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Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks

are highly desirable especially to remove systematic errors due to chiral extrapolations. However

such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-

grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte

Carlo algorithm, that are enabling simulations of a new set of gauge ensembles by the Extended

Twisted Mass collaboration (ETMC). We present the status of the on-going ETMC simulation

effort that aims to enabling studies of finite size and discretization effects. We work within the

twisted mass discretization which is free of odd-discretization effects at maximal twist and present

our tuning procedure.
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Figure 1: Overview of the current # 5 = 2 + 1 + 1 twisted mass clover-improved ensembles. The left panel

shows the ensembles according to their lattice extent in units of the pion mass, while the right panel shows

them according to the pion mass. The dark blue circles show the non-physical point ensembles, the light

blue already existing physical point ensembles and the red on-going simulations at the physical point.

1. Introduction

During the past decade, progress has been made enabling simulations of twisted mass fermions

at physical quark masses at several lattice spacings less than 0.1 fm and volumes as large as 9 fm

[1, 2]. These ensembles drive the rich physics program of the Extended Twisted Mass collaboration

(ETMC), which ranges from measurements of quark masses, precision measurements of CKM-

matrix elements, hadron spectroscopy and scattering, nucleon structure, semi-leptonic decays and

many other ETMC projects.

In this presentation, we overview the progress on the algorithmic and computational side that

made the generation of these ensembles possible. More specifically, we discuss how to fix the

parameters of the simulations, which needs a careful fine tuning procedure in order to achieve O(0)

improvement, how to optimize the multigrid solver DDalphaAMG [3, 4] and how to improve the

force computation during the Hybrid Monte Carlo simulations. The use of a three level multigrid

procedure comes with some limitation for current HPC machines equipped with CPUs that limit

scalability. Furthermore, we present selected results using the generated statistics and discuss

autocorrelations using the physical point ensembles.

2. Status of Extended Twisted Mass Collaboration # 5 = 2 + 1 + 1 Simulations

Within ETMC, twisted mass clover-improved ensembles has beed generated at four different

lattice spacings, namely 0 ∼ 0.093 fm, 0 ∼ 0.08 fm, 0 ∼ 0.069 fm and 0 ∼ 0.057 fm, referred to

A-, B-, C- and D-lattices, respectively. We target pion mass ranges between 250 MeV and 135 MeV,

with the exception of the A-lattices where ensembles with up to 350 MeV are generated. Ensembles

with physical pion masses, also denoted as physical point ensembles, are generated at the B-, C-

and D-lattice spacings. As depicted in Fig. 1, all physical point ensembles fulfil <c · ! > 3.6. A

larger volume ensemble is generated at the B-lattice spacing with <c · ! = 5.3, to be used for finite
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ensemble V 2SW ^ +/04 0`ℓ 0`f 0`X

cA211.53.24 1.726 1.74 0.1400645 243 × 48 0.00530 0.1408 0.1521

cA211.40.24 243 × 48 0.00400

cA211.30.32 323 × 64 0.00300

cA211.12.48 0.1400650 483 × 96 0.00120

cB211.25.24 1.778 1.69 0.1394267 243 × 48 0.00250 0.1246864 0.131052

cB211.25.32 323 × 64 0.00250

cB211.25.48 483 × 96 0.00250

cB211.14.64 643 × 128 0.00140

cB211.072.64 0.1394265 643 × 128 0.00072

cB211.072.96 963 × 192 0.00072

cC211.20.48 1.836 1.6452 0.13875285 483 × 96 0.00060 0.106586 0.107146

cC211.125.64 643 × 128 0.00125

cC211.06.80 803 × 160 0.00060

cD211.17.64 1.900 1.6112 0.137972174 643 × 128 0.00170 0.087911 0.086224

cD211.054.96 963 × 192 0.00054

Table 1: Simulation parameters of the # 5 = 2 + 1 + 1 twisted mass clover-imporved ensembles.

volume studies. We target statistics exceeding 3000 MDUs for all ensembles. Parameters are listed

in Table 1 and can be also be found in Ref. [1].

2.1 Twisted mass fermion action

The # 5 = 2+ 1+ 1 ensembles are generated using the Iwasaki gauge action for the pure gauge,

the # 5 = 2 mass-degenerate twisted mass fermion action with a clover term for the light quarks

and the # 5 = 1 + 1 non-degenerate twisted mass fermion action for the strange and charm quarks.

The non-degenerated twisted mass operator is given in the heavy doublet flavor space by

� (^, 2BF , `, n) = �, (^, 2BF ) ⊗ 1 + 8`fW5 ⊗ g3 − `X ⊗ g1 =

[

�, + 8W5`f −`X

−`X �, − 8W5`f

]

(1)

with �, the clover improved Wilson Dirac operator, ^ the Wilson hopping parameter, 2(, the

clover parameter and `f and `X the 1+1 twisted mass parameters [5]. Note that taking `X = 0 the

mass-degenerate twisted mass operator in flavor space is recovered. Twisted mass fermions have

several advantages. Lattice artefacts of odd power in 0 can be removed if the Partially Conserved

Axial Current (PCAC) mass is tuned to zero, i.e. <%��� (^) −→ 0 [6]. This can be done by fine

tuning the bare Wilson quark mass parameter< = 0.5/^−4 to its critical mass<2A8C = 0.5/^2A8C−4.

Moreover, in the case of a finite twisted mass value, the operator � is non-singular. For the squared

operator one gets in fact

�†� = �
†
,
�, + `2 , (2)

with ` playing the role of an infra-red cut-off for the eigenvalues of �. While this guarantees

convergence of iterative methods, such as the conjugate gradient solver, the twisted mass term

breaks isospin symmetry. This results in a mass-splitting within the pion triplet. The neutral pion

3
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mass is shifted with respect to the charged pion mass, which is given in next to leading order (NLO)

chiral perturbation theory [7] by

02(<2
c0 − <2

c±) = −20 · 0
2 . (3)

This cut-off effect, if large, can give neutral pion mass of zero at finite quark masses and trigger a

phase transition. For values of the neutral pion mass close to zero, tuning the PCAC mass to zero

becomes notoriously difficult and such Monte Carlo simulations of twisted mass fermions become

impossible. This prevented simulation at physical pion masses without a clover term.

Including a clover term, reduces lattice artefacts which decreases the mass gap between the

charged and neutral pion given in Eq. (3) to such an extent as to make simulations at values of

0 ∼ 0.09 possible [9]. For our setup we use 1-loop tadpole boosted perturbation theory [8] to fix

the value of the 2(, parameter, given by

2(, = 1 + 0.113(3)
6

V〈%〉
(4)

with 〈%〉 the plaquette.

2.2 Parameter tuning

In order to simulate # 5 = 2 + 1 + 1 twisted mass fermion ensembles at the physical point, we

need to set the bare parameters for our action. The complete set of parameters is

{V, 2(, , ^, `ℓ , `f , `X} . (5)

Using an estimated initial guess, we can pre-select the value of the gauge coupling V that fixes 2(,

via Eq. (4). The bare-mass parameters of the twisted mass action that are left, namely

{^, `ℓ , `f , `X} (6)

require careful fine tuning in order to guarantee O(0) improvement. This can be done by tuning

the bare Wilson quark mass ^ towards its critical value by requiring

/�<%��� (^, `ℓ , `f , `X)

`ℓ
< 0.1, (7)

with /� the axial renormalization factor. Note that the PCAC mass depends also on the heavy quark

parameters `f and `X of the non-degenerated twisted mass operator. Due to this dependence on

the heavy quark pair, charm and strange, we utilise Osterwalder Seiler (OS) fermions [31] to set the

strange and charm quark mass. We then match the non-unitary setup of the OS-fermions with the

unitary setup with non-degenerate twisted mass fermions. This results in three tuning conditions

for the heavy quark parameters. The first two are given by

�1 =
`$(2

`$(B
= 11.8 and �2 =

<$(
�B

5$(
�B

= 7.9 (8)

that set the strange and charm quark mass parameters in the OS sector. The full matching between

OS and non-degenerate twisted fermions is finally done using the kaon mass < by requiring

<$( (`$(B ) ≡ <#�
 (`f , `X), (9)

which basically utilizes the renormalization factor ratio /%//( and yields to the determination of

`f and `X via the relation `$(2,B =
1
/%

(

`f ± /%

/(
`X

)

.
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Figure 2: The tuning procedure employed for the D-lattice spacings using reweighting on two tuning

ensembles. We depict the dependence of the PCAC mass on the light twisted mass parameter 0`ℓ (left), on

the Wilson bare quark mass 0<̄ (middle) the heavy quark parameter `f (right).

3. Parameter tuning

For the tuning of the twisted mass parameters, we iterate the following steps: i) tune ^ at

constant {`ℓ , `f , `X}; ii) change `ℓ and retune ^; iii) tune {`f , `f} and retune ^; iv) reiterate

until stability is reached. This procedure requires for the tuning of the A-, B- and C- ensembles to

generate for each steps roughly two Markov chains with around 500 MDU, see [2] for a detailed

discussion for the case of the B-lattice spacing. For the D-lattice we modify the tuning procedure

by making use of reweighting for all parameters {^, `ℓ , `f , `X} [10–12]. This reduces the number

of ensembles needed for the tuning, namely to one per iteration circle.

With the help of reweighting by changing the bare parameters by 1% to 5% we could give an

estimate of the first derivatives of 0<%��� (^, `ℓ , `f , `X). This quantity was estimated in the case

of the tuning procedure of the A-, B- and C-lattice spacings via generation of several ensembles.

For the tuning of the D-lattice spacing we generate two different ensembles at twisted mass

values 0` = 0.002 and 0` = 0.00125 and volumes of + = 323 × 64 and + = 483 × 96, respectively.

We employ the fit Ansatz

5 (<, `ℓ , `ℓ) = 20 + 21< + 22`ℓ + 23`ℓ (10)

with bare quark mass < = 1/2/^ − 4. We find for the fit coefficients 20 = 0.51(2), 21 = 1.37(6),

22 = 0.04(2) and 23 = 0.012(4). The resulting uncorrelated fit with j2
= 11.2 is shown in Fig. 2,

where we include all available data points generated by reweighting resulting in 19 degrees of

freedom. The critical mass parameter at physical light quark mass of 0` = 0.00054 is given by

^
�, (0)
2A8C

= 0.137973465. Based on this estimate we generate 500 MDUs at our the physical point

with 0` = 0.00054, leading to a slightly negative PCAC mass of −4.4(7)10−5. This does meet our

criterion and thus we proceed to retune ^ using our estimate for the slope m 5 /m< = 1.37 such that

our final estimate for the critical Wilson mass parameter is given by ^2A8C |V=1.9 = 0.137972174 .

With this tuning procedure, that it is also outlined in ref. [2] for the B-lattice spacing, we were

able to successfully tune towards critical Wilson mass, achieving O(0)-improvement. Indeed as

seen in Fig. 3, all ensembles fulfil the condition of eq. 7 with <%���/` < 4% or better.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
8
4

Twisted mass gauge ensembles at physical values of the quark masses Jacob Finkenrath

Figure 3: The history of the PCAC mass for the physical point ensembles is plotted in units of molecular

dynamics (MDUs) showing from top to bottom the cB211.072.64, cB211.072.96, cC211.060.80 and the two

replicas of cD211.060.80 ensembles.

4. Simulation setup

For the generation of the ensembles listed in Table 1, we use our open source software suite

tmLQCD [14–16], which implements an optimised Hybrid Monte Carlo algorithm enabling the

use of twisted mass operators of Eq. (1) and improved gauge action with rectangular loops. For

the molecular dynamics, we are using, for the mass-degenerated light quark doublet, even-odd

Hasenbusch mass preconditioning with masses {d0 = `ℓ , d1, . . . , d# }, while for the heavy quark

doublet, even-odd rational approximation of the square root of the non-degenerate twisted mass

operator &̂2
#�

= �#�,4>�
†
#�,4>

is used [13]. Thus, the Boltzmann weight of our setup is given

by

, (*) = /−1exp

{

− V(8F0 (*) + Tr ln{,>> (d0, `f)} −

#
∑

9=1

q†

[

@8

&̂2
#�

+ `8

]

q

−

#−1
∏

9=1

[
†
9
(1 + Δ

2d 9−1, 9 (&̂
2 + d2

9−1)
−1[ 9 − [

†
#
(&̂2 + d2

# )
−1[#

}

.

For a more detailed discussion see Appendix A of Ref. [1]. Our simulation code tmLQCD provides

currently a link to the algebraic multigrid solver library DDalphaAMG, which provides routines

for the twisted mass operator [4] and for the non-degenerated twisted mass operator [18] that can

speed-up the smallest shifts within the rational approximation. Additionally, we have employed

the mixed-precision linear solver provided by the software package QPhiX [19–23], which can be

utilized for the larger mass shifts, where the algebraic multigrid solver becomes less effective.

6
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Figure 4: The requirements of a three level multigrid method within HMC simulations are shown.The

left panel shows the scalability for three different volumes on SuperMUC-NG. The middle panel shows the

memory requirements and the right panel illustrates the reversibility violation as a function of the solver

residual.

4.1 Application of HMC with multigrid solver

For all simulations of the physical point ensembles, we take advantage of the highly reduced

computational costs of using multigrid solvers within the force calculation, see e.g. [4]. The use of

multigrid solver within the integration of Hamiltons molecular dynamics requires some additional

care and comes with some limitations. Namely, the scalability on HPC systems, such as SuperMUC-

NG, is limited by the volume of the coarsest grid within the multigrid procedure. This limits the

strong scaling window, as depicted in Fig. 4, breaking down for a three-level MG method for a

lattice of size + = 643 × 128 at around 80 Skylake nodes, and for a lattice of size + = 963 × 192

at around 420 Skylake nodes. This results in a roughly scaling of the upper bound of the strong

scaling window by !3 or +3/4 and limits the maximal effective parallelisation of our HMC.

The lower bound of the working window using a multigrid solver is determined by memory

requirements. In fact prolongation and restriction operators required for projecting iteration vectors

from level to level and building up the coarser operators, need allocation of O(20) full vectors, a

number which scales with the size of the volume. On SuperMUC-NG with 192 GB RAM per node

this introduces a hard limit for the minimal parallelisation, given by about 16 nodes for lattice size

of + = 643 × 128 and increasing to 80 nodes for a volume of + = 963 × 192.

The usage of a multigrid solver not only limits the scalability window, but can also compro-

mise the correctness of the HMC sampling. By reusing and updating the coarse grid operators

and the corresponding prolongation and restriction operators from previous integration steps, the

reversibility criterium, which is needed to fulfil detailed balance, is violated. In order to assess the

magnitude of the effect, we studied reversibility violation within the HMC using a test volume with

size + = 323 × 64 and measuring the variance of XΔ� for different solvers. XΔ� is given by the

difference of the Hamiltonian at the beginning of the trajectory with the Hamiltonian integrated

to g = 1 and integrated back to the start. As discussed in Ref. [17] for variances below 0.01

no deviations from the expectation values, such as the plaquette, are found. To match the same

precision in f2(XΔ�) as the mixed-precision solver of QPhiX, the square residual of the multigrid

solver needs to be two orders of magnitudes smaller. For all our physical point ensembles, we

checked reversibility and find that for the selected solver criteria (see [1]), f2(XΔ�) is below the

bound of set in Ref. [17].

7
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Figure 5: Comparison of different numerical integrators. The variance of the energy violation is plotted as

a function of the step size for a test ensemble of volume + = 243 × 48.

4.2 Nested force gradient integrator

The computational cost of molecular dynamics scales with the number of integration steps. At

constant acceptance rate it follows cost ∝ +1+ 1
2= with = the order of the selected integrator. Thus

higher order schemes have a better volume scaling. A class of various different simplectic reversible

integration schemes are discussed in Ref. [26]. This includes schemes improved with force gradient

terms. For example, the second minimal norm scheme can be extended to fourth order

Δ(ℎ) = 4ℎ
1
6
�̂4ℎ

1
2 �̂4ℎ

2
3 �̂−

1
72 ℎ

3�̂4ℎ
1
2 �̂4ℎ

1
6
�̂ (11)

by including the force gradient term �, which is given by � = 2
∑+ ,3
G=1a=0

m(
m*a (G)

m2(
m*a (G)m*` (G)

.

The additional second derivate term, needed in the force gradient term, can be approximated by

an additional force term, as outline in Ref. [25]. This not only reduces the cost of the calculation

of one force calculation but also simplifies the application by implicitly taking care of cross-terms

between different parts of the actions. It turns out that the force gradient improves the minimal

norm scheme of Eq. 11 and outperforms for larger volumes the other integrators, as shown in Fig. 5

for a ! = 24 lattice. Note that to tune the nested integrator setup we minimise the cost function at

constant acceptance rate using an effective model for the higher order terms in line with Ref. [27].

4.3 Computation costs

A summary of the improvements and the achieved reduction in computational costs per HMC

trajectory are shown in Fig. 6. By enabling DDalphaAMG within the HMC, there is a reduction

of the computational cost per trajectory by more than one order of magnitude [4]. In addition,

the adaptation of DDalphaAMG to the non-degenerate twisted mass operator speeds up the non-

degenerated sector, as discussed in Ref. [18]. The use of higher order integrators has given further

improvements, especially going to larger volumes, such as ! = 96 [28]. Note that there is still

space for further improvements, for example, by coarse level improvements, which are currently

under investigation. Moreover, a multi right handside version of DDalphaAMG is available, which,

however to utilize, would require larger refraction of the force computation [29]. We are investigating

8
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Figure 6: The computational cost of a trajectory for # 5 = 2 + 1 + 1 simulations as a function of the lattice

spatial extent !.

how this potentially could be adapted within a lattice QCD python API [32], which is currently

under development.

4.4 Autocorrelations at the physical point

One major unsolved challenge in lattice QCD with periodic boundary conditions is adequate

sampling of different topological sectors at very fine lattice spacings [30]. We have monitored the

gauge definition of the topological charge & at gradient flow time C0. As expected for our range of

lattice spacings between 0 ∼ 0.057 fm to 0 ∼ 0.082 fm, the topological charge is fluctuating well

between topological sectors. Moving towards finer lattice spacing, we have currently indication for

an increase of the autocorrelation time, hinting at the fact that for simulations below 0 < 0.045 fm

further algorithmic improvements will be needed in order to sample the topological charge properly

within 3000 MDUs.

5. Conclusions

With the current ensembles we are able to study finite volume and lattice spacing arte-

facts directly at the physical point. Using the three ensembles cB211.072.64, cC211.060.80 and

cD211.054.96, we can take the continuum limit, and with the two ensembles at the B-lattice spacing

we can study finite volume effects. In the future, we are planing to simulate at larger volumes and

explore new approaches for enabling simulations at lattice spacings smaller than 0.05 fm, which

are currently limited by the critical slowing down of the algorithms and their scalability with the

volume. Due to the behavior of the strong scaling window of our multigrid solver DDalphaAMG,

the real time per trajectories will further increase resulting in longer generation times per ensemble.

We are taking this issue into account in our future software development, by improving and enabling

linking to state-of-the-art QCD software libraries within tmLQCD, such as QUDA, as well as by

9
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Figure 7: The history of the topological charge & at gradient flow time C0 of the physical point runs

plotted versus the molecular dynamics (MDUs). We show from top to bottom cB211.072.64, cB211.072.96,

cC211.060.80 and two different replicas for cD211.060.80.

developing a new user-friendly flexible python API lyncs [32]. This will enable HMC simulations

on the next generation of high performance systems.
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