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We numerically study the Hamiltonian lattice formulation of the two-flavor Schwinger model

using matrix product states. Keeping the mass of the first flavor at a fixed positive value,

we tune the mass of the second flavor through a range of negative values, thus exploring

a regime where conventional Monte Carlo methods suffer from the sign problem and may

run into instabilities due to zero modes. Our results indicate a phase transition at the point

where the absolute value of the second flavor mass approaches the first flavor mass. The

phase transition is accompanied by the formation of a fermion condensate, a steep drop of the

average electric field, and a peak in the bipartite entanglement entropy. Our data hints at a sec-

ond order transition, which is the 1+1D analog of the CP-violating Dashen phase transition in QCD.
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formulation of the theory with matrix product states (MPS) and compute the electric field and the

analog of the pion condensate in a regime that is inaccessible with conventional MCMC methods.

Moreover, we take advantage of the fact that MPS provide a direct access to the entanglement

structure in the state and compute the entanglement entropy in the system. This allows us to obtain

information about the unknown order of the phase transition.

2. Model & Methods

For our study, we use a Hamiltonian lattice formulation of the Schwinger model with staggered

fermions. The dimensionless Hamiltonian for F flavors of fermions on a lattice with N sites and

spacing a reads

W = − ix

N−2
∑

n=0

F−1
∑

f=0

(

φ
†
n, f

eiθnφn+1, f − h.c.
)

+

N−1
∑

n=0

F−1
∑

f=0

(−1)nµ f φ
†
n, f
φn, f +

N−2
∑

n=0

L2
n. (1)

In the expression above, the dimensionless parameters x and µ f correspond to x = 1/(ag)2 and

µ f = 2
√

xm f /g, where g is the coupling and m f the bare fermion mass for flavor f . The single-

component fermionic fields φn, f describe a fermion of flavor f on site n, and the operators Ln and

θn act on the links between sites n and n + 1. They are canonically conjugate variables fulfilling

[θm, Ln] = iδnm, and Ln gives the electric flux on the link joining sites n and n + 1, whereas eiθn

acts as a rising operator for the electric flux. We choose to work with a compact formulation,

where θn is restricted to [0, 2π). In addition, the physical states |ψ〉 of W have to obey Gauss’ law,

Gn |ψ〉 = qn |ψ〉 ∀n, where

Gn = Ln − Ln−1 − Qn (2)

are the generators of time-independent gauge transformations with the staggered charge

Qn =

F−1
∑

f=0

φ
†
n, f
φn, f −

F

2
[1 − (−1)n] , (3)

and the integer values qn correspond to static charges. For all the following, we restrict ourselves to

the sector of vanishing static charges, qn = 0 ∀n. For open boundary conditions, Eq. (2) allows us to

integrate out the gauge field after fixing the value on the left boundary, which we choose to be zero.

When inserting this into the Hamiltonian in Eq. (1) and applying a residual gauge transformation,

we obtain an expression with only fermionic degrees of freedom given by [12–15]

W ′
= −ix

N−2
∑

n=0

F−1
∑

f=0

(

φ
†
n, f
φn+1, f − h.c.

)

+

N−1
∑

n=0

F−1
∑

f=0

(−1)nµ f φ
†
n, f
φn, f +

N−2
∑

n=0

(

n
∑

k=0

Qk

)2

. (4)

For the rest of the paper, we focus on the case of two fermion flavors. In order to investigate the

Dashen phase in the Schwinger model, we fix the bare mass of the first flavor, m1/g, to a positive

value and study the vacuum of the theory as we scan the bare mass of the second flavor m2/g around

−m1/g. In the QCD case, the onset of the Dashen phase is characterized by the formation of a pion

condensate. Thus, we study the vacuum expectation value of the analog of the pion condensate,
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which in the continuum theory is given by 〈ψ(x)γ5τ3ψ(x)〉, where ψ(x) is a Dirac spinor and τ3 acts

on flavor space and is given by the third Pauli matrix. In units of the coupling, the pion condensate

translates to

C = i

√
x

N

N−2
∑

n=0

1
∑

f=0

(−1)n+ f
(

φ
†
n, f
φ
†
n+1, f

− h.c.
)

(5)

in our staggered lattice formulation. Moreover, we study the expectation value of the average electric

field

F̄ =
1

k

N/2+k/2
∑

n=N/2−k/2+1

Ln, (6)

where we sum over k sites in the center of the system to avoid boundary effects.

In order to compute the ground state of the Hamiltonian numerically, we use the MPS ansatz.

For a lattice with N sites and open boundary conditions, the MPS ansatz for the wavefunction reads

|ψ〉 =
∑

i0,i1,...,iN−1

A0
i0

A1
i1
. . . AN−1

iN−1
|i0〉 ⊗ |i1〉 ⊗ · · · ⊗ |iN−1〉 , (7)

where the An
in

are complex D × D matrices for 0 < n < N − 1, and A0
i0

(AN−1
iN−1

) is a D-dimensional

row (column) vector. The set of states {|in〉}d−1
n=0

forms a basis for the d-dimensional Hilbert space

at site n. The parameter D, called the bond dimension of the MPS, determines the number of the

variational parameters in the ansatz and limits the maximum amount of entanglement that can be

present in the state (see Ref. [16] for a detailed review). In particular, MPS and tensor networks

in general allow for reliable computations in regimes where conventional MCMC methods suffer

from the sign problem [13, 17–21]. Moreover, one has direct access to the entanglement structure

in the state, which allows us to study the von Neumann entropy S for the reduced density matrix that

describes the first N/2 sites of the system. Although tensor networks can directly deal with fermionic

degrees of freedom, we choose to translate them to spins using a Jordan-Wiger transformation for

convenience in the numerical simulations [13, 15, 17].

3. Results

In our study, we set m1/g to 0.25 and use fixed dimensionless physical volumes N/
√

x ranging

from 10 to 20, where the lattice spacing corresponds to x ∈ [60; 100]. Moreover, we choose to work

in the sector of vanishing total charge,
∑

n Qn = 0. Compared to a conventional lattice calculation,

we have an additional source of error due to the limited matrix size D that can be reached in our

numerical simulations. In order to control this error, we repeat our simulation for every combination

of (N/
√

x, x,m1/g,m2/g) for several values of D and extrapolate our results to the limit D → ∞
following the procedure in Ref. [15]. Our results for the average electric field, the pion condensate,

and the entropy in the vacuum as a function of m2/g are shown in Fig. 2.

For the average electric field in Figs. 2(a) and 2(b), we observe a drop from nonvanishing

values at m2/g = −0.5 to values close to zero as m2/g approaches −m1/g. A comparison between

our results for the coarsest and the finest lattice spacing (corresponding to x = 60 and x = 100,
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Figure 2: Average electric field (first row), pion condensate (second row) and entropy (third row) as a function

of m2/g for m1/g = 0.25, x = 60 (first column) and x = 100 (second column). The different markers indicate

data for different volumes N/
√

x = 10 (blue dots), 12.5 (orange triangles), 15 (green squares), 17.5 (red

diamonds) and 20 (purple upside-down triangle). The error bars arise from the extrapolation on D. The

dashed vertical line indicates the point where m2/g reaches −m1/g. To compute the average electric field we

use k = 4 sites in the center of the system according to Eq. (6).
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respectively, see Figs. 2(a) and 2(b)) shows that there is no strong x dependence throughout the

entire parameter regime we study. In contrast, there is a mild dependence on the physical volume:

with increasing volume the drop in the average electric field becomes slightly sharper as m2/g
approaches larger values, and the final value of the field is closer to zero as m2/g goes towards zero.

The regime with the negative fermion mass corresponds to the presence of a topological term

with angle θ = π [8]. The single-flavor Schwinger model is known to undergo a phase transition

at some critical mass in this regime. It has been observed that the electric field vanishes before

the transition and has a nonvanishing value after the transition point [22, 23]. Our results for the

two-flavor case are compatible with this observation, and the drop in the average electric field hints

towards a phase transition at m2/g ≈ −m1/g.

For the pion condensate (see Figs. 2(c) and 2(d)), we see a similar picture as for the average

electric field. For large values of m2/g, the value of the condensate is close to zero. It decreases as

we get closer to −m1/g and eventually approaches a constant value upon further lowering the value

of m2/g. Again, the dependence on the lattice spacing is negligible for the parameter range we

study. The effect of the finite volume is slightly larger for the pion condensate than for the electric

field. In the regime of large values of m2/g close to zero, we observe that the condensate value

does not vanish completely but gets closer to zero as we increase the volume. These observations

for the pion condensate are compatible with the expectation for the Dashen phase in QCD with

two flavors of fermions, see Fig. 1. For m2/g ≫ −m1/g, we are outside of the Dashen phase, and

the values for the pion condensate are close to zero. As we approach m2/g ≈ −m1/g, we enter

the Dashen phase, and the values of the condensate decrease. Eventually, we obtain approximately

constant nonvanishing values for m2/g ≪ −m1/g. Thus, the behavior of the condensate confirms

the occurrence of the Dashen phase transition at m2/g ≈ −m1/g.

Finally, we can also look at the entanglement entropy shown in Figs. 2(e) and 2(f) for x = 60

and x = 100. Compared to the average electric field and the pion condensate, the entropy shows a

more pronounced dependence on the volume and the lattice spacing, especially for small values of

m2/g, and a clear peak around m2/g = −0.225. In particular, the volume dependence of the peak

is expected for a second (or higher order) phase transition. The entropy is directly related to the

correlation length in the system, which diverges logarithmically (in the thermodynamic limit) as

one approaches the phase transition [24–26]. Since we are working with a finite system, and the

system size upper bounds the correlation length, we expect S to diverge logarithmically with the

physical volume for a fixed value of x, S ∝ log(N/
√

x). In contrast, the correlation length is finite

if we go away from the critical point, and the entropy should eventually saturate upon reaching

large enough volumes. The dependence of the entropy as a function of volume for various values

of m2/g is shown in Fig. 3. For our largest value of m2/g, −0.05, we indeed observe that the

entropy is essentially constant as a function of N/
√

x (see Figs. 3(a) and 3(d)). For the opposite

limit of m2/g = −0.5, our data for the entropy are to a certain extent compatible with a logarithmic

divergence at first glance. Focusing on x = 60 first (see Fig. 3(c)), for which our numerical data is

most precise, fitting our data in that regime to a logarithmic divergence yields relatively large values

of χ2
d.o.f.

. In particular, we also observe a noticeable change in the scaling behavior as we exceed a

volume of 12.5. Together with the value of χ2
d.o.f.

this indicates that our results for m2/g = −0.5

are not very well described by a logarithmic divergence. Our data for x = 100 (cf. Fig. 3(f))

show a similar behavior albeit being less precise due to the larger values of N required to reach the
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to unambiguously pinpoint the order of the transition by increasing the accuracy, both with larger

values of the bond dimension and with larger physical volumes.
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