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We study the direct-detection rate for axial-vectorial dark matter scattering off nuclei in

an SU(2) × U(1) invariant effective theory and compare it against the LHC reach. Current

constraints from direct detection experiments are already bounding the mediator mass to be

well into the TeV range for WIMP-like scenarios. This motivates a consistent and systematic

exploration of the parameter space to map out possible regions where the rates could be

suppressed. We do indeed find such regions and proceed to construct consistent UV models

that generate the relevant effective theory. We then discuss the corresponding constraints

from both collider and direct-detection experiments on the same parameter space. We find

a benchmark scenario, where even for future XENONnT experiment, LHC constraints will

have a greater sensitivity to the mediator mass.

I. INTRODUCTION

While weakly interacting massive particles (WIMPs) remain attractive candidates for explaining

the dark-matter (DM) content in the Universe, the null results from the leading direct-detection

experiments LUX [1, 2] and XENON1T [3, 4] severely constrain the interaction rates between

WIMPs and the Standard Model (SM) particles. It is possible however to retain sizeable WIMP–

quark couplings while suppressing the direct-detection rates by tuning the up and down quark

interaction strengths in order to cancel the coherent spin-independent contributions of protons and

neutrons in a particular isotope, as was shown e.g. in Ref. [5] for the case of vectorial DM couplings.
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In this paper, we focus on axial-vectorial DM interactions, where the direct-detection rate is

suppressed either due to the absence of coherent enhancement or via dependence on the velocity

of the DM in the halo or on the momentum exchange between the DM and the nucleus [6]. The

continuously tightening constraints led by XENON1T make this scenario phenomenologically rele-

vant [7], and if the null results persist in the future, further suppression will be required to justify

the absence of signals. However, in the case of an axial-vectorial DM coupling, the suppression by

isospin-breaking interactions is more complicated since axial-vectorial and vectorial quark currents

contribute equally to the scattering cross section as we will show. Furthermore, the SU(2) × U(1)

gauge invariance of the SM implies that the V −A (vectorial minus axial) couplings of up and down

quarks have equal strength, i.e. the effective dimension-6 interactions,

(χ̄χ)A(ūu)V−A ↔ (χ̄χ)A(d̄d)V−A (1)

are directly related. Consequently, it is not clear how efficiently the isospin suppression can occur

for axial-vectorial DM currents.

To consistently incorporate the SM gauge invariance, we use the effective theory above the

electroweak (EW) scale from Ref. [8] that couples SU(2)×U(1) invariant SM fields with axial-

vectorial DM currents. Such a theory naturally arises in models where the DM candidate is a

Weyl fermion and the coupling between the dark and visible sectors is mediated by a tree-level

neutral vector-boson exchange, typically referred to as Z ′ and often related to an additional U(1)′

gauge symmetry that is spontaneously broken at a scale M∗ ≫ Mw. This setup gives rise to a

Majorana fermion in the broken phase below M∗. In such models, the vectorial couplings between

the DM candidate and the Z ′ vanish because Majorana fermions are self-conjugate under charge

conjugation, while the vectorial current is odd. In addition, the extra U(1)′ gauge symmetry in

these models imposes constraints from anomaly cancellation similar to those studied in Ref. [9] for

Dirac DM.

Experimentally, this scenario can be tested both at colliders and direct-detection experiments. At

the LHC, this is primarily done by searching for an excess in the monojet final state, and projecting

the excluded cross section onto the parameter space of simplified benchmark models [10, 11], selected

based on recommendations from both the theory and experimental communities [12–15]. The

analysis of other final states, especially dijets [16, 17] and dileptons [18–22], can lead to even

tighter, albeit more model-dependent, constraints on the couplings and mass of the Z ′ mediator.

The non-observation of signals in these searches generally requires mediator masses around the TeV

scale.
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In direct-detection experiments, the large separation between the Z ′ mass and the momentum

transferred in the scattering of DM off nuclei justifies the adoption of an EFT description of the

interaction between the DM and the baryons and mesons.

This paper is organised as follows. In Sec. II we identify the relevant operators for the EFT of

axial-vectorial DM current and study the possible suppression of direct-detection rates. In Sec. III

we consider the constraints arising from the embedding of the low-energy theory into a consistent UV

completion, with particular focus on the gauge-anomaly-cancellation requirement. We then identify

minimal UV-consistent benchmark models featuring near maximal direct-detection suppression. In

Sec. IV we outline the technical details for the calculation of the experimental constraints, and in

Sec. V we compare the sensitivities of current and future direct-detection experiments against the

ones from collider searches within the selected benchmark scenarios. Finally, we conclude in Sec. VI.

We refer to Appendix A for details about the anomaly cancellation and Appendix B outlines an

example UV-complete model and details how the UV model with a single Weyl fermion results in

low-energy Majorana DM model with axial-vectorial couplings.

II. EFFECTIVE FIELD THEORY FOR DIRECT DETECTION OF AXIAL VECTOR

DARK MATTER

We consider an axial-vectorial DM current coupled to the SM at the dimension-6 level in the

unbroken EW phase. The resulting dark-matter-EFT (DMEFT) Lagrangian can be written as [8],

Ldmeft =
∑

i,d

C
(d)
i Q

(d)
i ≡ ĉ

(d)
i

Λd−4
Q

(d)
i

EWSB−−−−→
∑

i,d

C
(d)
i Q(d)

i , (2)

where we used a curly-script notation for the operators and their coefficients below the EW scale

to distinguish them from the ones above it. The lower-case hatted coefficients are dimensionless (in

natural units) while the upper-case un-hatted ones are dimensionful.

To be concrete, if χ is an SU(2)-singlet Majorana fermion, the following three operators coupling

χ to the SM quarks will be generated above the EW scale (following the notation of Ref. [8]),

Q
(6)
6,i = (χ̄γµγ5χ)(Q̄

i
Lγ

µQi
L) , Q

(6)
7,i = (χ̄γµγ5χ)(ū

i
Rγ

µuiR) , Q
(6)
8,i = (χ̄γµγ5χ)(d̄

i
Rγ

µdiR) , (3)

where i = 1, 2, 3 denotes the quark generation. After EW symmetry breaking, these three operators

match onto the following two:

Q(6)
2,q = (χ̄γµγ5χ)(q̄γ

µq) , Q(6)
4,q = (χ̄γµγ5χ)(q̄γ

µγ5q) . (4)
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The matching conditions for operators involving first-generation quarks are,

(A⊗ V )u : C
(6)
2,u = C

(6)
7,1 + C

(6)
6,1 , (A⊗ V )d : C

(6)
2,d = C

(6)
8,1 + C

(6)
6,1 ,

(A⊗A)u : C
(6)
4,u = C

(6)
7,1 − C

(6)
6,1 , (A⊗A)d : C

(6)
4,d = C

(6)
8,1 − C

(6)
6,1 ,

(5)

where the shorthand notation on the left-hand side of the colon gives the Lorentz structure of the

operator as a product of DM and SM currents, respectively, (A)V stands for the (axial-)vectorial

current, and the subscript denotes the quark flavour of the operator.

Unlike in the spin-independent case, however, if the coupling to the DM is purely axial, both

the A ⊗ V and A ⊗ A operators can contribute equally to the direct-detection cross section for

heavy nuclei (i.e. with mass number A & 100). Consequently, it is not trivial to obtain a similar

suppression as in the spin-independent case. It is already known that in the V ⊗V interaction, the

cancellation can be effected by tuning the non-relativistic coefficients of the proton and neutron

operator, i.e. by breaking isospin symmetry. For a single isotope, this cancellation can be complete

only in the zero momentum transfer limit, q → 0. For the interactions of concern here, the mech-

anism is the same. The complication arises when both vectorial and axial SM currents contribute

equally to the cross section. The reason is that the amount, and more importantly the sign, of the

isospin-breaking ratio required to cancel each interaction is different. This is because the vectorial

currents count the number of up and down quarks in the nucleus, therefore, the coefficients of the

operators containing up and down currents have to have opposite signs in order for the interference

term to be negative. For the axial current, on the other hand, the contribution of the up and down

quarks to the spin of the nucleon have opposite signs to begin with. Thus, the coefficients of the

operators containing axial up and down currents have to have the same sign for the interference

term to be, again, negative. The ability to align the minima of both the A ⊗ A and A ⊗ V stems

from the fact that the former is much more sensitive to which combination of the two right-handed

quark currents (up vs. down) implements isospin breaking.

The matching conditions in Eq. (5) present us with different possibilities as follows.

1. We can entirely eliminate either the vectorial, V , or axial-vectorial, A, currents on the SM

side (i.e. for all flavours). This can be accomplished with the choice,

C
(6)
6,1 = ∓C

(6)
7,1 = ∓C

(6)
8,1 , (6)

which automatically enforces isospin-symmetric coefficients in the EFT.

2. If isospin breaking is desired, neither the vectorial nor the axial-vectorial currents can be

completely eliminated, and one is left with a mixture of both, see Eq. (5). As we will show,
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this makes suppressing the direct detection rate more complicated since only special regions

in parameter space allow for the simultaneous suppression of the contributions from both

currents – see, e.g., Figs. 1b – 1d.

To simplify the analysis, we adopt the following parametrisation for the coefficients,

C
(6)
6,1 → g′ 2

Λ2
cos θ , C

(6)
7,1 → g′ 2

Λ2
sin θ cosφ , C

(6)
8,1 → g′ 2

Λ2
sin θ sinφ , (7)

such that the sum of their squares equals g′ 4/Λ4. This parametrisation removes one variable and

allows us to project the relative direct-detection rate, in a model with only first-generation quarks

coupled to DM, as function of the overall value of the Wilson coefficients in the θ − φ plane.

The contours in Fig. 1a represent the relative direct-detection rates for a reference DM mass

mχ = 100 GeV. The figure shows that for specific choices of the parameters a factor of roughly

10−2 suppression can be achieved. For heavier DM masses, while the overall event rate falls as

1/mχ, there is no qualitative change in the arguments presented here. The isospin-symmetric limit

is realized on two horizontal lines in the θ − φ plane with φ = π/4, 5π/4. These lines are shown in

Fig. 1a as thick grey lines labelled ‘isospin limit’.

Figure 1b shows the relative rate with the normalisation of Fig. 1a along the curve θ = π/2

corresponding to scenarios where the coefficient C
(6)
6,1 = 0, thus where only first-generation right-

handed quarks are coupled to the DM current. The A ⊗ V and A ⊗ A contributions are shown

separately in dashed blue and dotted red curves, respectively, and the combination of these two,

i.e. the total relative rate corresponding to the contours in Fig. 1a, in solid gray. The gray dots

denote the isospin limit while the blue and orange stars, also reported in Fig. 1b, correspond to the

benchmark scenarios BM1 and BM2 that will be analysed in Sec. V. The scenario BM1 corresponds

to the case where the A⊗V rate is significantly suppressed, and naive treatment without considering

also the A⊗A contribution would lead to a wrong conclusion since, in fact, only O(1) suppression

of the direct-detection rate can be obtained. The benchmark BM2 has instead the minimal direct-

detection rate in this construction where the first-generation doublet does not couple to the DM

current.

Figure 1c depicts the relative rate with the same normalisation in the isospin limit showing

explicitly that significant suppression is not possible by cancelling separately the A ⊗ V or the

A ⊗ A contribution. Finally, Fig. 1d illustrates the rate along the φ ≈ 0.02 line passing through

the global minimum in the θ− φ plane showing that the largest suppression can be achieved in the

parameter space point where both A⊗ V and A⊗A simultaneously have a minimum.
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III. UV COMPLETIONS AND ANOMALY CANCELLATION

A straightforward path to UV completing the EFT setup in Sec. II is to augment the SM gauge

group by a U(1)′ group which couples to the SM fermions and the DM candidate via a heavy Z ′,

mZ′ ≫ mZ . For the Z ′ to couple axial-vectorially to the DM, the latter has to be chiral under

the U(1)′. Apart from the need to Higgs this gauge symmetry in order to generate a mass for the

mediator, the DM and SM fermion U(1)′ charges must be chosen such that pure and mixed gauge

anomalies cancel. In the following, we briefly discuss this and other general aspects that arise from

considering possible UV completions of the EFT setup, and we refer to Appendix A for general

anomaly equations involving first- and second-generation SM quarks, and to Appendix B for an

explicit construction of a one-generation model that addresses (most) of these general points.

(i) Anomaly cancellation. Anomaly-free DM models were discussed in Ref. [9] where, however, the

minimal model with the additional matter-field content consisting of only one Weyl fermion

was not discussed. The general anomaly equations that must be satisfied are given in Ap-

pendix A and their solution in this case requires that the SM fermions to be charged under

U(1)′.

(ii) Couplings of the Z ′ to leptons. A feature of the mixed anomaly equations is that charges

of the SM fermions are, in general, a linear combination of their hypercharge Y and B − L

where B(L) are the baryon(lepton) numbers which are ±1
3(±1). This general statement has

a significant consequence, namely that coupling the Z ′ to the SM leptons is unavoidable, and

thus observables involving leptons must be taken into account.

(iii) SM Yukawa couplings. The U(1)′ gauge invariance forbids some SM Yukawa couplings. We

show a possible mechanism for generating the Yukawa couplings in the model with only one

generation of SM quarks carrying U(1)′ charge in Appendix B. This construction includes

a dark Higgs, S, charged under U(1)′ and generating the effective Yukawa couplings upon

spontaneous breaking of the symmetry. Another option is to add Higgs doublets that also

carry a U(1)′ charge [23].

(iv) Tree-level-induced spin-independent contributions. Depending on the scalar sector of the the-

ory, the tree-level exchange of physical scalars could induce a sizeable spin-independent cross

section. However, we stress that this is model dependent and could be suppressed, for exam-

ple, in the following two ways. First, with one dark Higgs, a small U(1)′ gauge coupling allows
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the mass of the scalar to be significantly above that of the Z ′. Second, it could be tuned to

zero at the tree level by extending the scalar sector such that no single state couples to both

the quarks and the DM sector at the same time. In this case, the mixing between the scalars

would still generate this interaction though it would be additionally suppressed by at least a

loop factor.

(v) Loop-induced spin-independent contributions. While spin-independent scattering is suppressed

at the tree level, it can be induced at the one-loop level depending on the UV completion via

either two insertions of the axial-vectorial coupling or by a potential dark Higgs penguin with

a Z ′ in the loop. Using naive dimensional analysis, we estimate the relative size of the loop-

induced scalar-scalar interaction via internal vector-boson exchange in comparison with the

tree-level current-current interaction:

σsi

σsd

∼ A2 g′ 4

(4π)4
m2

Nmχ2

m4
Z′

∼ O(10−11) , (8)

where we used g′ = 0.1, mZ′ = 1 TeV, mχ = mZ′/2, and mN = 1 GeV is the nucleon mass.

We also took the mass number of the atomic nucleus (xenon, for example) to be A = 100.

The dependence on the DM and nucleon masses arises from the required chirality flips in the

scalar-scalar operator. Whether one should insert the nucleon mass or Λqcd is irrelevant to the

estimate, but we note that the respective form factors would suppress the spin-independent

contribution even further. The heavy suppression of the spin-independent scattering rate and

its model-dependent origin justifies our choice of neglecting this contribution.

We use the parameterisation of Eq. (7) to study the potential suppression of the direct-detection

rate in minimal anomaly-free UV completions of the scenario. With only one dark Weyl fermion and

only first-generation quarks charged under U(1)′ (or in the case of equal charges for all generations),

we are restricted to lie on the dotted gray line of Fig. 2a, which corresponds to the choice tan θ =

2/(sinφ+cosφ). The projection of the direct-detection rate with the same normalisation as before

is shown in Fig. 2b. Here the green star represents the choice with the minimal relative rate for

this one-generation scenario, confirming that only O(1) suppression is achievable. A more detailed

discussion about the construction of the corresponding UV complete model of Eq. (B1) is given in

Appendix B.

To reach near maximal suppression in the θ − φ plane, we need to augment the minimal one-

generation scenario with generation-dependent charges. The dot-dashed (dashed) horizontal gray

lines in Fig. 2a show the anomaly-free solutions with second-generation up(down)-type quark carry-

ing an independent U(1)′ charge, respectively. This solution is referred to as S2 (S3) in Appendix A.
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Qc
L,1 uR,1 dR,1 uR,2 dR,2 Lc

L,3 eR,3 χR

BM3 + 1

2
+1 0 0 -2 − 3

2
0 3

TABLE I: The benchmark model BM3 with only one addtional Weyl fermion and first-generation

quarks, right-handed second-generation down quarks and third-generation left-handed leptons

carrying U(1)′ charge.

We checked explicitly that the contribution of the strange-quark current to the direct detection is

sub-leading and does not affect the positions of the minima as expected.

Figure 2c shows the relative event rate using the same arbitrary normalization factor along the

φ = 0 curve. Along this projection, we identify the BM3 (red star) whose direct-detection event rate

is very close to the achievable minimum, and which will be analysed in Sec. V. This model is realised

by charging the first-generation left- and right-handed quarks and the right-handed strange quark

under U(1)′, while we choose to couple only the third-generation leptons in order to alleviate the

stringent bounds from dilepton searches. The specific charge assignments for the BM3 benchmark

are summarised in Table I.

In the next sections, we study the experimental constraints for the benchmark models, and

compare the current and future sensitivities at direct-detection experiments against up-to-date

collider exclusions.

IV. TECHNICAL DETAILS FOR EXPERIMENTAL CONSTRAINTS

A. Direct detection

The DM direct-detection experiments search for signals from DM scattering off atomic nuclei in

shielded detectors. For concreteness, we consider the XENON1T experiment with an exposure of

278.8 days × 1300 kg [24], and also the projected exposure of 20 ton × year for the XENONnT

[25]. The scattering rate R, which is the expected number of events per detector mass per unit

time, can be expressed differentially with respect to the recoil energy as [26],

dR
dER

=
ρχ

mAmχ

∫

vmin

dσ

dER
vf⊕(~v)d

3~v, (9)

where ER is the recoil energy of the nucleus, mA is the mass of the nucleus, and ρχ is the local

DM density. We approximate the DM velocity in the halo, f⊕(~v), with a Boltzmann distribution

and integrate over recoil energies in the range ER ∈ [3, 40] keV [24] to approximate the detector
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efficiency. The exclusion curves in Fig. 3 were obtained (naively) using Poisson statistics assuming

zero events in the signal region. The coefficients of the Galilean-invariant effective theory [27] were

computed using DirectDM [28] and the nuclear responses and direct-detection rates were obtained

with DMFormFactor [29].

B. Monojet searches at the LHC

Model-independent searches for DM at the LHC are primarily performed via monojet [10, 11] and

monophoton analyses [30, 31], which can be interpreted in the context of simplified DM models,

see Refs. [12–14], with the monojet final state typically providing the stronger limits. Here we

consider the recent DM analysis by the ATLAS collaboration [10] which uses 139 fb−1 data and

where monojet events with large missing energy were used to constrain a simplified model with a

vector mediator, Z ′, coupling to the DM, χ, and the quark, q, excluding Z ′ with masses around

2 TeV. The quoted limits on axial mediators are very similar.

We were able to reproduce the exclusion limits with good approximation for the simplified DM

benchmark model adopted in the experimental analyses [12–15], where the couplings of the vector

mediator Z ′ to quarks and the DM are fixed to gq = 0.25 and gχ = 1. We scanned over several

configurations of DM and mediator masses by importing the simplified DM model from Ref. [32]

into MadGraph5_aMC@NLO [33] to generate the WIMP s-channel process pp → jV → jχ̄χ

where j is a jet from initial state radiation, and the DM particle pair, χ̄χ, gives rise to missing

transverse energy, Emiss
T , in the detector. The process is implemented at LO in the strong coupling

constant. We adopted the NNPDF3.0_LO PDF set [34], and for each event the factorization

and renormalisation scales were set to HT /2, with the total hadronic transverse energy HT =
√
m2

χχ + p2T,j + pT,j where mχχ is the invariant mass of the DM pair, and pT,j is the transverse

momentum of the parton-level jet. Events are hadronised using Pythia8 [35], and a fast detector

simulation is carried out using Delphes [36]. We apply the kinematic cuts from Ref. [10], which

are as follows: Emiss
T > 200 GeV; leading jet with pT > 150 GeV and |η| < 2.4; no more than three

additional jets with pT > 30 GeV and |η| < 2.8; separation between missing transverse momentum

and each of the jets ∆φ(jet, pmiss
T ) > 0.4 (0.6) for events with Emiss

T > 250 GeV (200 GeV < Emiss
T <

250 GeV). The remaining simulated events were binned in thirteen exclusive signal regions as in

Ref. [10] according to their missing transverse energy. We simulated a sufficient number of events

such that, after the selection cuts, we still obtain a statistically significant sample in all the bins.

Finally we excluded parameter space points where the fiducial cross section of the signal in any bin
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is bigger than its uncertainty at 95% confidence, which is evaluated by adding the total systematic

uncertainty of the signal quadratically to the statistical uncertainty of the signal and the overall

uncertainty of the background (statistical and systematic1) from Ref. [10].

We validated our analysis by reproducing the existing exclusion limits and by comparing with

results from Ref. [37], we explored the current LHC monojet sensitivity in the three BMs introduced

in the previous sections. The exclusion limits we obtain will be presented and discussed in Sec. V.

C. Dijets and dileptons

Heavy mediators that couple to quarks can be detected at the LHC via their decays into quarks

and leptons. The most recent analysis by the ATLAS collaboration searching for heavy resonances

in dijet final states uses 139 fb−1 data for state-of-the art constraints [16] for mediator masses above

2 TeV. For lower masses above 700 GeV we use the results presented in Ref. [17] that are based

on 29.3 fb−1 of data. For the decay into taus we used the constraints on the cross section of the

combined hadronic and leptonic channels [18], which cover mediator masses between 0.5 and 2.5

TeV and are based on an integrated luminosity of 19.5− 20.3 fb−1. We recast these limits into the

considered model parameter space, and estimate a lower limit on the Z ′ mass of about 2 TeV using

the code developed in Ref. [38] except that we use the NNPDF3.0_LO PDF set.

V. RESULTS

In this section we compare the exclusion limits from the XENON experiment and from the LHC

for the introduced BMs. In Fig. 3, we show the results for BM1 and BM2. The two benchmarks

represent realisations of models where only the first generation of quarks is coupled to the DM

current through a vector mediator, Z ′. They both feature a null charge to the left-handed quarks,

i.e. |C(6)
6,1 | = 0, corresponding to the choice θ = π/2 in the parametrisation of Eq. (7). The

exclusion limits from collider monojet and dijet searches and from the current XENON1T and

projected XENON20T sensitivities are presented in the plane with the DM mass (in GeV) on the

1 The systematic uncertainty of the signal is obtained by combining the relative uncertainties from Ref. [10]: luminosity

uncertainty 1.7%; cross section scale uncertainty 10%; a PDF uncertainty 5%; PDF choice 10%; 1% to 7% for

the jet E
miss
T reconstruction, energy scale and resolution; modelling initial and final state radiation 3% to 6%.

Scale uncertainty of the signal is neglected. The systematic uncertainties are added linearly, overall systematic and

statistical uncertainties are added in quadrature.
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model features other decay channels for the mediator that increase its decay width, the reach of the

monojet analysis in terms of DM mass is reduced, and it can only test masses up to about 300 GeV,

well below the on-shell limit. On the other hand the additional decay channels lead to other testable

signatures and they can be searched for via dijets (green line) and ditaus (yellow line), which have

a stronger sensitivity compared to the monojet searches and are mostly independent of the DM

mass.

VI. SUMMARY AND OUTLOOK

In this work we considered a WIMP-like Majorana dark matter candidate that mainly interacts

through an axial-vectorial current with the visible sector. The direct-detection rate is dominated by

the interaction with light quarks in this scenario, and we consider the three SU(2)×U(1) invariant

operators that couple the first generation of quarks at dimension 6. Varying the relative magnitude

of the three respective Wilson coefficients, we identify regions in the parameter space —as shown

in Fig. 2a —where the direct-detection rate for a xenon target is significantly suppressed.

In models where these Wilson coefficients are generated via Z ′ exchange, we find that collider and

direct-detection experiments have comparable sensitivity for typical choices of the couplings. For

parameter points that are chosen to be comparable to current experimental benchmark scenarios,

we find that future direct-detection experiments will test large parts of the parameter space, see

e.g. Fig. 3, that are not accessible at the LHC.

Yet, in a UV-consistent Z ′ model, anomaly conditions further constrain the allowed parameter

space of the Wilson coefficients, and the direct-detection rate can only be suppressed by considering

generation-dependent charges. By charging the right-handed strange quark instead of the right-

handed down quark, we find an anomaly-free charge assignment that suppresses the direct-detection

rate for xenon targets. If realised in Nature, such a scenario would have to be tested via collider

searches, which could close the window of smaller mediator masses and smaller gauge couplings.
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Appendix A: Anomaly conditions

We construct here the anomaly-free conditions with only one additional Weyl fermion, and first-

generation SM quarks plus potentially one quark flavour from the second-generation. In addition,

one generation of leptons must also carry a U(1)′ charge in this setup; choosing the third generation

helps to evade to some extent the stringent constraints from dilepton searches. The generic U(1)′

charge assignment of the right-handed matter fields is given by

Qc
L,1 uR,1 dR,1 Lc

L,3 eR,3 χR uR,2 or dR,2

a b c d e x z

(A1)

and leads to the following anomaly equations (see Sec. 22.4 of Ref. [39]):

SU(3)× SU(3)× U(1)′ : 2a+ b+ c+ z = 0

Grav × Grav × U(1)′ : 6a+ 3b+ 3c+ 2d+ e+ x+ 3z = 0

SU(2)× SU(2)× U(1)′ : 3a+ d = 0

U(1)Y × U(1)Y × U(1)′ : 6a+ 48b+ 12c+ 18d+ 36e+ 12z = 0

U(1)Y × U(1)′ × U(1)′ : −6a2 + 12b2 − 6c2 + 6d2 − 6e2 − 6z2 = 0

U(1)′ × U(1)′ × U(1)′ : 6a3 + 3b3 + 3c3 + 2d3 + e3 + x3 + 3z3 = 0

(A2)

There is one solution with only one-generation, S1, and one solution with an addtional second

generation up(down)-type quark carrying an independent charge, S2 (S3). These solutions are

Qc
L,1 uR,1 dR,1 uR,2 dR,2 Lc

L eR χR

S1 1

6
(e+ x) 1

3
(x− 2e) 1

3
(e− 2x) 0 0 − 1

2
(e+ x) e x

S2 1

4
(x− z) 0 − 1

2
(x+ z) z 6= 0 0 − 3

4
(x− z) 1

2
(x− 3z) x

S3 1

2
(x+ z) −x− 2z 0 0 z 6= 0 − 3

2
(x+ z) 2x+ 3z x

TABLE II: Anomaly-free models where only first-generation quarks or one full generation plus

either a right-handed second-generation down or up quarks carry U(1)′ carges. Only the

left-handed third-generation lepton doublet carries a U(1)′ charge to avoid the most stringent

bounds from dilepton searches.
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shown in Table II. We denote the charge of the new Weyl fermion, χR, by x, the charge of the

right-handed lepton in S1 by e, and the charge of the second generation quarks by z in S2 and S3.

Appendix B: A possible UV completion

We want a DM candidate with purely axial-vectorial coupling to a spin-1 mediator. Since the

most minimal additional matter field content — one Weyl fermion charged under a spontaneously

broken U(1)′ gauge group — gives rise to a Majorana fermion after spontaneous symmetry breaking,

the desired axial-vectorial coupling is automatically guaranteed. Hence, we extend the SM gauge

group by an additional U(1)′ which is spontaneously broken by the vacuum expectation value of a

scalar field, S, and add one Weyl fermion, χR, that is charged under this U(1)′ and is additionally

odd under a Z2 symmetry that remains exact. This fermion is neutral under the SM gauge group.

Since the DM candidate χR is chiral under the U(1)′, the gauge symmetry is anomalous. One

simple solution to make it anomaly free is to also charge one generation of right-handed SM fermions

under the U(1)′:

uR dR eR χR

−1 +1 +1 −1

(B1)

This assignment is sufficient to cancel all mixed and pure anomalies, and it corresponds to the

solution S1 in Appendix A with e = 1, x = −1. However, charging the right-handed SM fermions

under U(1)′ forbids their Yukawa terms at dimension four. To write these terms, one needs to

include powers of the U(1)′ Higgs, S, suppressed by the same power of the scale M∗ where the

interaction is generated.

Writing in terms of Weyl spinor fields transforming under the (0, 12) representation of the Lorentz

group and following the conventions of Ref. [40], the Lagrangian describing the fields charged under

the U(1)′ is given by

LU(1)′ =
∑

f=u,d,e,χ

f †
R iDµσ

µ fR + (DµS)
†DµS −

[
1

2
yχ χRχR S + h.c.

]
, (B2)

where Dµ = ∂µ+i g q′ Z ′
µ is the U(1)′ covariant derivative and σµ ≡ (12×2;~σ) where σi ∀ i ∈ {1, 2, 3}

are the Pauli matrices, see Ref. [40] and references therein. In order to be able to write the Yukawa

term in the square bracket, the U(1)′ charge of the Higgs field S must be +2. However, such a choice

would require one additional U(1)′ charged scalar with charge +1 to allow for the SM Yukawa terms
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given the charge assignment (B1). Thus, a solution that would allow all Yukakwa interactions with

only one U(1)′-charged scalar, S, forces us to assign it a charge +1. This choice forbids the Yukawa

term in Eq. (B2) at the renormalizable level and all Yukawa terms now arise at dimension five in

the following way (again, writing in terms of fields that transform under the (0, 12) representation

of the Lorentz group as before)

LYukawa
U(1)′ = −yu H̃ ·Q†

LuR
S

M∗
− ydH ·Q†

LdR
S†

M∗
− yeH · L†

LeR
S†

M∗
− yχ χRχR

S2

M2
∗

+ h.c. , (B3)

where H̃a = ǫabH†
b and a, b are SU(2)L indices which are made explicit here for clarity while they

are suppressed in the equation above where their contraction via the δba invariant tensor is denoted

by X ·Y ≡ δbaX
aYb with X and Y transforming under (formally) conjugate representations. These

higher dimensional operators can be generated at the scale M∗ via vector-like fermions with masses

of O(M∗) as shown in Fig. 5. For each of the fermions of (B1), we require one pair of vector-like

Weyl fermions which are neutral under U(1)′ but are otherwise charged under SU(3)C or U(1)Y as

necessary. The vector-like fermion X corresponding to the DM candidate χR is completely neutral

under the SM and the U(1)′ gauge group. However, it must also be odd under Z2 in order for the

DM Yukawa term to respect it.

After spontaneous symmetry breaking of the U(1)′, the DM candidate χR transforms only under

the Z2 symmetry as χR → −χR but does not carry any additional conserved charges. Thus, we

can construct a left-handed, (12 , 0), fermion ǫαβ(χ
†
R)

β with the same quantum numbers as χR and,

u†
L uR

H̃ S

U †
L UR

d†L dR

H S†

D†
L DR

χR χR

S S

X†
L XR

FIG. 5: Generating the dimension-5 Yukawa interactions via vector-like-fermions. The fermion

flow reflects the fact that we work with (0, 12)-representation fermions, see [40]. The diagram for

the electron is omitted but it can be obtained from the down-quark one by the replacement d → e

and D → E. The vector-like fermions, U,D,E,X are neutral under U(1)′.
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consequently, we can construct a four-component Majorana spinor as

χM =



[
χ†
R

]
α[

χR

]α̇


 , (B4)

which explicitly satisfies the Majorana “reality” condition χc
M = χM , though it is manifestly obvious

that this must be so since the four-component spinor is constructed from only one Weyl fermion.

The Lagrangian of this Majorana DM is given by

LM =
1

2
χ̄M i/∂ χM +

1

2
χ̄M γµγ5 χM Z ′

µ − 1

2
mχ̄M χM . (B5)
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