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Abstract

The precise knowledge of the QED initial state corrections is of instrumental importance
in studying high luminosity measurements in e+e− annihilation at facilities like LEP, the
International Linear Collider ILC, CLIC, a Giga-Z facility, and the planned FCC ee. Loga-
rithmic corrections of up to O(α6L5) are necessary with various subleading terms taken into
account. This applies to both the inclusive measurement of processes like e+e− → γ∗/Z∗

and also the forward–backward asymmetry. As has been shown recently, techniques from
massive QCD, such as the computation of massive on–shell operator matrix elements, can
be used for these calculations. We give an introduction to this topic and present both the
calculation methods and the numerical corrections having been reached so far.
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1 Introduction

The precision physics for the process e+e− → γ∗/Z∗ started at LEP-1 in the early 1990ies leading
to a highly precise measurement of the Z–peak [1]. Among other radiative corrections the QED
initial state corrections are of high importance in these measurements, since they change the
shape–parameters of the Z–peak significantly. The most far–reaching calculation of the initial
state QED corrections (ISR) of O(α2), with α = 4πa the fine structure constant, had been
performed in Ref. [2] at that time, which had been a theoretical challenge and milestone. This
calculation has never been checked until 2011, some time after LEP had already been ended,
when the same result was derived using massive operator matrix elements (OMEs) in Ref. [3].
Massive operator elements were known to present all contributions except power corrections in
QCD in the cases with external massless partons [4]. Therefore, one could try to apply this
method also in the case of massive fermions, the electrons. However, the present case is one
with also massive external lines. After correcting typographical errors in [2] all logarithmic
contributions of both calculations [2,3] and the constant term at O(α) agreed, but not the result
for the constant term of O(α2). Furthermore, in one of the subprocesses Ref. [2] agreed with [5].
Due to this, one option to explain the observed differences has been that the method of massive
OMEs does not work in the case of massive external lines, or, otherwise, that the results in
Refs. [2, 5] need corrections.

One way to unambiguously resolve these discrepancies has been to repeat the complete cal-
culation to O(α2) without neglecting any term at intermediate steps and carry out the limit
m2

e/s → 0 for the power corrections only in the final results. Such a calculation has not been
fully possible in 2011, but became accessible in 2019, again working on complete QCD calcu-
lation in which specific phase space integrals occurred. The organization of these integrals as
iterated integrals over various root–valued letters, cf. e.g. [6,7], and their reduction using shuffle
algebras [8], brought the solution to also organize the phase–space integrals in the case of QED.
In this way, we firstly found the correct results for the fermionic non–singlet corrections of [2,5],
if the radiated particles are electrons, but not muons, [9]. While our result agreed with [2,5] for
muons, it disagreed for electron radiation, since there electron mass terms had been neglected
too early in Refs. [2,5]. For Ref. [2] this also applied to the pure singlet channel, which has been
calculated earlier in the massless case in QCD in Ref. [10], and been used as such in [2]. How-
ever, also here electron mass terms cannot be neglected. We also newly calculated the bosonic
contributions in [11, 12], and fully confirmed the results given in Ref. [3] by the phase space
integration method intended to be used in Ref. [2]. Through this we proofed that the method of
massive OMEs can also be used in the case of external massive fermionic lines.

The technique of massive OMEs now also allows to access logarithmically enhanced terms
through the renormalization group. With the known pieces it is possible to obtain three con-
secutive logarithmic orders in all higher orders in α, as e.g. O(α3L3), O(α3L2), O(α3L), etc.,
with L = ln(s/m2

e) and s the cms energy. We applied this technique to all corrections up to
O(α6L5) in Ref. [13] and to higher order corrections to the forward–backward asymmetry [14],
although in this case new contributions have to be calculated. We also note that the universal
QED corrections O(αkLk) are known to at least fifth order k = 5, cf. [15–22]. Highly precise
QED radiative corrections are of importance for the analysis of the precision measurements at
LEP, [1], the planned international linear collider, ILC, [23–25] CLIC [26], the FCC ee [27] and
muon colliders [28].

The paper is organized as follows. In Section 2 we describe the direct calculation of the O(α2)
corrections due to initial state radiation and the factorized approach by using massive OMEs,
which lead to the same results. For the O(α2) ISR corrections we present numerical results
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on the Z0-peak and width, for the process e+e− → Z0H and tt̄ production in the threshold
region. The method of massive OMEs is then extended to higher orders for the leading and
two subleading logarithmic terms in Section 3. In Section 4 we present precision results for the
forward–backward asymmetry and Section 5 contains the conclusions. We also present numerical
results on the calculated radiative corrections for different key observables.

2 Two–loop Corrections

After observing the differences in the results of Refs. [3] and [2], the only way to clarify this
consisted in a direct calculation of the complete O(a2) initial state corrections to e+e− → γ∗/Z∗

annihilation. Its result confirmed the results of Ref. [3]. Due to this the explicit high energy
factorization could be shown to O(a2) also for massive external fermions. Assuming this factor-
ization to even higher orders, allows to calculate the first three logarithmic correction terms to
even higher order. These results are reported in Section 3. In the following we first summarize
the complete O(a2) calculation in Section 2.1 and turn then to the calculation based on massive
OMEs in Section 2.2. Finally, we derive numerical results on the O(a2) corrections for a series
of key processes to be measured at future facilities.

2.1 Two–loop Corrections: the Direct Calculation

Upon neglecting power corrections of O(m2
e/s) the initial state QED corrections can be written

in terms of the following functions

H
(

z, α,
s

m2

)

= δ(1− z) +
∞
∑

k=1

( α

4π

)k

Ck

(

z,
s

m2

)

(1)

Ck

(

z,
s

m2

)

=
k

∑

l=0

lnk−l
( s

m2

)

ck,l(z), (2)

which yield the respective differential cross sections by

dσe+e−

ds′
=

1

s
σe+e−(s

′)H
(

z, α,
s

m2

)

, (3)

with σe+e−(s
′) the scattering cross section without the ISR corrections, α ≡ α(s) the fine structure

constant and z = s′/s, where s′ is the invariant mass of the produced (off-shell) γ/Z boson.
The Born cross section is given by

σ
(0)

e+e−(s) =
4πα2

3s
NC,f

√

1− 4mf

s

[(

1 +
2m2

f

s

)

G1(s)− 6
m2

f

s
G2(s)

]

, (4)

see e.g. [29], where NC,f denotes the color factor for the final state fermions, i.e. NC = 3 for
quarks and NC = 1 for leptons. The effective couplings Gi(s)|i=1...2 read

G1(s) = Q2
eQ

2
f + 2QeQfvevfRe[χZ(s)] + (v2e + a2e)(v

2
f + a2f )|χZ(s)|2, (5)

G2(s) = (v2e + a2e)a
2
f |χZ(s)|2, (6)

where the reduced Z–propagator is given by

χZ(s) =
s

s−M2
Z + iMZΓZ

, (7)
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with MZ and ΓZ the mass and the with of the Z–boson and mf is the mass of the final state
fermion. Qe,f are the electromagnetic charges of the electron (Qe = −1) and the final state
fermion, respectively, and the electro–weak couplings vi and ai are given by

ve =
1

sin θw cos θw

[

I3w,e − 2Qe sin
2 θw

]

, (8)

ae =
1

sin θw cos θw
I3w,e, (9)

vf =
1

sin θw cos θw

[

I3w,f − 2Qf sin
2 θw

]

, (10)

af =
1

sin θw cos θw
I3w,f , (11)

where θw is the weak mixing angle, and I3w,i = ±1/2 the third component of the weak isospin for
up and down particles, respectively.

One may distinguish four processes: i) photon radiation, ii) e+e− pair emission, iii) fermionic
pure singlet corrections, and iv) the interference terms between the diagrams contributing to ii)
and iii). Furthermore, there is also µ+µ− initial state radiation and that of light quarks. The
latter contribution belongs to the QCD corrections, and we will label the one of µ+µ− pair
emission as process v). It has been described in Refs. [2, 5] correctly, as has been confirmed in
Ref. [9, 11]. We will consider the processes i)–iv) in the following.

The phase–space integrals to be performed are organized as iterated integrals over a set
of letters, which are found by solving associated differential equations, cf. [30]. The alphabet
consists of letters forming generalized harmonic polylogarithms [31], but also of elliptic letters.
Since all integrations are indefinite, still iterative integrals are obtained. We therefore call the
corresponding integrals Kummer–elliptic integrals. The respective iterative integrals have the
structure

Hb,~a(z) =

∫ z

0

dyfb(y)H~a(y). (12)

Examples for these letters are, cf. [11] (using the abbreviation fb(t; z, ρ) ≡ fb),

d24 =
1

(

t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2
)
√

t2(1− z)2 − 8ρt(1 + z) + 16ρ2
, (13)

d26 =
1√

1− t
(

t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2
)
√

t2(1− z)2 − 8ρt(1 + z) + 16ρ2
. (14)

These integrals depend on the tiny parameter ρ = m2
e/s and one may now expand in ρ controlling

the accuracy by high precision numerics for the unexpanded integrals at each step. One finally
arrives at iterated integrals which integrate in terms of harmonic polylogarithms or even classical
polylogarithms and Nielsen integrals [32–37].

The size of the amplitudes to be dealt with amounts to 10 Gb (process i)), 25 kb (process
ii)), 56 kb (process iii)) and 124 kb (process iv)), requiring several months for code design and
30h of computation time. The calculation could only be done by using computer–algorithmic
methods, which have been developed very recently.

The 2–loop corrections for process i) consist out of soft (S), virtual (V) and hard (H) correc-
tions and their interference terms [11] which can be written schematically by

Rγγ
2 = T S2

2 + TV2

2 + T S1V1

2 + T S1H1

2 + TV1H1

2 + TH2

2 . (15)
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We agree with [2] for all but the virtual–hard contributions, i.e. TV1H1

2 . The radiator Rγγ
2 is

given by

R
i)
2 (z) = Rγγ

2 (z)

= δ(1− z)
{

32(L− 1)2 ln2(ε) +
(

48L2 − (112− 64ζ2)L+ 64− 64ζ2
)

ln(ε)

+(18− 32ζ2)L
2 − (45− 88ζ2 − 48ζ3)L+ 76 + (6− 96 ln(2))ζ2 − 72ζ3 −

96

5
ζ22

}

+θ(1− z − ε)
{

64(L− 1)2D1 +
(

48L2 − (112− 64ζ2)L+ 64− 64ζ2
)

D0

−L2

(

8(5 + z) + 32(1 + z) ln(1− z) +
8
(

1 + 3z2
)

1− z
ln(z)

)

+ L

(

8(14 + z)

+
8
(

5 + 2z + 7z2
)

1− z
ln(z)− 4

(

1 + 3z2
)

1− z
ln2(z) +

16
(

1 + z2
)

1− z
Li2(1− z)

−32(1 + z)ζ2 +

[

64(1 + z) +
16
(

1 + z2
)

1− z
ln(z)

]

ln(1− z)

)

− 8
(

18 + z − 15z2
)

3(1− z)

−8
(

1 + z2
)

3(1− z)
ln3(z) +

4

3(1− z)3
(

12− 33z + 51z2 − 51z3 + 13z4
)

ln2(z)

+
32

3
(3 + 8z)ζ2 − 32(1 + z)ζ3 −

(

16(1 + 3z) +
8
(

2 + 6z − 3z2
)

1− z
ln(z)

−8
(

3− z2
)

1− z
ln2(z)

)

ln(1− z) + 16z ln2(1− z)−
(

8
(

6 + 3z + 26z2 − 27z3
)

3(1− z)2

+
16
(

1− 3z2
)

1− z
ζ2

)

ln(z) +

(

−8
(

9 + 19z − 13z2
)

3(1− z)
− 16(1 + z) ln(1− z)

+
8
(

5− 3z2
)

1− z
ln(z)

)

Li2(1− z) + 24(1 + z)Li3(1− z) + 32(1 + z)Li3(z)
}

, (16)

with

Dk(z) =

(

lnk(1− z)

1− z

)

+

. (17)

Here the separation parameter ε has been introduced to realize the +-distributions in terms of
functions. It disappears after the z-integral has been performed.

Another radiator is the one of the non–singlet process for e+e− emission, R
ii)
2 . The correction

to the scattering cross section for electron pair emission is given by

R
ii)
2 (z) =

{

64

3
z(1− z)(1 + z − 4ρ)H∗

v4,d7
+

256

3
zρ(1 + z − 4ρ)H∗

v4,d6

+
128z(1− 4ρ2)(1− z + 2ρ)(1− z − 4ρ)

3(1− z)2
H∗

d8,d7

+
512zρ(1− 4ρ2)(1− z + 2ρ)(1− z − 4ρ)

3(1− z)3
H∗

d8,d6

+
16

9(1− z)2

[

(1 + z)2
(

4− 9z + 4z2
)

+ 2
(

9− 16z + 13z2 − 2z3
)

ρ+ 32ρ2
]

H∗
d2

+
512zρ

9(1− z)4

[

3(1− z)4z − (1− z)3
(

4 + z2
)

ρ− 2
(

9− 29z + 38z2 − 17z3 + 3z4
)

ρ2
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interference contributions if compared to the pure vector and pure axial vector contributions,
which has been considered in Refs. [9, 11].

In this and the subsequent calculations reported in this survey we have extensively used
the packages FORM [39] Sigma [40, 41], EvaluateMultiSum [42], HarmonicSums [8, 31, 43–49],
HolonomicFunctions [50], and private implementations [30] to calculate the respective integrals
analytically.

2.2 The Method of Massive Operator Matrix Elements

The method of massive operator matrix elements has been introduced in QCD to calculate
heavy flavor corrections to deep–inelastic scattering at two–loop order for all but contributions
due to power corrections of O((m2

Q/Q
2)k), k ≥ 1, with Q2 the virtuality of the exchanged gauge

boson and mQ the heavy quark mass [4]. It is also applicable to massive Drell–Yan processes
as studied in the present paper and has been applied in [2], showing that it works at one–loop
order and for all logarithmic contributions at two–loop order1. However, there has not been a
clear conclusion in [2], whether it works also for the non–logarithmic contribution at O(a2). It
has been found in [3], that the O(a2) terms given in [2] are indeed not reproduced. For us it
initially caused doubts on its inapplicability, because this factorization might not be present in
the massive Drell–Yan process, although it is expected. The complete result obtained in Ref. [6],
see Section 2.1, has then fully confirmed our earlier result in the factorized approach [3]. In the
following we will outline the different steps in this approach in detail, also for later use at even
higher orders [13], see Section 3.

The general decomposition of the scattering cross section in Mellin space is given by, cf. [3]2

dσe+e−

ds′
=

1

s
σ(0)(s′)

[

Γe+e+

(

N,
µ2

m2
e

)

σ̃e+e−

(

N,
s′

µ2

)

Γe−e−

(

N,
µ2

m2
e

)

+Γγe+

(

N,
µ2

m2
e

)

σ̃e−γ

(

N,
s′

µ2

)

Γe−e−

(

N,
µ2

m2
e

)

+Γe+e+

(

N,
µ2

m2
e

)

σ̃e+γ

(

N,
s′

µ2

)

Γγe−

(

N,
µ2

m2
e

)

+Γγe+

(

N,
µ2

m2
e

)

σ̃γγ

(

N,
s′

µ2

)

Γγe−

(

N,
µ2

m2
e

)

]

. (21)

The terms in the brackets [...] are Mellin–convoluted. Only massive OMEs of the kind Γe±e± and
Γγe± contribute because the process considered has electron–positron initial states and the σ̃γγ

terms appear only from O(a4) onward. In the factorization also the massless Wilson coefficients
for the Drell-Yan process σ̃ij, i, j = e±, γ contribute. The factorization scale µ cancels after
expanding in a0 = a(m2

e). The following expansions hold for the massive OMEs and massless
Wilson coefficients

Γli

(

N,
µ2

m2
e

)

= δli +
∞
∑

r=1

ar(µ2)
r

∑

n=0

ali;nr(N)Λn (22)

σ̃lk

(

N,
s′

µ2

)

= δlk +
∞
∑

r=1

ar(µ2)
r

∑

n=0

blk;nr(N)λn, (23)

1Upon correcting typographical errors in [2] in Ref. [3].
2In the massless case the principle solution of the renormalization group equations (RGEs) to general orders

has been known for long, see [52,53].
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with the logarithms Λ and λ given by

Λ = ln

(

µ2

m2
e

)

, λ = ln

(

s′

µ2

)

. (24)

The massive OMEs Γij and massless Wilson coefficients σ̃kl fulfill the following renormalization
group equations, cf. [51],

[(

∂

∂Λ
+ β(a)

∂

∂a

)

δkl +
1

2
γkl(N, a)

]

Γli

(

N, a,
µ2

m2
e

)

= 0 (25)

[(

∂

∂λ
− β(a)

∂

∂a

)

δklδjm +
1

2
γkl(N, a)δjm +

1

2
γjm(N, a)δkl

]

σ̃lj

(

N, a,
s′

µ2

)

= 0 , (26)

and the QED β function has the representation

β(a) = −
∞
∑

k=0

βka
k+2, (27)

with β0 = −4/3, β1 = −4.
The calculation of the scattering cross section (21) to O(a20) requires the knowledge of the

expansion coefficients of the massless Drell–Yan cross section [9, 38, 54] to O(a20), the one– and

two–loop anomalous dimensions γ
(k)
ij [55], and the massive OMEs Γ

(0)
ee ,Γ

(0)
eγ and Γ

(1)
ee . The latter

quantity needs to be known in its contributions to processes i) + iv), ii) and iii). The major

task in Ref. [3] has been to calculate Γ
(1)
ee . At that time, many of the automated methods and

function spaces found in later massive calculations have been not yet known, cf. [56], and majorly
hypergeometric integration techniques [57] were used. Checks have been performed using the
package tarcer [58] and detailed lists of special integrals had to be calculated, cf. [3].

As an example, we show the massive OME
ˆ̂
AIII

ee , from which ΓIII
ee is obtained,

ˆ̂
A(2),III

ee = S2
ε

∫ 1

0

dx xN 1 + (−1)N

2

{

8

ε2

[

1− x

3x
(4x2 + 7x+ 4) + 2(1 + x) ln(x)

]

+
4

ε

[

5(1 + x) ln2(x)− 1 + x

3x
(8x2 − 17x− 16) ln(x) +

4(1− x)

9x
(5x2

+ 23x+ 14)

]

+
2

x
(1− x)(4x2 + 13x+ 4)ζ2 +

1

3x
(8x3 + 135x2 + 75x

+ 32) ln2(x) +

[

304

9x
− 80

9
x2 − 32

3
x+ 108− 32

1 + x
− 64(1 + 2x)

3(1 + x)3

]

ln(x)

− 224

27
x2 + 16

1− x

3x
(x2 + 4x+ 1) [2 ln(x) ln(1 + x)− Li2(1− x)

+2Li2(−x)] + (1 + x)

[

4ζ2 ln(x) +
14

3
ln3(x)− 32 ln(x)Li2(−x)

− 16 ln(x)Li2(x) + 64Li3(−x) + 32Li3(x) + 16ζ3

]

− 182

3
x+ 50

− 32

1 + x
+

800

27x
+

64

3(1 + x)2

}

m2ε
e (∆ · p)N . (28)

Here ∆ is a light–like vector, p the external momentum of the OME, N labels the Mellin moment,
ε = D−4 is the dimensional parameter, and Sε = exp[(ε/2)(γE − ln(4π))] is the spherical factor,
with γE the Euler–Mascheroni constant.
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After all building blocks which enter (21) have been calculated, one can perform the corre-
sponding Mellin transforms analytically and obtain all the radiators, which were also obtained
in the direct calculation, presented in Section 2.1.

2.3 Numerical Results at O(α2)

The initial state QED corrections can be written in terms of the radiator functions introduced in
Section 2.1, which we use in the following to calculate the ISR corrections to different processes.

86 88 90 92 94 96

0.5

1.0

1.5

2.0

2.5

s [GeV]

[f
b
]

Figure 3: The Z-resonance in e+e− → µ+µ−. Dotted line: Born cross section; Dashed line: O(α)
ISR corrections; Full line: O(α2) + soft resummation ISR corrections, with s0 = 4m2

τ ; from Ref. [12].

250 300 350 400 450 500 550 600

0

50

100

s [GeV]

[%
]

LO

NLO

10 x NNLO

50 x soft resum.

Figure 4: Relative contributions of the ISR QED corrections to the cross section for e+e− → ZH
in %. Dotted line: O(α0); Dashed line: O(α); Dash-dotted line: O(α2); Full line: soft resummation
beyond O(α2), with s0 = 4m2

τ ; from Ref. [12].
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Here we consider the contribution to O(α2) only and turn to higher order corrections in Section 3.
We discuss the ISR corrections for the Z peak and its surrounding, the process e+e− → ZH,
and tt̄ production in the threshold region, cf. Ref. [12]. The ISR corrections depend on the
experimental cut s0. In the LEP1 analysis it has been chosen s0 = 4m2

τ or s0 = 0.01M2
Z [1].

Furthermore, one considers the cases of a fixed Z-width or the s-dependent Z-width, leading to
a peak shift of 34.2 MeV and a shift of the width of 1 MeV, in accordance with Refs. [59]. We
illustrate the different QED ISR corrections to e+e− → Z∗/γ∗ around the Z peak in Figure 3.
The ISR corrections change the profile of the resonance, i.e. the peak position, height and the
half width. The effect of soft resummation beyond O(α2) are nearly invisible.

More detailed effects, also due to higher order corrections, are discussed in Table 1 in Sec-
tion 3. The new results, compared with [2], imply a relative shift in the Z-width by ∼4 MeV
for s0 = 4m2

τ , being larger than the current value of ∆ΓZ = ±2.3 MeV [60], which may require
a reanalysis of the LEP data to obtain consistent results.

For the study of the radiative corrections to the process e+e− → ZH we refer to the Born
cross section in [61]. The anticipated experimental accuracy for this process should reach 1% [62]
at future colliders like the ILC, CLIC, and even 0.4% at the FCC ee [63]. Figure 4 shows the
relative corrections of ISR corrections.

330 340 350 360

0.0

0.2

0.4

0.6

0.8

1.0

s (GeV)

[p
b
]

Figure 5: The QED ISR corrections to e+e− → tt (s-channel photon exchange) in the threshold
region for a PS-mass of mt = 172 GeV. Dotted line O(α0); Dashed line O(α); Dash-dotted line
O(α2); Full line O(α2) + soft resummation; from Ref. [12].

The NNLO corrections vary between +4.8% and −1% and are thus larger or of the size of the
expected experimental errors, which might imply the need of higher order corrections. On the
other hand, the soft resummation contributions are of O(±0.2%) and reach half of the projected
accuracy.

The QED corrections to tt̄ production in the threshold region are shown in Figure 5. For
the cross section at threshold we use the N3LO QCD corrections implemented in the code
QQbar_threshold [64–66] without QED corrections. Figure 5 illustrates the convergence of
the corrections from the uncorrected cross section to the one with the O(α2) corrections and
higher order soft resummation, which is stable up to the peak region an displays still some shift
towards the continuum region. Accuracy studies for this process have been made in Refs. [67,68].
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The full two–loop QED corrections are mandatory down to the constant contribution to
match the anticipated experimental accuracy for key processes to be measured at future e+e−

colliders and they were mandatory in the analysis of the LEP experiments. Given the luminosity
projected for future experiments, even higher order corrections will become necessary, to which
we turn now.

3 The Higher Order Corrections

In the previous section it has been shown, that the method of massive OMEs provides an equiv-
alent way to calculate the initial state corrections in the limit m2

e/s → 0. This is fully justified in
particular for inclusive calculations, where the power corrections being neglected do not play any
role as e.g. in high energy electron-positron collisions. However, the constant part is still impor-
tant. One arrives at hierarchies of the kind O(αkLk), O(αkLk−1), O(αkLk−2), ..., O(αk). By using
the renormalization group equation one can now derive three consecutive corrections, for which
all massive OMEs are available together with the two–loop corrections to the massless Drell–Yan
cross section [9, 38, 54]. In Ref. [13] we have calculated all the corresponding corrections up to
O(α6L5).

To obtain the leading logarithmic contributions to the radiators we solve (21) to the desired
order and calculate the coefficients of the expansion of the inclusive radiator given in Eqs. (1,2)
in Mellin space. While at lower orders all terms are obtained, at three–loop order we get the
coefficients c3,3, c3,2 and c3,1 only, etc. For example we obtain

c3,1 = −γ(2)
ee − 2Γ(0)

ee γ
(1)
ee − Γ(0)

ee γ
(0)
eγ Γ

(0)
γe − γ(1)

eγ Γ
(0)
γe − γ(0)

eγ Γ
(1)
γe − β1σ

(0)
ee − γ(1)

ee σ
(0)
ee

−γ(0)
eγ Γ

(0)
γe σ

(0)
ee − 2Γ(0)

ee γ
(0)
γe σ

(0)
eγ − γ(1)

γe σ
(0)
eγ − Γ(0)

γe γ
(0)
γγ σ

(0)
eγ − γ(0)

γe σ
(1)
γe + β0

[

−2Γ(0)
ee σ

(0)
ee

−2σ(1)
ee − 2Γ(0)

γe σ
(0)
eγ

]

− γ(0)
ee

[

Γ(0)
ee

2
+ 2Γ(1)

ee + 2Γ(0)
ee σ

(0)
ee + σ(1)

ee + Γ(0)
γe σ

(0)
eγ

]

. (29)

The calculation is best carried out in Mellin space and the z–space representation is finally
obtained by an analytic Mellin inversion using the tools of the package HarmonicSums.

As can be seen from Eq. (29), starting with three–loop order the expansion coefficient Γ
(1)
γe

contributes. In Mellin space it is obtained from the massive OME A
(2)
γe , cf. [13],

A(2)
γe (N) =

[

(

N2 +N + 2
)(

N2 +N + 6
)

3(N − 1)N2(N + 1)2
− 4

(

N2 +N + 2
)

(N − 1)N(N + 1)
S1

]

L2

−
[

2P2

9(N − 1)2N3(N + 1)3
− 4P1

3(N − 1)N2(N + 1)2
S1 +

12
(

N2 +N + 2
)

(N − 1)N(N + 1)
S2
1

+
12
(

N2 +N + 2
)

(N − 1)N(N + 1)
S2

]

L+
P8

27(N − 4)(N − 3)(N − 2)(N − 1)N4(N + 1)4

+

(

2P7

9(N − 4)(N − 3)(N − 2)(N − 1)N3(N + 1)3
+

2
(

N2 +N + 2
)

(N − 1)N(N + 1)
S2

)

S1

+
P3

3(N − 2)(N − 1)N(N + 1)2
S2
1 +

2
(

N2 +N + 2
)

3(N − 1)N(N + 1)
S3
1

+
P6

3(N − 2)(N − 1)N2(N + 1)2
S2 +

4
(

N2 +N + 2
)

3(N − 1)N(N + 1)
S3
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− 48
(

N2 +N + 2
)

(N − 1)N(N + 1)
S2,1 +

3 · 26+N

(N − 2)(N + 1)2
S1,1

(

1

2
, 1

)

+
26−NP5

3(N − 3)(N − 2)(N − 1)2N2

(

S2(2) + S1S1(2)− S1,1(1, 2)− S1,1(2, 1)

)

− 32
(

N2 +N + 2
)

(N − 1)N(N + 1)

[

S1(2)S1,1

(

1

2
, 1

)

+ S1,2

(

1

2
, 2

)

− S1,1,1

(

1

2
, 1, 2

)

−S1,1,1

(

1

2
, 2, 1

)

− ζ2
2
S1(2)

]

+
4P4

(N − 2)(N − 1)N2(N + 1)2
ζ2, (30)

with the polynomials

P1 = 25N4 + 44N3 + 87N2 + 56N + 12, (31)

P2 = 112N7 + 194N6 + 347N5 + 339N4 + 93N3 − 293N2 − 60N + 36, (32)

P3 = 17N4 − 66N3 − 179N2 − 272N − 212, (33)

P4 = N5 + 4N4 + 25N3 + 14N2 + 12N + 8− 3 · 2N+3N2
(

N − 1
)

, (34)

P5 = 9N5 − 24N4 + 8N3 + 4N2 + 33N − 18, (35)

P6 = 11N5 − 90N4 − 329N3 − 356N2 − 284N − 48, (36)

P7 = 17N9 + 213N8 − 1729N7 + 2329N6 − 5196N5 + 7898N4 + 16196N3

+12528N2 − 4896N − 3456, (37)

P8 = −509N11 + 2365N10 + 2797N9 − 13158N8 + 31274N7 − 4694N6 − 64636N5

−107861N4 − 14622N3 + 6588N2 − 2376N − 2592. (38)

The radiators are obtained in terms of harmonic sums [46, 47] and generalized harmonic
sums [31] or harmonic polylogarithms [48] H~a(z) and H~a(1−z) weighted by rational coefficients.
The choice of arguments has been made to avoid the occurrence of more general iterated integrals.
As usual, the radiators in z-space are distribution valued. We show the coefficient c3,1 in Mellin
space as an example,

c3,1 =

{

(

2 +N +N2
)

28−N [S2(2)− S1,1(1, 2)− S1,1(2, 1)]Q36

3(N − 3)(N − 2)(N − 1)2N3(N + 1)(N + 2)

+
16S2,1Q54

9(N − 1)N2(N + 1)2(N + 2)
+

8S3Q91

27(N − 1)N2(N + 1)2(N + 2)

+
Q206

81(N − 4)(N − 3)(N − 2)(N − 1)2N5(N + 1)5(N + 2)3

+

[[

− 64S1Q119

3(N − 1)N2(N + 1)2(N + 2)2
+

32Q144

9(N − 1)N3(N + 1)3(N + 2)2

+
768(N + 3)

(

2 +N2
)

S2
1

(N − 1)N(N + 1)(N + 2)

]

S−2 +

[

−32(N + 3)
(

2 +N2
)(

6 + 13N + 13N2
)

3(N − 1)N2(N + 1)2(N + 2)

+
128(N + 3)

(

2 +N2
)

S1

(N − 1)N(N + 1)(N + 2)

]

S−3 +
64(N + 3)

(

2 +N2
)(

6 + 13N + 13N2
)

S−2,1

(N − 1)N2(N + 1)2(N + 2)

−768(N + 3)
(

2 +N2
)

S1S−2,1

(N − 1)N(N + 1)(N + 2)
+

[

− 32S1Q119

3(N − 1)N2(N + 1)2(N + 2)2

+
16Q144

9(N − 1)N3(N + 1)3(N + 2)2
+

384(N + 3)
(

2 +N2
)

S2
1

(N − 1)N(N + 1)(N + 2)

]

ζ2
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+

[

32(N + 3)
(

2 +N2
)(

6 + 13N + 13N2
)

(N − 1)N2(N + 1)2(N + 2)
− 384(N + 3)

(

2 +N2
)

S1

(N − 1)N(N + 1)(N + 2)

]

ζ3

]

(−1)N

+

[

− 64S2,1Q6

3(N − 1)N(N + 1)
+

(

2 +N +N2
)

28−NS1(2)Q36

3(N − 3)(N − 2)(N − 1)2N3(N + 1)(N + 2)

− 64S3Q20

9(N − 1)N
− 16S2Q132

27(N − 1)N2(N + 1)2(N + 2)2

− 8Q201

81(N − 4)(N − 3)(N − 2)(N − 1)2N4(N + 1)4(N + 2)3
− 1152S2

2 − 384S4

−1280S3,1 − 1024S−2,−1 + 768S2,1,1

]

S1 +

[

32S2Q8

(N − 1)N(N + 1)
− 256S2,1

+
16Q150

27(N − 2)(N − 1)2N3(N + 1)3(N + 2)2

]

S2
1 +

[

− 64Q40

27(N − 1)N2(N + 1)2(N + 2)

−128S2

]

S3
1 +

512

9
S4
1 +

[

4Q175

27(N − 2)(N − 1)2N3(N + 1)3(N + 2)2
− 384S3

]

S2

+
32
(

54 + 97N + 97N2
)

S2
2

3N(N + 1)
+

32(2 + 5N)(3 + 5N)S4

N(N + 1)
+ 384S5

+

[[

−256
(

2 + 3N + 3N2
)

N(N + 1)
+ 1024S1

]

S−1 − 256S−2,1

]

S−2 + 640S−3S−2 + 192S2
−2

+
64
(

30 + 11N + 11N2
)

S3,1

3N(N + 1)
− 384S3,2 − 384S4,1 +

256
(

2 + 3N + 3N2
)

S−2,−1

N(N + 1)

−64
(

6 + 11N + 11N2
)

S2,1,1

N(N + 1)
+ 768S3,1,1 − 1024S−2,1,−2

+
3
(

2 +N +N2
)

28+NS1,1

(

1
2
, 1
)

(N − 2)N(N + 1)3(N + 2)
− 128

(

2 +N +N2
)2
S1(2)S1,1

(

1
2
, 1
)

(N − 1)N2(N + 1)2(N + 2)

−128
(

2 +N +N2
)2
(S1,2

(

1
2
, 2
)

− S1,1,1

(

1
2
, 1, 2

)

− S1,1,1

(

1
2
, 2, 1

)

)

(N − 1)N2(N + 1)2(N + 2)

+

[

− 32S2
1Q12

3(N − 1)N(N + 1)
− 4Q174

27(N − 2)(N − 1)2N3(N + 1)3(N + 2)2

+ ln(2)

[

−576
(

2 + 3N + 3N2
)

N(N + 1)
+ 2304S1

]

+128S3
1 +

[

16Q133

27(N − 1)N2(N + 1)2(N + 2)2
+ 2432S2

]

S1 −
64
(

19 + 30N + 30N2
)

S2

N(N + 1)

+576S3 +

[

−128
(

2 + 3N + 3N2
)

N(N + 1)
+ 512S1

]

S−1 + 192S−2 + 320S−3

−640S−2,1 +
64
(

2 +N +N2
)2
S1(2)

(N − 1)N2(N + 1)2(N + 2)
+ 160ζ3

]

ζ2
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+

[

16
(

588 + 1171N + 1171N2
)

15N(N + 1)
− 6272

5
S1

]

ζ22 +

[

64S1Q34

3(N − 1)N(N + 1)
+ 512S2

1

− 16Q85

9(N − 1)N2(N + 1)2(N + 2)
− 192S2 + 192S−2

]

ζ3 − 416ζ5

}

, (39)

with Qi polynomials in N , cf. [13].
The numerical effect of the corrections of up to O(α6L5) are illustrated in Table 1 describing

the Z0-peak both in the case of a fixed width and the s dependent width. The radiative correc-
tions change both the peak positions and the width. The corrections due to the different orders
may be positive or negative. We list the individual contributions.

At O(α6L6) the corrections to the peak are 7 keV and to the width 27 keV. The next sub-
leading correction serves as a control term. For measurements at the future FCC ee statistical
accuracies of ∆MZ = 50 keV [stat],∆ΓZ = 8 keV [stat] are estimated [69]. This precision level
is about reached in the case of the present corrections. In the case a further logarithmic order
is needed, one needs to calculated both, one more order for the Drell–Yan process and one more
for the massive OMEs. Furthermore, the electro–weak corrections and QCD corrections have to
be pushed to higher orders. All of this will meet theoretical and technological (i.e. mathematical
and computer–algebraic) challenges.

Fixed width s dep. width
Peak Width Peak Width
(MeV) (MeV) (MeV) (MeV)

O(α) correction 185.638 539.408 181.098 524.978
O(α2L2): – 96.894 –177.147 – 95.342 –176.235
O(α2L): 6.982 22.695 6.841 21.896
O(α2): 0.176 – 2.218 0.174 – 2.001
O(α3L3): 23.265 38.560 22.968 38.081
O(α3L2): – 1.507 – 1.888 – 1.491 – 1.881
O(α3L): – 0.152 0.105 – 0.151 – 0.084
O(α4L4): – 1.857 0.206 – 1.858 0.146
O(α4L3): 0.131 – 0.071 0.132 – 0.065
O(α4L2): 0.048 – 0.001 0.048 0.001
O(α5L5): 0.142 – 0.218 0.144 – 0.212
O(α5L4): – 0.000 0.020 – 0.001 0.020
O(α5L3): – 0.008 0.009 – 0.008 0.008
O(α6L6): – 0.007 0.027 – 0.007 0.027
O(α6L5): – 0.001 0.000 – 0.001 0.000

Table 1: Shifts in the Z-mass and the width due to the different contributions to the ISR QED
radiative corrections for a fixed width of ΓZ = 2.4952 GeV and s-dependent width using MZ =
91.1876 GeV [60] and s0 = 4m2

τ , cf. [1]; from [13].

The method of massive OMEs has been also applied to calculate the massive Wilson coeffi-
cients for deep inelastic scattering in the region Q2 ≫ m2

Q in the single and two–mass cases at
three–loop order analytically in Refs. [70].
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4 The Forward-Backward Asymmetry

A high luminosity measurement of the forward–backward asymmetry provides an excellent pos-
sibility for a precision measurement of the fine structure constant at high energy [71]. This is
important because of its hadronic contributions [72]. The calculation of the forward–backward
asymmetry at one–loop order has been performed in [73–80], and the leading logarithmic two–
loop corrections were computed in [79]. More recently the leading logarithmic contributions to
O(α6L6) have been calculated in Ref. [14]. Also the initial–final state interference terms, final
state corrections, electro–weak and QCD corrections are known at lower orders, cf. [14].

The forward–backward asymmetry is defined as ratio over the difference and the sum of the
angular integrals over the respective hemispheres measuring the final state muons,

σF = 2π

1
∫

0

d cos(θ)
dσ

dΩ
, σB = 2π

0
∫

−1

d cos(θ)
dσ

dΩ
. (40)

The angle θ is defined between the incoming electron e− and the outgoing muon µ− from γ∗/Z∗

decay, with

AFB(s) =
σF (s)− σB(s)

σT (s)
, (41)

and σT (s) = σF (s) + σB(s). At Born level this reduces to [29]

σ
(0)
FB(s) = σ

(0)
F (s)− σ

(0)
B (s) =

πα2

s
NC,f

(

1−
4m2

f

s

)

G3(s) , (42)

σ
(0)
T (s) = σ

(0)
F (s) + σ

(0)
B (s) =

4πα2

3s
NC,f

√

1−
4m2

f

s

[(

1 +
2m2

f

s

)

G1(s)− 6
m2

f

s
G2(s)

]

,

(43)

with mf the final state fermion mass, mf ≡ mµ and

G3(s) = 2QeQfaeafRe[χZ(s)] + 4vevfaeaf |χZ(s)|2. (44)

The initial state corrections to AFB at leading logarithmic level are described by two radiator
functions HLL

e and HLL
FB [79], using the notation in [73],

AFB(s) =
1

σT (s)

1
∫

z0

dz
4z

(1 + z)2
H̃LL

e (z)σ
(0)
FB(zs), σT (s) =

1
∫

z0

dz He(z)σ
(0)
T (zs) , (45)

with

H̃LL
e (z) =

[

HLL
e (z) +HLL

FB(z)
]

, (46)

where the parameter z0 plays the role of an energy cut and z = s′/s. Here HLL
e is angular

independent, and denotes the leading logarithmic contributions of the radiators of Section 2,
while HLL

FB is angular dependent and obtained by the following integral

HLL
FB(z) =

1
∫

0

dx1

1
∫

0

dx2

(

(1 + z)2

(x1 + x2)2
− 1

)

ΓLL
ee (x2)Γ

LL
ee (x1)δ(x1x2 − z). (47)
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Here ΓLL
ee (xi) denote the massive operator matrix elements and (47) is expanded in (αL) to the

desired order. It is convenient to consider first the Mellin–transform

M[HLL
FB(z)](n) =

1
∫

0

dzznHLL
FB(z) =

1
∫

0

dx1

1
∫

0

dx2x
n
1x

n
2

(

(1 + x1x2)
2

(x1 + x2)2
− 1

)

ΓLL
ee (x2)Γ

LL
ee (x1)

(48)

and to calculate the generating function

G[HLL
FB(z)](t) =

∞
∑

n=0

tnM[HLL
FB(z)](n), (49)

from which we then obtain the individual radiators. They can be expressed by harmonic and
cyclotomic harmonic polylogarithms [49] over the alphabet

A =

{

f0 =
1

z
, f1 =

1

1− z
, f−1 =

1

1 + z
, f{4,0} =

1

1 + z2
, f{4,1} =

z

1 + z2

}

. (50)

HLL
FB starts at O(α2L2).

AFB(s−) AFB(M
2
Z) AFB(s+)

O(α0) −0.3564803 0.0225199 0.2052045
O(αL1) −0.2945381 −0.0094232 0.1579347
O(αL0) −0.2994478 −0.0079610 0.1611962
O(α2L2) −0.3088363 0.0014514 0.1616887
O(α3L3) −0.3080578 0.0000198 0.1627252
O(α4L4) −0.3080976 0.0001587 0.1625835
O(α5L5) −0.3080960 0.0001495 0.1625911
O(α6L6) −0.3080960 0.0001499 0.1625911

Table 2: AFB evaluated at s− = (87.9GeV)2, M2
Z and s+ = (94.3GeV)2 for the cut z > 4m2

τ/s
from Ref. [14].

;
As an example H

(3),LL
FB reads

H
(3),LL
FB (z) = −16(1− z)

(

4 + 11z + 4z2
)

3z
− π

[

4
(

2− 3z − 2z2 − 3z3 + 2z4
)

3z3/2

+
4(1− z)(1 + 5z)√

z
H0 +

16(1− z)2√
z

H{4,1}

]

+

[

4(1 + z)
(

5− 18z − 19z2
)

3z

−16(1− z)(1− 7z)√
z

H{4,0} − 96(1 + z)H{4,1}

]

H0 − 8(1 + z)H2
0

+

[

16(1− z)(1 + z)2

z
− 64(1− z)2√

z
H{4,0}

]

H1 +

[

16
(

2− 3z − 2z2 − 3z3 + 2z4
)

3z3/2

+
64(1− z)2√

z
H{4,1}

]

H{4,0} +

[

−16(1− z)(1 + z)2

z
+ 64(1 + z)H0

+
64(1− z)2√

z
H{4,0}

]

H−1 − 64(1 + z)H0,1 +
32(1− z)2√

z
H0,{4,0} + 96(1 + z)H0,{4,1}
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+
64(1− z)2√

z
H1,{4,0} −

64(1− z)2√
z

H{4,0},{4,1} − 64(1 + z)H−1,0

−64(1− z)2√
z

H−1,{4,0} + 20(1 + z)ζ2, (51)

with H~w ≡ H~w(
√
z) and ζk, k ∈ N, k ≥ 2 are the values of Riemann’s ζ function at integer

argument.
Let us give some numerical illustration. We compute AFB(s) for different values around the

Z0-peak as suggested in [71] to higher orders and see the corresponding improvement in Table 2.
Comparing the results at one–loop to the highest order we obtain corrections of −3 % for s−
and −1% for s+. More numerical studies are presented in Ref. [14].

5 Conclusions

The precision calculations of the QED initial state corrections to the process e+e− → γ∗/Z∗ are
an essential ingredient for the planned key measurements at high energy e+e− colliders such as
the ILC, CLIC, FCC ee, and future muon colliders. Due to the smallness of the ratio m2

l /s, with
ml the initial charged lepton mass, the logarithmic and constant term corrections in a massive
environment are sufficient. It therefore has been important to clarify the differences between
Ref. [2] and Ref. [3] at O(a2). The differences found do in principle require to repeat the LEP
electro–weak analysis, given the current accuracy of the Z0 peak and width, because of the
respective theoretical shifts. Since the codes TOPAZ0 [80,81] and ZFITTER [82] contain the results
of [2], they have to be updated for the use in further experimental analyses.

The agreement between Refs. [11] and [3] allowed to use the method of massive OMEs for
even higher order corrections in the fine structure constant. Having available all OMEs which
contribute at two–loop order, the first three logarithmic expansion coefficients are available
through the renormalization group equations to any order in the fine structure constant, i.e.
two further orders beyond the leading logarithmic approximation. The calculation of one more
order seems to be technically possible. The presently available corrections reach the projected
accuracies at the FCC ee and need to be supplemented by corresponding QCD and electro–weak
corrections.

For the forward–backward asymmetry, which might allow a precision measurement of the
fine structure constant in the future, the leading logarithmic corrections have been extended
to O((αL)6) and one might want to consider sub–leading corrections. Beyond the corrections
in the leading logarithmic approximation, where harmonic sums are sufficient to express the
radiators in Mellin space, one also finds generalized and cyclotomic harmonic sums, forming
a part of the function spaces having been already revealed in other analytic massive single–
scale calculations [56, 70]. We are still in the early phase to calculate the necessary radiative
corrections for the high–luminosity measurements at the FCC ee and will view more theoretical
results during the decades ahead.
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J. Blümlein, A. Hasselhuhn and C. Schneider, PoS (RADCOR 2011) 032 [arXiv:1202.4303
[math-ph]];
C. Schneider,Computer Algebra Rundbrief 53 (2013) 8–12;
C. Schneider, J. Phys. Conf. Ser. 523 (2014) 012037 [arXiv:1310.0160 [cs.SC]].
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J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider,
Nucl. Phys. B 890 (2014) 48–151 [arXiv:1409.1135 [hep-ph]];
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J. Ablinger, J. Blümlein, A. De Freitas, A. Goedicke, C. Schneider and K. Schönwald, Nucl.
Phys. B 932 (2018) 129–240 [arXiv:1804.02226 [hep-ph]];
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