝐴 = 𝜎2𝜈∆
⇀𝑤∆ ⇀𝑤⊤ + 𝜎2in𝜈

2 (I − ⇀𝑤in
⇀𝑤⊤
in
)

(12)

If we cannot assume that wavelength and incident angle are uncorrelated, Σin can be

treated as a free parameter instead, and Σ𝐴 can be derived by roatating the component
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of Σin that is due to polychromaticity and therefore in line with the incident beam direc-

tion to each
⇀
𝑘out . The distribution of

⇀
𝑘out given Σin is therefore:

Σout = rotate
( ⇀𝑤𝑖𝑛,

⇀𝑤𝑜𝑢𝑡
) [( ⇀𝑤⊤

inΣin
⇀𝑤in
) ( ⇀𝑤in

⇀𝑤⊤
in
)]

(13)

where rotate
( ⇀𝑤𝑖𝑛,

⇀𝑤𝑜𝑢𝑡
)
is the rotation matrix of the rotation around the axis orthogonal

to ⇀𝑤𝑖𝑛 and
⇀𝑤𝑜𝑢𝑡, that would align

⇀𝑤𝑖𝑛 to
⇀𝑤𝑜𝑢𝑡. Then Σ𝐴 is given by equation 10.

3.3.2. The Crystal Due to its periodicity, the Fourier transform of a crystal is concentrated

in peaks. As discussed above, these peaks are broadened by properties of the crystal, such

as the finite width of the crystal, mosaicity and strain. Here we define the separate effects

that are modelled:

Mosaicity is commonly used to describe a rotational disorder of the crystal and can be

seen as a distribution of orientations of the unit cell. Rotational disorder of an object in

three dimensions will have six degrees of freedom in general: Rotational disorder around

three orthogonal axes and three covariance terms between them.

Strain is the distribution of contractions of unit cells. Generally, for each real-space

lattice point in three dimensions there can be a different distribution of displacements in

the direction of the origin and traverse to it. In general this is a three-dimensional tensor.

In the following we will assume that the changes of the structure factors due to strain are

negligible.

Mosaicity and strain taken together, considering correlations of the effects in three

dimensions, require a higher dimensional tensor that maps each point of reciprocal space

to a cross-correlationmatrix. In the following, however, mosaicity and strain will be taken

as uncorrelated and mosaicity will be assumed to be isotropic. This means that mosaic-

ity is assumed to be equal in all angular directions and mutually independent of crystal

strain. The integration in the following subsection (section 3.4) will however be applicable

with and without this simplification.
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Reciprocal peak shape is the parameter that describes the distribution of each lattice

point in reciprocal space, possibly due to the transform of the shape of a finite crystal,

before being broadened by the effects of mosaicity and strain. In general this is a free

parameter, but e.g. if the shape transform is sinc(𝜋𝑥)sinc(𝜋𝑦)sinc(𝜋𝑧) (the Fourier trans-

form of a cube), it could be approximated by a Gaussian distribution with covariance

Σ𝑃 = 1
4
𝐼. Because of the approximately quadratic decay in the observed diffraction, as

opposed to the exponential decay of the Gaussian, shape transforms are not approximated

by sums ofGaussian functions efficiently. Therefore if the reciprocal peak shape is the pre-

dominant effect that is broadening the diffraction condition, the approximate nature of

the proposed model becomes most obvious. The strength of the proposed method is the

ability to combine different effects analytically, where the convolved distributions natu-

rally become smoother.

Integer multiples of the reciprocal unit cell matrix 𝑅 span the locations ⇀𝜇𝑃 of the peaks

in the Fourier transform of the crystal: ⇀𝜇𝑃 = 𝑅
⎛
⎜
⎝

ℎ
𝑘
𝑙

⎞
⎟
⎠
. The density around ⇀𝜇𝑃 is approxi-

mated to be a Gaussian distribution with the covariance matrix Σ𝑃. The cumulative dis-

tribution results from the convolution of the individual distributions. Its covariance is

therefore the sum of the covariance matrix Σ𝑃0 describing the shape transform, the effect

of isotropic mosaicity 𝜎2𝑚 (
||||
⇀𝜇𝑃
||||
2
𝐼 − ⇀𝜇𝑃

⇀𝜇⊤𝑃), and the effect of uncorrelated strain 𝜎
2
𝑠
⇀𝜇𝑃

⇀𝜇⊤𝑃 .

Here 𝜎𝑚 quantifies the mosaicity as the standard deviation of rotational disorder, and 𝜎𝑠

quantifies the strain as the standard deviation of the relative unit cell size variation.

3.4. Evaluation of Integrals

Given the distributions defined in section 3.3.1 and 3.3.2, we are now in a position to

compute the diffracted flux density in a given direction ⇀𝑤out. This is done by evaluating

particular integrals for each pair of Gaussian basis functions of the distributions, as given

below. Polarization and scaling terms were left out at this point for clarity, because they
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are not affected by the integration. If at least one of the distributions is assumed to have

random or chaotic phases, the integration is incoherent, so using equation 8 and the def-

inition of 𝜙 in equation 3 we get the following result:

∫
ℝ3
𝜙
(⇀𝑥, ⇀𝜇𝐴,Σ𝐴

)2
𝜙
(
𝑥; ⇀𝜇𝑃,Σ𝑃

)2
𝑑⇀𝑥 (14)

=∫
ℝ3
𝜙 (⇀𝑥, ⇀𝜇𝐴,

1
2Σ𝐴) |4𝜋Σ𝐴|

− 1
2 𝜙 (⇀𝑥, ⇀𝜇𝑃,

1
2Σ𝑃)

2
|4𝜋Σ𝑃|

− 1
2 𝑑⇀𝑥

=𝜙 (⇀𝜇𝐴,
⇀𝜇𝑃,

1
2Σ𝐴 +

1
2Σ𝑃) |4𝜋Σ𝐴|

− 1
2 |4𝜋Σ𝑃|

− 1
2 (15)

=exp (−
( ⇀𝜇𝐴 −

⇀𝜇𝑃
)⊤
Σ−1𝑜

( ⇀𝜇𝐴 −
⇀𝜇𝑃
)
) ||||32𝜋

3Σ−1∗
||||
− 1
2

If all contributions to the diffraction described by the two distributions have a constant

phase relation, the integration is coherent:

(∫
ℝ3
𝜙
(⇀𝑥, ⇀𝜇𝐴,Σ𝐴

)
𝜙
(
𝑥; ⇀𝜇𝑃,Σ𝑃

)
𝑑⇀𝑥)

2

(16)

= 𝜙
(⇀𝜇𝐴,

⇀𝜇𝑃,Σ𝑜
)2

= 𝜙 (⇀𝜇𝐴,
⇀𝜇𝑃,

1
2Σ𝑜)

|||4𝜋Σ𝑜|||
−1
2 (17)

= exp (−
( ⇀𝜇𝐴 −

⇀𝜇𝑃
)⊤
Σ−1𝑜

( ⇀𝜇𝐴 −
⇀𝜇𝑃
)
) |||2𝜋Σ𝑜|||

−1

where

Σ0 = Σ𝐴 + Σ𝑃

Σ∗ =
(
Σ−1𝐴 + Σ−1𝑃

)−1

The result of equation 15 is applied below in section 4 to compute a diffraction pattern

that matches the observed pattern. This requires the appropriate scaling and polarization

correction. All in all there are 17 parameters describing eachGaussian kernel of the crystal

(9 for the unit cell, 6 for the shape transform and one each for mosaicity and strain) and

9 describing each Gaussian kernel in the source (3 parameters for the direction and 6
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for a possibly correlated distribution of illumination angles and wavelengths). The source

will typically not change for many crystals in a serial crystallography experiment and one

Gaussian kernel will give enough degrees of freedom to describe the diffraction of each

crystal.

4. Pixel-wise Diffraction Pattern Prediction

The first way our approach can be used to process data, is to model each pixel of a diffrac-

tion pattern, making use of as many constraints as possible in determining the hidden

parameters and the structure factor amplitudes. A still diffraction pattern can be calcu-

lated using the result of equation 15 for each point on the detector, by applying a polar-

ization correction 𝐶 and scaling with the intensity of the incoming beam and with the

respective structure factor modulus square |𝐹|2 of each reflection.

𝑗 = 𝐽0

|||||||||||
𝐹
⎛
⎜
⎝

ℎ
𝑘
𝑙

⎞
⎟
⎠

|||||||||||

2

𝐶
(
𝑝, ⇀𝑛, ⇀𝑤in,

⇀𝑤out
)

exp
⎛
⎜
⎜
⎝

−
⎛
⎜
⎝

⇀
∆𝑘 − 𝑅

⎛
⎜
⎝

ℎ
𝑘
𝑙

⎞
⎟
⎠

⎞
⎟
⎠

⊤

Σ−1𝑜
⎛
⎜
⎝

⇀
∆𝑘 − 𝑅

⎛
⎜
⎝

ℎ
𝑘
𝑙

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎟
⎠

||||32𝜋
3Σ−1∗

||||
1
2

(18)

𝐶
(
𝑝, ⇀𝑛, ⇀𝑤in,

⇀𝑤out
)
= 𝑝 (1 −

( ⇀𝑤⊤
out

( ⇀𝑤in ×
⇀𝑛
))2

) + (1 − 𝑝) (1 −
( ⇀𝑤⊤

out
⇀𝑛
)2
) (19)

where 𝐽0 is the incident beam flux, 𝑝 is the degree of polarisation, ⇀𝑛 the normal to the

polarisation plane, and 𝐹 the structure factor. The flux measured in a pixel is the integral

over all directions that fall into the solid angle of that pixel summed up for all Miller

indices with significant excitation. If the predicted flux was constant over this area, the

integral would be just proportional to the solid angle that the pixel occupies.

The detector is assumed to be composed of rigid panels. Each panel has its own two-

dimensional coordinate system consisting of the dimensions 𝑓𝑠 and 𝑠𝑠 defined in terms

of the memory order, where 𝑠𝑠 (short for fast scan) is the dimension of values stored con-

secutively and 𝑠𝑠 (short for slow scan) is the dimension that is not. Each panel has a local
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coordinate system given by a 3 × 2 matrix 𝐷 for the two dimensions in the plane of the

panel and an offset vector ⇀𝑜 for the absolute position in space of the corner correspond-

ing to the origin of the coordinate system of this panel. The solid angle of a pixel can be

approximated using the derivative of the normed directionality vector ⇀𝑤out with respect

to the detector coordinates:

⇀𝑤out = (𝐷 (𝑠𝑠𝑠𝑠) +
⇀𝑜)

|||||||||
𝐷 (𝑠𝑠𝑠𝑠) +

⇀𝑜
|||||||||

−1

(20)

⇀𝑤out = direction in which diffraction is to be predicted

𝐷 = matrix translating between panel coordinates and spatial coordinates

⇀𝑜 = spatial coordinates of the reciprocal space origin in detector coordinates

(𝑠𝑠𝑠𝑠) = coordinates of the pixel on the detector

For the following two derivations it will be useful to know the derivative of the direction
⇀𝑤out with respect to its two coordinates in the detector panel’s coordinate system:

𝜕
( ⇀𝑤out

)

𝜕 (𝑠𝑠𝑠𝑠)

=
(
𝐷 − ⇀𝑤out

⇀𝑤⊤
out𝐷

) |||||||||
𝐷 (𝑠𝑠𝑠𝑠) +

⇀𝑜
|||||||||

−1

(21)

The solid angle Ω is approximated by the length of the cross product of the pixel sides

projected onto the unit sphere:

Ω ≈
|||||||||
(
𝜕
( ⇀𝑤out

)

𝜕 𝑠𝑠
(fs)) × (

𝜕
( ⇀𝑤out

)

𝜕 𝑠𝑠
(ss))

|||||||||
(22)

However, the predicted peaks can be very narrow, and therefore the predicted flux can

vary substantially within a single pixel. To enable an efficient integration over the area,

the predicted flux density can be smoothed analytically without changing the total flux

of the whole diffraction pattern. This is achieved by introducing a Gaussian point spread

function for the detector (the blue arrows in figure 1) with a covariance matrix corre-

sponding to 1∕2 the extent of a pixel, or for greater accuracy, by oversampling the pixel and
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applying the same procedure to the subpixels. Simply put, this smooths the prediction to a

level where sampling it discretely only introduces minor artefacts, the main effect being a

slightly reduced contrast. The constant 1∕2, of the aforementioned pixel extent, minimizes

the maximum Kullback Leibler Divergence 𝐷𝐾𝐿 (Kullback & Leibler, 1951) between the

desired proper integral (𝑏) involving the error function and the estimate (𝑐). Equation 23

shows a proof in one dimension, that can be generalized to higher dimensions for all

shapes for which an orthogonalizing coordinate transform can be found. It is natural to

assume that the same constant approximately minimizes this difference even when the

sides are not strictly parallel. The 𝐷𝐾𝐿 is an asymmetric measure for the difference of

probability distributions taking into account that under-estimating a probability is more

detrimental than over-estimating it. It was chosen because the predicted flux density is a

scaled probability density.

𝐷𝐾𝐿 (𝑃 ∣∣ 𝑄) =∫
ℝ
𝑃(𝑥) log (

𝑃(𝑥)
𝑄(𝑥)

)𝑑𝑥

𝑏(𝑥, 𝜇, 𝜎) = 1
2
⎛
⎜
⎝
erf

⎛
⎜
⎝

𝑥 − 𝜇 + 1
2√

2𝜎2

⎞
⎟
⎠
− erf

⎛
⎜
⎝

𝑥 − 𝜇 − 1
2√

2𝜎2

⎞
⎟
⎠

⎞
⎟
⎠

𝑐(𝑥, 𝜇, 𝜎) =
exp (− 1

2
(𝑥 − 𝜇)2

(
𝜎2 + 𝜎2+

)−1
)

√
2𝜋

(
𝜎2 + 𝜎2+

)

argmax
(𝑥−𝜇),𝜎

(𝑏(𝑥, 𝜇, 𝜎) log (
𝑏(𝑥, 𝜇, 𝜎)
𝑐(𝑥, 𝜇, 𝜎)

)) = (12 , 0)

lim
𝜎→0+,𝑥−𝜇→ 1

2

− (𝑏(𝑥, 𝜇, 𝜎)) = 1

argmin
𝜎+

(− log (𝑞 (𝑥, 𝑥 − 1
2 , 0))) = argmin

𝜎+
(

1
22𝜎2+

+ log
(
2𝜋𝜎2+

)
) =

1
2 (23)
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𝑃 = precise probability distribution

𝑄 = approximation

𝜇 = mean value

𝜎 = standard deviation from the mean

𝜎+ = the constant to be solved for

Using the results in equations 23 and 21 the resulting covariance matrix of the smoothing

function is:

Σ𝐷 =
𝜈2

22

⎛
⎜
⎜
⎜
⎜
⎝

𝜕 ⇀𝑤out

𝜕 (𝑠𝑠𝑠𝑠)

(𝑠𝑠𝑠𝑠)

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝜕 ⇀𝑤out

𝜕 (𝑠𝑠𝑠𝑠)

(𝑠𝑠𝑠𝑠)

⎞
⎟
⎟
⎟
⎟
⎠

⊤

(24)

We nowhave away ofmodelling the flux of each pixel. This is good enough formonochro-

matic experiments, but tomodel polychromatic experiments we need to take into account

that detector response signals of integrating detectors are proportional to the total pho-

ton energy impinging on the detector. Integrating detectors are commonly chosen over

counting detectors for SX experiments as they are not limited to measuring one photon

per pixel at a time. The following derivation uses wavenumber 𝜈, which is proportional

to the impinging photon energy.

The average wavenumber of the polychromatic diffracted beam at the particular loca-

tion of a given pixel can be estimated from the mean point of the joint distribution of the

source and the the peak of the crystal in reciprocal space (compare equation 4). This is

achieved by rescaling the component collinear to the incident beam. We are only inter-

ested in the collinear component because the deviation of
⇀
∆𝑘 in any other direction is not

due to the wavelength distribution but due to other factors like convergence. The rescal-

ing is necessary, because the correlated difference between
⇀
𝑘in and

⇀
𝑘out, which necessar-
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ily have equal wavelengths, leads to a covariance matrix of
⇀
∆𝑘 that appears sheared with

respect to the covariance of
⇀
𝑘in and compressed along the beam direction. A geometric

visualization is offered with figure 3 in lieu of a mathematical proof. The cosine of the

angle of diffraction equals the scalar product between the normalized incoming and out-

going wave vectors, leading to the following expression:

𝜈 = ⇀𝑤⊤
in
(
Σ−1𝐴 + Σ−1𝑃

)−1 (
Σ−1𝐴

⇀𝜇𝐴 + Σ−1𝑃
⇀𝜇𝑃
) (
1 − ⇀𝑤⊤

in
⇀𝑤out

)−1
(25)

Fig. 3. Geometric explanation for equation 25 for the expectedwavenumber. Convergence,
orthogonal to ⇀𝑤in, and wavelength dispersion, in line with

⇀𝑤in, are indicated as a box
to highlight the shearing of the covariance when forming the correlated difference
between ⇀𝑤in and

⇀𝑤out and their respective variances. It can be seen that the length
of

⇀
∆𝑤 projected onto ⇀𝑤in is 1 − cos (𝜃), where 𝜃 is the angle of diffraction.

Having a distribution of photons of different wavelengths does not change the Poisson

photon counting statistic, but it leads to an additional variance in the measured intensity

proportional to the width of this distribution, because each photon measured can have

a different energy. The width of the wavenumber distribution in each pixel can be esti-

mated from the shape of the product of the two Gaussians in equation 14 by projecting

to the incoming beam and rescaling. This is analogous to the expected wavenumber in

equation 25.

𝜎𝜈 =
(
1 − ⇀𝑤⊤

in
⇀𝑤out

)−1
√

1
2

⇀𝑤⊤
inΣ∗

⇀𝑤in (26)
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From the expected photon flux, the expected wavelength and the constant 𝑔 describing

the detector response as detector counts per wavenumber, the expected detector reading

𝑦̂ for a given pixel is given as the product

𝑦̂ = 𝑗𝜈𝑔 (27)

To model the photon counting statistic, whose variance scales with the expected pho-

ton count, and all degrees of systematic errors, of which the variance is assumed to scale

quadratically with the predicted photon flux, we employ the following two-parameter (𝛼

and 𝛽) error model to predict the total variance:

𝜎2𝑦̂ = 𝑔2 (𝛼 + 𝛽 |||𝑗|||) |||𝑗|||
(
𝜈2 + 𝜎2𝜈

)
(28)

This error model is essentially equivalent to equation 3 in (Diederichs, 2010).

To connect the prediction 𝑦̂ with the measured data 𝑦 we introduce a probability dis-

tribution described by the density function 𝑓(𝑦), which enables a maximum likelihood

optimization. The probability distribution is a mixture distribution of a smoothed Gaus-

sian that approximates a discrete Gaussianwith the additional variance 1
22
using the result

in equation 23 and a super-heavy tailed outlier distribution 𝑢(𝑦) thatmodels even extreme

outliers like defective pixels.

𝑓(𝑦) = (1 − 𝜖)𝜙
(
𝑦, 𝑦̂, 𝜎2𝑦̂

)
+ 𝜖𝑢(𝑦) (29)

𝑢 (𝑦) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑢
(
log2 (𝑦)

)

𝑦 if 𝑦 > 1

0.29
⎡
⎢
⎢
⎣

1 −

(
𝑦 − 1

2

)2
− 1

4

1 + 1∕ log (2)

⎤
⎥
⎥
⎦

otherwise
(30)
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𝑢(𝑦) = a smoother version of Rissanen’s universal prior for integers (Rissanen, 1983)

𝜖 = outlier probability

Crystal diffraction is sparse andmost pixels will not see significant diffraction. The pix-

els with significant diffraction can be estimated conservatively by finding the potentially

excited indices using a region growing algorithm (see appendix B) and then projecting the

peak shape onto the detector (using equation 41). This accelerates the prediction greatly

while not affecting the result in any significant way. Because derivatives can be computed

analytically, the predicted diffraction pattern can be optimized using pseudo-Newton opti-

mization methods like BFGS (Broyden, 1970) (Fletcher, 1970) (Goldfarb, 1970) (Schanno,

1970) or gradient descent. In theory this should make the optimization straightforward

and efficient, but the target function has many local minima and plateaus. Together with

the associated computational cost, this is the reason why pixel-wise refinement of the

Gaussian sum model proposed in this paper so far has only been applied to individual

diffraction patterns and not full datasets. This method also depends on a pixel-wise back-

ground estimate and a detector geometry that is determined well enough, such that pre-

dicted pixels coincide mostly with measured pixels. This demands the computation of

about 8kpx for a 4Mpx detector. This makes it computationally expensive, requiring on

the order of 10 single core computing hours per pattern (4GHz AMDA12). Therefore this

method has not yet connectedwith structure refinement directly, but is used to show visu-

ally that different diffraction patterns can be predicted accurately. Examples of successful

pixel-wise diffraction pattern prediction after parameter optimization can be found in fig-

ures 4 and 5.
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(a) (b)

Fig. 4. Comparison between (a) previously published diffraction data from a human sero-
tonin receptor (Liu et al., 2013) (on the left) and (b) predicted diffraction of the same
image region after successful optimization, with estimated background added. Diffrac-
tion is predicted using equation 19 with the substitution Σ𝑜 → Σ𝑜 + Σ𝐷, corrected for
the solid angle with equation 22, equation 25 to estimate the expected wavelength and
summed up over all significantly excited Miller indices. Intensities are scaled accord-
ing to the reference intensities deposited in the PDB under 4NC3. The bandwidth of
the X-ray beam is estimated to be about 0.1% (LCLS states 0.2%∆𝐸∕𝐸 FWHM for the
CXI beamline (LCLS, 2022).)
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(a) (b)

Fig. 5. Comparison between (a) diffraction data (unpublished) of selenobiotine bound
streptavidin crystals and (b) predicted diffraction of the same image region with esti-
mated background added. Diffraction is predicted using equation 19 with the substi-
tution Σ𝑜 → Σ𝑜 + Σ𝐷, corrected for the solid angle with equation 22, equation 25 to
estimate the expected wavelength and summed up over all significantly excited Miller
indices. The diffraction was measured at ESRF with a 1M Jungfrau detector using a
pink beam with 5% bandwidth FWHM. The structure factors for the prediction are
taken from the Streptavidin-norbiotin complex structure deposited under 1LCV in the
PDB (Pazy et al., 2002).

parameter degrees of freedom optimization
geometry description 9 for each panel yes
unit cell 9 yes
reciprocal peak shape 6 yes
mosaicity 1 yes
strain 1 yes
linear scale-factor 1 yes
B-factor 1 yes
error model 2 yes
source description 10 no

Table 1. Parameters that were optimized against pixel values for each image

5. Merging Using Integrated Peak Intensities

This section describes the second application of the model presented in section 3: merge

Gaussian partiality corrected integrated intensities (MGPCII). First we derive an expres-

sion for the total intensity of a reflection in a still diffraction pattern and then we describe
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a method of how to use this expression to reduce the detrimental impact of partially

recorded reflections on the estimates of structure factors.

5.1. An Expression for Integated Peak Intensities

The total photon energy of one reflection can be computed by integrating the result of

equation 15 over all directions. This integral can be approximated when considering that

the angular extent of a reflection on the detector is small and the curvature as well as the

change in width of the Ewald sphere is negligible for the integral over a single reflection.

The density of the distribution of Ewald spheres can therefore be approximated as a planar

(Winkler et al., 1979) Gaussian, decaying along the direction of diffraction, but constant

orthogonal to it. First the double integral is restated using equation 14. Then the integral

along all possible outgoing wave directions is approximated with a projection onto the

outgoing wave direction with the highest intensity ⇀𝑤max , which can be found by function

optimization:

∫
ℝ3
∫
ℝ3

(
𝜙
(
⇀𝑥,

⇀
𝑘in − 𝜈 ⇀𝑤out,Σ𝐴

)
𝜙
(⇀𝑥, ⇀𝜇𝑃,Σ𝑃

))2
𝑑⇀𝑥 𝑑 ⇀𝑤out (31)

=∫
ℝ3
𝜙 (

⇀
𝑘in − 𝜈 ⇀𝑤out,

⇀𝜇𝑃,
1
2Σ𝐴 +

1
2Σ𝑃) |4𝜋Σ𝐴|

− 1
2 |4𝜋Σ𝑃|

− 1
2 𝑑 ⇀𝑤out (32)

≈
(
𝜙
(⇀
𝑘in − 𝜈 ⇀𝑤max ,

⇀𝜇𝑃,
⇀𝑤⊤
maxΣ◦

⇀𝑤max

))2
|4𝜋Σ∗|

− 1
2 (33)

Σ−1𝐴 =𝑑−2 ⇀𝑤out
⇀𝑤⊤
out

𝑑 =width of the Ewald sphere at projection point

The photon flux of each reflection in each pattern is estimated as the product of the result

of equation 33 with the incident photon flux 𝐽0, the structure factor amplitude squared,

a linear scaling factor 𝑎, a B-factor correction term modelling a Gaussian decay of inten-

sities due to random atomic displacements, and a term for the polarization correction

(equation 19). This leads to an expression analogous to equation 18, but with an explicit
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linear and B-factor scaling instead of implicitly assigning those as terms in the structure

factors:

𝑗 = 𝐽0

|||||||||||
𝐹
⎛
⎜
⎝

ℎ
𝑘
𝑙

⎞
⎟
⎠

|||||||||||

2

𝑎 exp
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⎜
⎜
⎝

−𝐵
|||||||||||
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⎛
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⎝

ℎ
𝑘
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⎠
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2⎞
⎟
⎟
⎠

𝐶
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⎝

−
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⎜
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⎠
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||||
1
2

(34)

The calculation of the mean wavenumber is analogous to equation 25:

𝜈 =

⇀𝑤⊤
in (

( ⇀𝑤⊤
outΣ𝐴

⇀𝑤out
)−1 ⇀𝜇𝐴 +

( ⇀𝑤⊤
outΣ𝑃

⇀𝑤out
)−1 ⇀𝜇𝑃)

(
1 − ⇀𝑤⊤

in
⇀𝑤out

)
(
( ⇀𝑤⊤

outΣ𝐴
⇀𝑤out

)−1
+
( ⇀𝑤⊤

outΣ𝑃
⇀𝑤out

)−1
)

(35)

The width of the predicted wavenumber distribution is analogous to equation 26:

𝜎𝜈 =
(
1 − ⇀𝑤⊤

in
⇀𝑤out

)−1
√

1
2 (

( ⇀𝑤⊤
outΣ𝐴

⇀𝑤out
)−1

+
( ⇀𝑤⊤

outΣ𝑃
⇀𝑤out

)−1
)
−1

(36)

The expected detector count for each reflection is the product of wavenumber, flux and a

detector constant, as in equation 27. Its variance is estimatedwith the same two-parameter

error model as for the pixel-wise prediction in equation 28.

5.2. Parameter Optimization for Merging

The purpose of merging is to produce accurate estimates of the scattering intensities,

proportional to the modulus squares of the structure factors, from a set of observed inte-

grated peak intensities. Tomake use of equation 33 for that end, its free parameters need to

be determined. The scattering intensities are among the parameters to be determined, the

other parameters are listed in table 2. To find the parameters we have chosen amaximum-

likelihood approach because it can be more robust than least squares, but it is still rela-

tively easy to optimize. The probability distribution to be optimized for each observation

is 𝑓(𝑦). Probabilities are assumed to follow a mixture distribution of a Gaussian distribu-

tion and an outlier distribution 𝑜(𝑦). The outlier distribution should be chosen as to best

describe all measured intensities in general, without prediction or scaling. In many cases
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a Cauchy distribution is a good choice because it fits the shape of the distribution of inte-

grated intensities well for frequently observed values and has an inverse quadratic decay

like the positive intensities. The exact shape of the outlier distribution is less relevant;

its most important feature is a slow asymptotic decay to make the maximum-likelihood

approach robust.

𝑓(𝑦) = (1 − 𝜖)𝜙
(
𝑦, 𝑦̂, 𝜎2𝑦̂

)
+ 𝜖 𝑜(𝑦) (37)

𝑜(𝑦) = 1

𝜋𝛾 (1 + (
𝑦 − 𝑦0
𝛾 )

2
)

(38)

𝑜 = outlier distribution

𝜖 = outlier probability = 1
16

𝛾 = (the scale parameter of the Cauchy distribution)

𝑦0 = 0

parameter degrees of freedom optimization
geometry description 9 for each panel no
unit cell 9 yes
reciprocal peak shape 6 yes
mosaicity 1 yes
strain 1 yes
linear scale-factor 1 yes
B-factor 1 yes
error model 2 yes
source description 10 no

Table 2. Parameters that were optimized against integrated intensities for each crystal

5.3. Tests on Experimental Data

To show that equation 33 can be used to correct partially recorded reflections to improve

the data quality, two serial femtosecond crystallography datasets were chosen: One cal-

ibration dataset of granulin microcrystals𝟏 (dataset 1) and one dataset (Nass, 2020) that
𝟏 This dataset is previously unpublished and was measured in October 2020 at the SPB beamline of the Euro-
pean XFEL in preparation for bacterial insecticide crystals, by a team lead by Dominik Oberthür and Colin
Berry. It has been deposited in the CXIDB with the ID 203.
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allows SADphasing (dataset 2). The diffraction patterns of both datasetswere indexed and

integrated using indexamajig of CrystFEL 0.9.1. To get a baseline for comparison to our

method the integrated intensitiesweremergedwith partialator 0.9.1 and partialator

0.8.0 using the partiality models ggpm, xsphere and unity and the merged intensities

were chosen that produced the best structure refinement results. The datasets were pro-

cessed once with and once without over-prediction, that is also integrating peaks further

away from the diffraction condition, via the command-line option - -overpredict. The

effect of overprediction is shown for the first dataset in figure 6, and as can be seen, the

additional reflections are mostly of low intensity. Overprediction was not helpful when

merging using partialator in any of the combinations of options that was tested. There-

fore overprediction is not enabled in the data points used as a comparison to the new

method. However, it consistently lead to better structure refinement results when cor-

recting partialities using the generalized Gaussian diffraction model and maximum like-

lihood parameter optimization during merging. This is why overprediction is enabled for

that method.
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Fig. 6. Histogram of measured integrated intensities of dataset 1 in black (without over-
prediction) and red (with overprediction) overlaid with the Cauchy outlier distribution
(𝛾 = 1967.7) in blue. The outlier distribution was chosen as to describe the measure-
ments well, but also to reserve some probability especially for the extreme values. Note
that the additional intensities due to overprediction are mostly small.

The method described in section 5.2 was applied to both datasets and the quality of the

intensities was compared to the partialator baseline. In addition dataset 1 was investi-

gated in more detail, with regards to overfitting, to the correlation of prediction and mea-

surement and the distribution of estimated partialities, while the second dataset was used

to test how much SAD phasing could be improved.

After optimization of the scaling parameters (in table 2) for dataset 1, the correlation

between prediction and measurement is high, see figure 7, but the relative error between

prediction andmeasurement still is about 25% andmuch larger than the photon counting

error.
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Fig. 7. Predicted intensities versus measured intensities with the photon counting error
estimates indicated by blue error bars and corrected error estimates by gray error bars.
In red are datapoints that were treated as outliers, dots in blue were treated as regular
datapoints. The black line shows where the points would lie, if the predictions were in
perfect agreement with the measurements. Subfigure (a) shows the first 1000 intensi-
ties as recorded in the granulin dataset (dataset 1). Subfigure (b) shows the intensities
and predictions for the crystal with the strongest diffraction in the same dataset.
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The comparison of predicted andmeasured partialities in figures 8 and 9 show a strong

correlation, which is exploited by when correcting the measurements using the partiality

estimate. Unknown partialities increase the variance of the intensities before merging

and therefore of the merged intensities too. The variance can be reduced by partiality

correction.

Fig. 8. A scatter plot of a subset of predicted versus measured partialities with an esti-
mated photon counting and background subtraction error of less than 1∕8 in the gran-
ulin dataset (dataset 1). Chosen are the first 10000 intensities from the dataset in the
order they are recorded, to make the result as reproducible as possible.
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Fig. 9. Predicted partialities compared to measured partialities, with photon counting
error estimates indicated by error bars. The first 993 values from dataset 1 in the order
they are recorderd to have an estimated photon counting and background subtraction
error of less than 1∕4 are displayed. The black line shows where the points would lie, if
the predictions were in perfect agreement with the measurements.
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Fig. 10. Histogram of partialities measured with an estimated photon counting and back-
ground subtraction error of less than 1∕8 from the granulin dataset (dataset 1).

Aswould be expected for the smoothed distribution of the function values of aGaussian

function with uniform input𝟐, the histogram of the measured partialities (figure 10) has

an optimum at 0, corresponding to a reflection that was not observable - most reflections

in a given crystal orientation are not observable, and also a very faint optimum at 1. The

optimum at 1 corresponds to the flat top of the intensity curve of an observation near its

maximum intensity.

To test the amount of overfitting, dataset 1 was split randomly in two halves. The first

half was used to optimize the parameters of the scaling and partiality model in table 2 and

the second half was used to test the correspondence of prediction and measurement. The

median correlation of 256 random prediction-measurement pairs 𝟑 decreased from 0.59

to 0.56, the reduction in correlation can be observed by comparing figure 11 to figure 12.
𝟐 for a derivation of the distribution before smoothing see appendix D
𝟑 to increase the robustness of the correlation, as there are outliers that skew the correlation to 0, −1 or 1
randomly
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This is evidence of some degree of overfitting, but also means that even half the number

of peaks is sufficient to arrive at roughly the same prediction. So even though the method

of partiality correction of integrated intensities would likely profit from additional con-

straints𝟒, it still reduced the number of diffraction patterns necessary to achieve a given

data quality by about a factor of 2. R-factors after automatic refinement, see figure 13,

were consistently lower for MGPCII than for partialator.
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Fig. 11. 10000 random pairs of predicted and measured intensities from the random half-
dataset of dataset 1 that was used to fit all parameters to.

𝟒 Among the constraints that were left unused are the peak positions on the detector and the fact that the
different unit cells matrices are mainly just different rotations of each other.
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Fig. 12. 10000 random pairs of predicted and measured intensities using the parame-
ters determined from the random half-dataset of dataset 1 used in figure 11. Note the
slightly reduced correlation compared to figure 11
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Fig. 13. Comparison of structure refinement results of the granulin dataset (dataset
1) using phenix 1.18-3855 to a resolution of 1.8Åof MGPCII, in green, and
partialator 0.9, in violet. The bold dots represent the free R-factor, the small circles
represent the R-work. The partiality model ggpm gave the best result for partialator
for all sizes of subsets that were tested.

Dataset 2 is of of the Adenosine receptor A2A, measured at LCLS using a wavelength of

2.7Å (Nass, 2020). The protein contains 22 sulphurs and the wavelength is close enough

to the absorption edge to make SAD phasing possible. This makes this dataset suitable to

see to what extent partiality correction would improve phasing success. For all merged

intensity files a SAD phasing attempt was run using phenix.autosol (Liebschner et al.,

2019) and the known protein sequence and a resolution cutoff of 2.3Å.
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Fig. 14. Maximum HySS correlation coefficient found during automatic SAD phasing
using phenix.autosol from A2A crystals (Nass, 2020) as a function of the number of
crystals used during merging. The entries in green are for MGPCII, whereas the violet
dots represent the results of partialator.
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Fig. 15. R-factors of the refinement of structures built during automatic SAD phasing
using phenix.autosol from A2A crystals (Nass, 2020) as a function of the number
of crystals used. The entries in green are for MGPCII, whereas the violet dots represent
the results of partialator. The solid dots are R-free and the small circles are R-work.

As can be seen from the hybrid substructure search (HySS) correlation coefficient in

figure 14 and theR-factors that the automatic structure building and refinement achieved,

see figure 15, the improvedmerging efficiency is reproduced for the anomalous signal too.

6. Discussion and Conclusion

UsingGaussian basis functions, approximationswere developed that have enoughdegrees

of freedom to describe most of the significant effects in macromolecular crystallographic

experiments. These approximations were used to simulate diffraction patterns, which

were visually very similar tomeasured diffraction patterns. Partiality estimation and post-

refinement using these functions have reduced the number of measurements necessary

for a given data quality inmerged intensities. In the first example it reduced the number of
IUCr macros version 2.1.11: 2019/01/14



43

patterns required to achieve a given R-factor by about a factor of 2 compared to CrystFEL’s

partialator. In the second example S-SAD phasing succeeded with about a quarter of

the diffraction patterns. The range of datasets that were tested is not comprehensive how-

ever and partialator is not the only alternative, nor necessarily the best program, just

the most commonly used.

There are many differences between our method and partialator, partiality estima-

tion being only one of them. Without exhaustive testing we are not able to tell precisely

which differences provide the greatest improvement. A significant improvement canhow-

ever be attributed to the error model used, which has been shown to improve merging on

its own using a different approach (Brewster et al., 2019). Another important difference is

that our method profits strongly from overprediction, adding many measurements with

mostly insignificant intensities, by integrating reflections even if they are farther removed

from the ideal dffraction condition. It may seem that overprediction should not improve

the precision of themerged result as strongly as it does, especially when the added intensi-

ties are mostly small or negative. However we find that the small intensity values outside

of the diffraction condition act as a powerful constraint for determining reciprocal peak

shape, mosaicity and strain.

Even though polychromatic diffraction of mosaic crystals can be described qualita-

tively, automatic refinement has proven to be difficult so far because predicted peak posi-

tions can vary by more than half the inter-Bragg distances. There are many more applica-

tions for approximating diffractionwith Gaussian basis functions in the waywe described

that remain to be explored. Pixel-wise refinements, like done in the program diffBragg

(Mendez et al., 2020), should lead to even better merging efficiency and a more precise

detector geometry refinement at the cost ofmore computation time. Themodel could also

be used to predict the intensity of peaks per frame in a rotation series and therefore sim-

plify the visual examination of the effecitiveness of data processing, especially for peaks
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laying along the axis of rotation.

Integrated peak intensities are less demanding for numerical optimisation than pixel-

wise intensities because there are many pixels per reflection. And because peak intensi-

ties are integrated over a larger pixel area on the detector, the geometry description only

needs to be accurate enough for most of the peak intensity to fall within the integration

area. A consequence of integration is the drastic reduction of the number of constraints.

Whereas pixel-wise optimization uses thousands of pixels, albeit with somewhat degener-

ate information𝟓, the number of constraints in a traditional cell parameter and orientation

refinement during merging of a serial crystallographic datasets is just high enough to be

clearly overdefined. This might mean that for datasets of very weakly diffracting crystals

and without additional constraints a pixel-wise refinement is the only option.

Lastly we want to emphasize the generality of this model. The samemodel can be used

to simulate diffraction patterns and integrated intensities of serial monochromatic and

polychromatic crystallography experiments. The analytical nature of this model makes

analytical derivatives available, which is useful for mathematical optimization. It also

makes deriving properties like peak locations and shapes and integrals over angular ranges

and areas practical. Together this opens up a wide range of experiments where this model

can be applied.

Appendix A
Derivatives and Derived Properties

𝟓 In a single Gaussian approximation each peak on the detector can be described with 6 variables: Height, 𝑥
and 𝑦 coordinate of the centre, major and minor axis and orientation of the elliptical shape. Oversampling
the shape does not add constraints in this approximation.
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A.1. Peak Shape on the Detector

Looking at the predicted intensity as a function of the position
(
𝑓𝑠 𝑠𝑠

)⊤
on the detec-

tor, and assuming that the peak intensity falls into a small angular range (< 10◦) where

the covariance matrices can be approximated as locally constant with good accuracy, an

approximation of the peak shape on the detector can be derived by factoring out the

(approximately) constant terms from the exponential. For straightforward computation

and best approximation the direction with the highest intensity ⇀𝑤𝑚𝑎𝑥
out should be deter-

mined, this can be achieved with any function optimization algorithm. Newton’s method

is equivalent to iteratively completing the square for the exponential term and, because

the target function can bemade very nearly quadratic by taking the logarithm, it converges

very fast. The detector coordinate system is commonly given by a 2-by-3 transformation

matrix 𝐷 and an offset vector ⇀𝑜. The outgoing wave direction is therefore given by the

normed position vector:

⇀𝑤out = (𝐷 (
𝑠𝑠
𝑠𝑠) +

⇀𝑜)
|||||||||
𝐷 (𝑠𝑠𝑠𝑠) +

⇀𝑜
|||||||||

−1

(39)

The point
(
𝑠𝑠0 𝑠𝑠0

)⊤
denotes the peak position on the detector, i.e. the position of max-

imum flux. Using
(
𝑠𝑠0 𝑠𝑠0

)⊤
the normed directionality vector can be approximated to

first order as:

⇀𝑤out ≈
⇀𝑤max
out +

𝜕
( ⇀𝑤out

)

𝜕 (𝑠𝑠𝑠𝑠)

(𝑠𝑠0𝑠𝑠0
) ((𝑠𝑠𝑠𝑠) − (𝑠𝑠0𝑠𝑠0

))

Equation 14 for the flux on the detector can be expressed as a scaled Gaussian (or a sum

thereof), and using the linearized expression for the directionality vector the intensity on

the detector can be expressed as:
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𝑗 (𝑠𝑠𝑠𝑠) ≈ 𝑐 exp

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−12

⎛
⎜
⎜
⎜
⎜
⎝

𝜈

⎛
⎜
⎜
⎜
⎜
⎝

⇀𝑤𝑚𝑎𝑥
out +

𝜕
( ⇀𝑤out

)

𝜕 (𝑠𝑠𝑠𝑠)

(𝑠𝑠0𝑠𝑠0
) ((𝑠𝑠𝑠𝑠) − (𝑠𝑠0𝑠𝑠0

))

⎞
⎟
⎟
⎟
⎟
⎠

− ⇀𝜇

⎞
⎟
⎟
⎟
⎟
⎠

⊤

Σ−1 ([...])

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(40)

𝑐 = proportionality constant

The scaled Gaussian, that only appears to be three-dimensional, can be rearranged to

show the two-dimensional form using suitable substitutions:

𝑀 =
𝜕
( ⇀𝑤out

)

𝜕 (𝑠𝑠𝑠𝑠)

(𝑠𝑠0𝑠𝑠0
)

⇀
∆𝑥 = (𝑠𝑠𝑠𝑠) − (𝑠𝑠0𝑠𝑠0

)

𝑒 =
(
𝜈
(

⇀𝑤max
out +𝑀

⇀
∆𝑥

)
− ⇀𝜇

)⊤
Σ−1

(
𝜈
(

⇀𝑤max
out +𝑀

⇀
∆𝑥

)
− ⇀𝜇

)

Σ′ =
(
𝜈2𝑀⊤Σ−1𝑀

)−1

∆ (𝑠𝑠0𝑠𝑠0
) = 𝜈Σ′−1𝑀⊤Σ−1

(⇀𝜇 − 𝜈 ⇀𝑤𝑚𝑎𝑥
out

)

𝑒 = (
⇀
∆𝑥 − ∆ (𝑠𝑠0𝑠𝑠0

))
⊤

Σ′−1 (
⇀
∆𝑥 − ∆ (𝑠𝑠0𝑠𝑠0

))

+
(⇀𝜇 − 𝜈 ⇀𝑤max

out
)⊤
Σ−1

(⇀𝜇 − 𝜈 ⇀𝑤max
out

)
− ∆ (𝑠𝑠0𝑠𝑠0

)
⊤

Σ′−1∆ (𝑠𝑠0𝑠𝑠0
)

∆ (𝑠𝑠0𝑠𝑠0
) = (00) if the outgoing wave vector was optimal

𝑓 (𝑠𝑠𝑠𝑠) ≈ 𝑐 exp (−12 (
⇀
∆𝑥⊤Σ′−1

⇀
∆𝑥 +

(⇀𝜇 − 𝜈 ⇀𝑤max
out

)⊤
Σ−1

(⇀𝜇 − 𝜈 ⇀𝑤max
out

)
)) (41)

The peak on the detector can therefore be approximated by a scaled two-dimensional

Gaussian (or several), potentially broadened by the point spread function of the detector.

The shape (without broadening) is given by the two-dimensional covariance matrix Σ′ .
IUCr macros version 2.1.11: 2019/01/14



47

Appendix B
Asymptotically Optimal Prediction of a Diffraction Image in Areas With

Flux Above Threshold

The naive approach to calculating a diffraction image of a snapshot would be to compute

the multiplication of the source with the object and the convolution with the Green’s

function via the FFT. This holds in general in kinetic far-field approximation even for

non-crystals. For a crystal the Fourier transform is sparse and this is usually exploited

by iterating over the Miller indices. The computational complexity is 𝑂(𝑁ℎ𝑁𝑘𝑁𝑙) where

𝑁 is the number of indices to be considered in each direction. Because the Ewald sphere

essentially is two dimensionalwe can comeupwith a solution to compute this in𝑂(𝑁2) by

using a region growing approach. Every reflection that exceeds a threshold has at least one

neighbouring Miller Index which has a virtual reflection at most as far as half the inter-

Bragg distance that would exceed the threshold. Figure 16 pictures a curve with some

width going through a mesh. The curve intersects only some nodes of the mesh, but for

every node that it does there is at least one face (or enclosed volume for higher dimen-

sions) that it intersects. The path of the curve can be traced by testing neighbouring faces

(or volumes) for intersection iteratively.

1: initialise list todo
| by finding the closest Miller index
| to each midpoint of each detector panel

2: while ( there are elements in list todo )
3: take one (h,k,l) from the list todo

add it to set done
4: if ( no point in volume around (h,k,l)

| can exceed threshold ) goto 2
5: add all neighboring indices to list todo
6: if ( flux of (h,k,l) is below threshold ) goto 2
7: predict the intensity of (h,k,l) on the detector

To implement the set operations efficiently and to actually achieve 𝑂(𝑁2) asymptotic

complexity, the hash table patchmap (Brehm, 2019) was used, but most other data struc-
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tures with amortized constant lookups and insertions would do as well because the lim-

iting step is checking the overlap in step 4.

Fig. 16. An illustration of region growing for identifying reflections with significant con-
tribution to the diffraction. The gray gridlines intersect at integer combinations that are
the Miller indices of the reflections in reciprocal space. The Ewald sphere, or diffrac-
tion condition more generally, is assumed to be a smooth function and much thinner
in one dimension than the others. It is caricaturized with an ellipse sector in black. The
algorithm starts at any of the light red or light blue squares. For each blue square that
intersects with the diffraction condition at any point, the diffraction condition at the
exact Miller index is evaluated. A significant contribution is indicated with a blue dot,
an insignificant contribution with a red dot. For each blue square all new neighbours
are inspected for intersections in the same manner. Squares that do not intersect the
diffraction condition at any point are colored in light red and don’t prompt the inspec-
tion of their neighbours.
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B.1. Maximum Flux of Virtual Reflection in Range (ℎ ± 1
2
, 𝑘 ± 1

2
, 𝑙 ± 1

2
)

The maximum flux of any virtual reflection with fractional coordinates closer to a given

Miller Index (ℎ, 𝑘, 𝑙) than any other Miller Index can be conservatively estimated by tak-

ing the reflection at (ℎ, 𝑘, 𝑙), and convolving its location with a width equal to one unit of

(ℎ, 𝑘, 𝑙) in reciprocal space while not changing the normalisation of equation 33. This dis-

tance corresponds to a covariance matrix equal to half the reciprocal unit cell times half

the reciprocal unit cell transposed, note the similarity to the result in equation 23. The

approximation is not sensitive to the assumed direction of maximum diffraction inten-

sity ⇀𝑤max , a rough estimate is sufficient. For compactness the term
⇀
𝑘in − 𝜈 ⇀𝑤max will be

combined as 𝜇⃗𝐴:

max
ℎ± 1

2
,𝑘± 1

2
,𝑙± 1

2

|4𝜋Σ∗|
− 1
2
(
𝜙
(⇀
𝑘in − 𝜈 ⇀𝑤max ,

⇀𝜇𝑃,
⇀𝑤⊤
maxΣ◦

⇀𝑤max

))2

= max
ℎ± 1

2
,𝑘± 1

2
,𝑙± 1

2

(exp (− 1
2

(
𝜇⃗𝐴 −

⇀𝜇𝑃
)⊤ ⇀𝑤⊤

maxΣ−1◦
⇀𝑤max

(⇀𝜇𝐴 −
⇀𝜇𝑃
)
))

2

|4𝜋Σ∗|
1
2
||||2𝜋

⇀𝑤⊤
maxΣ◦

⇀𝑤max
||||

≈
(exp (− 1

2

(⇀𝜇𝐴 −
⇀𝜇𝑃
)⊤ ⇀𝑤⊤

max

(
Σ◦ +

1
22
𝑅𝑅⊤

)−1 ⇀𝑤⊤
max

(⇀𝜇𝐴 −
⇀𝜇𝑃
)
))

2

|4𝜋Σ∗|
1
2
||||2𝜋

⇀𝑤⊤
maxΣ◦

⇀𝑤max
||||

B.2. One Frame in a Rotation Series

The integrated intensity in a given outgoing direction ⇀𝑤out can be expressed as propor-

tional to a Gaussian function, see equation 8. The intensity integrated over an oscillation

range [𝛽, 𝛾] is then proportional to:

∫
𝛾

𝛽
𝜙
⎡
⎢
⎢
⎣

⇀𝜇𝐴,
⎛
⎜
⎝
(𝐺𝛼 𝑈)

−1 ⎛
⎜
⎝

ℎ
𝑘
𝑙

⎞
⎟
⎠

⎞
⎟
⎠
,Σ
⎤
⎥
⎥
⎦

𝑑𝛼 (42)
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𝐺𝛼 = rotation matrix with angle 𝛼

𝑈 = unit cell matrix (real-space)

It can be evaluated by first finding the indices values that will be excited to a signif-

icant degree in the outgoing arc section described by the position on the detector, the

axis of rotation ⇀𝑔 and the oscillation range. Then the target function can be approxi-

mated by a one-dimensional Gaussian by developing a small angle approximation around

the rotation with the highest predicted intensity and factoring out the constant terms of

the three-dimensional Gaussian. This one-dimensional Gaussian integrated for the given

range yields a difference of two error-functions.

𝐺max = rotation matrix that yields maximal diffraction

⇀𝜇𝑃 = (𝐺max 𝑈)
−1 ⎛
⎜
⎝

ℎ
𝑘
𝑙

⎞
⎟
⎠

∫
𝛾

𝛽
𝜙
[⇀𝜇𝐴,

(
𝛼⇀𝑔 × ⇀𝜇𝑃 +

⇀𝜇𝑃
)
,Σ
]
𝑑𝛼 (43)

𝜎𝑔 = (
(⇀𝑔 × ⇀𝜇𝑃

)⊤
Σ−1

(⇀𝑔 × ⇀𝜇𝑃
)
)
− 1
2

(44)

∫
𝛾

𝛽

exp (− 1
2

(⇀𝜇𝑆 −
⇀𝜇𝑃
)⊤
Σ−1

(⇀𝜇𝑆 −
⇀𝜇𝑃
)
+ 𝛼2

2𝜎2
)

|2𝜋Σ|
1
2

𝑑𝛼 (45)

exp (− 1
2

(⇀𝜇𝑆 −
⇀𝜇𝑃
)⊤
Σ
(⇀𝜇𝑆 −

⇀𝜇𝑃
)
)

|2𝜋Σ|
1
2

∫
𝛾

𝛽
exp (−

1
2
𝛼2

𝜎2𝑔
) 𝑑𝛼 (46)

∫
𝛾

𝛽
exp (−

1
2
𝛼2

𝜎2𝑔
) =

√
𝜋𝜎2𝑔
2

⎛
⎜
⎜
⎝

erf
⎛
⎜
⎜
⎝

𝛾
√
2𝜎2𝑔

⎞
⎟
⎟
⎠

− erf
⎛
⎜
⎜
⎝

𝛽
√
2𝜎2𝑔

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

(47)

A similar result is stated with equation 37 in section 3.6 of Kabsch (2014).

Appendix C
Pixel-wise Backgound Estimation
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Background estimation for the pixel-wise diffraction prediction was done by minimiz-

ing the following function that acts similar to a boxed median filter or a boxed mean of

the middle 75%, which both are muchmore easy to compute, but less flexible and slightly

less smooth:

𝐵(⇀𝜇, ⇀𝜎) =
𝑁∑
log((1 − 𝛼)𝜙 (𝑦𝑖, 𝜇𝑖, 𝜎𝑖) + 𝛼𝑢(𝑦𝑖)) +

∑

adj. 𝑖,𝑗
log (𝜙 (𝜇𝑖, 𝜇𝑗,

1
4

√
𝜎2𝑖 + 𝜎2𝑗)) (48)

𝛼was typically 1∕4,𝑢 is the outlier distribution fromequation 30 and 𝑦𝑖 are the pixel values.

The function is minimized by finding the optimal values for 𝜇𝑖 and 𝜎𝑖. The indices enu-

merate the pixels and the second sum goes over all pairs of adjacent pixels. This approach

is very likely overcomplicated, but it did not turn out to be a bottle-neck and was good

enough.

Appendix D
Theoretical Distribution of Partialities

If the intensities of reflections decline like a Gaussian function when leaving the opti-

mal diffraction condition, and because the diffraction condition is essentially random, the

distribution of partialities should look like the disribution of function values of a Gaus-

sian distribution with uniform input. The Gaussian function, scaled to a peak height and

variance of 1 is 𝑔(𝑋) = exp
(
− 1
2
𝑋2
)
. Its inverse function, not to be confused with the

inverse Gaussian distribution, is 𝑔−1(𝑋) = ±
√
−2 log(𝑋) . There is an ambiguity because

𝑔(𝑋) is not strictly increasing or decreasing, but it is symmetric around the axis 𝑋 = 0,

and we can therefore restrict the analysis to the increasing branch only. The random vari-

able 𝑋 is assumed to be uniformly distributed on some region symmetric to 0 on a sup-

port [−𝑎, 𝑎]. The probability density therefore is 𝑓(𝑥) = 1
2𝑎
and the cumulative distribu-

tion function 𝐹(𝑥) = ∫𝑓(𝑥) = 𝑥
2𝑎
. The cumulative distribution function of the random

variable 𝑌 = 𝑔(𝑋) is the distribution function of X applied to the inverse function of 𝑔:
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𝑃(𝑔(𝑋) < 𝑦) = 𝑃(𝑋 ≤ 𝑔−1(𝑦)) = 𝐹(𝑔−1(𝑦)), which is
−
√
−2 log(𝑦)
2𝑎 . The density function

is its derivative,
(
−2𝑦2 log(𝑦)

)− 1
2

2𝑎 . In the limit of a large interval [−𝑎, 𝑎] this is not a proper

density function any more, as the integral ∫10
(
−2𝑦2 log(𝑦)

)− 1
2 𝑑𝑦 is divergent.
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Synopsis

Reflection position, size and shape prediction and partiality estimation of crystal diffraction by
integrating using a Gaussian basis.
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