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Abstract

Colloidal dispersions show a peculiar rheological behavior known as shear-thinning,
that is the viscosity of a sample decreases with increasing shear rate. In this
work the underlying structural changes that lead to this effect are studied by
using samples consisting of polyacrylate-coated silica nanoparticles dispersed in
polyethylene glycol-200. The silica particles are synthesized using a modified
Stöber method and samples with volume fractions between φ = 0.22 and φ = 0.53
are prepared.

The experiments performed in this thesis utilize a setup combining a cone-plate
rheometer with a small-angle x-ray scattering (SAXS) setup. In this way rheo-
logical and structural properties of the samples can be measured simultaneously.
Data collected from the SAXS measurements are evaluated further using x-ray
cross-correlation analysis (XCCA) in order to study higher-order correlations and
local symmetries.

It is shown that under shear the highly concentrated nanoparticle dispersions
form structures with hexagonal symmetry which can be interpreted as layers
of hexagonal close-packed spheres. From XCCA the sixth Fourier coefficient of
the cross-correlation function can be used as an order parameter to quantify the
degree of local hexagonal order. In the regime of intermediate shear rates the
degree of hexagonal order is correlated with the magnitude of the shear rate. An
increase of the shear rate corresponds to an increase of local hexagonal order.
Since the viscosity is decreasing with increasing shear rate it can be concluded
that a higher degree of local order minimizes internal friction of the sample, and
therefore lowers its viscosity.
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Kurzfassung

Kolloidale Dispersionen zeigen ein interessantes Verhalten, das unter dem Begriff
Scherverdünnung bekannt ist. Dies bedeutet, dass die Viskosität einer Probe
mit steigender Scherrate abnimmt. In der vorliegenden Arbeit werden die struk-
turellen Veränderungen, die für diesen Effekt verantwortlich sind, mittels Proben
untersucht, die aus polyacrylatbeschichteten Silica-Nanopartikeln bestehen, welche
in Polyethylenglykol-200 dispergiert sind. Die Silica-Partikel werden mithilfe
einer modifizierten Stöber-Synthese hergestellt und Proben mit Volumenanteilen
zwischen φ = 0.22 und φ = 0.53 präpariert.

Die Experimente dieser Arbeit nutzen einen Versuchsaufbau, der ein Kegel-
Platte-Rheometer mit Röntgenkleinwinkelstreuung (SAXS) kombiniert. Hier-
durch können die rheologischen und strukturellen Eigenschaften der Proben gle-
ichzeitig gemessen werden. Die Daten der SAXS-Messungen werden zusätzlich
durch Röntgenkreuzkorrelationsanalyse (XCCA) evaluiert, um Korrelationen hö-
herer Ordnung und lokale Symmetrien zu analysieren.

Es wird gezeigt, dass hoch konzentrierte Nanopartikeldispersionen unter Sche-
rung Strukturen mit hexagonaler Symmetrie ausbilden, die als Schichten von
hexagonal dichtest gepackten Kugeln interpretiert werden können. Aus den
XCCA-Daten kann der sechste Fourierkoeffizient der Kreuzkorrelationsfunktion
als Ordnungsparameter zur Quantifizierung der hexagonalen Ordnung herange-
zogen werden. Im Bereich mittlerer Scherraten ist der Grad der hexagonalen
Ordnung mit dem Betrag der Scherrate korreliert, das heißt, die hexagonale Ord-
nung nimmt mit steigender Scherrate zu. Da die Viskosität mit zunehmender
Scherrate abnimmt, kann daraus gefolgert werden, dass ein höherer Grad lokaler
Ordnung die innere Reibung der Probe und damit ihre Viskosität reduziert.
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1 Introduction

Colloidal dispersions are two-phase systems of particles in the nanometer length
scale dispersed in a continuous medium. These systems can be catagorized as soft
matter which is a subdivision of condensed matter systems. For these kind of ma-
terials, inter-particle interaction energies are in the regime of the thermal energy
and, thus, structural changes can be introduced easily, either by mechanical or
thermal stress.

The response of a material to external mechanical stress is studied in the field
of rheology. Most colloidal dispersions show a peculiar rheological behavior that
is known as shear thinning. When such a system is subject to shear deformation,
its viscosity decreases with increasing shear rate, i. e. it becomes more liquid as
the system is deformed faster. A prominent example from everyday life is wall
paint. At rest, the paint is relatively viscous, which is desired so that it sticks to
a brush and does not drip. When moving the brush along the wall, shear forces
are applied to the paint and the viscosity decreases. In that way, the paint can
be spread on the wall easier. In the end, after lifting the brush, no shear forces
are present and the paint becomes more viscous again, preventing it from flowing
down the wall.

The macroscopic rheological phenomenon of shear thinning is supposed to be
attributed to microscopical changes of the structure of the dispersion. The in-
vestigation of this relationship is called structural rheology. In early work, the
structure of colloidal dispersions under shear was investigated by means of small-
angle neutron scattering [1–5]. These studies were later followed up by light scat-
tering [6–8] as well as small-angle x-ray scattering [5,9] experiments.

In early publications by Ackerson et al. [1,6] and Ashdown et al. [2] the emergence
of Bragg reflections with hexagonal symmetry in the scattering pattern of the
sample under shear was observed. These were explained by the formation of
face-centred cubic (FCC) crystallites with the (111) plane oriented perpendicular
to the incoming beam. In 1994 Versmold offered a reinterpretation and attributed
the phenomenon to the formation of hexagonal sliding layers [10]. This model was
later backed up by additional theoretical work [11–15].

These studies considered the shear melting of already preordered structures
and dealt with scattering data averaged over comparably large amounts of time,
i. e. in the regime of minutes. The formation of order in a disordered sample
by the application of shear forces and the subsequent decrease of viscosity is,
however, not well studied yet.

The focus of this thesis is a detailed time-resolved analysis and quantification
of the structure formation in colloidal dispersions under shear in the millisecond
regime. As a model system, spherical silica nanoparticles with a hard-sphere in-
teraction potential are prepared. With the advent of modern third-generation
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1 Introduction

synchrotron sources, x-ray scattering experiments with exceptionally high spatial
and temporal resolution became possible. In this thesis, the recently developed
x-ray cross-correlation analysis method [16,17] is used to extract symmetry infor-
mation from small-angle x-ray scattering data of colloidal dispersions under shear
and use this information as an order parameter to characterize the degree of order
in the sample. The results are then combined with rheological measurements to
illuminate the underlying relationship between structure formation induced by
shear forces and the decrease of viscosity with increasing shear rates.

The thesis is structured as follows: In chapter 2, a general introduction into
colloidal systems is given. Different stabilization mechanisms will be reviewed
and typical pair-interaction potentials will be discussed. The preparation of silica
nanoparticle dispersions will be presented, as well.
Chapter 3 gives an overview of the basic principles of rheology. The commonly

used rheometer setups will be presented.
In chapter 4 scattering methods will be introduced. First, a brief theoretical

overview of the interaction between light and matter will be given. Afterwards,
small-angle x-ray scattering and x-ray cross-correlation analysis will be illumi-
nated further. In the end, the principles of dynamic light scattering which is
used for the sample pre-characterization are discussed.

The experimental approach of this thesis will be presented in chapter 5. The
results of the sample preparation as well as the characterization are discussed and
the experimental setup will be illustrated together with the applied measurement
scheme.
Chapter 6 is the main part of the thesis. The results of the experiments are

presented and discussed in detail in this section.
In the final chapter 7, the work is summarized and an outlook is given.
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2 Colloidal Systems

The IUPAC defines the term colloidal as “a state of subdivision, implying that
the molecules or polymolecular particles dispersed in a medium have at least in
one direction a dimension roughly between 1 nm and 1 µm, or that in a system
discontinuities are found at distances of that order” [18]. A colloidal dispersion is
a two-phase mixture where the dispersed substance is evenly distributed in a con-
tinuous medium. As a consequence, to form a colloidal dispersion one component
must be insoluble in the other one.

Colloidal length scales are intermediate between atomic or molecular scales on
the one hand and macroscopic aggregates on the other hand. Therefore, in sci-
ence, colloids are often used as mesocopic model systems for atomic or molecular
substances. The advantage is, that dynamic processes on the colloidal scale are
much slower than their microscopic counterparts and easier to investigate. In
addition, the structure formation on these larger length scales is less difficult to
probe as well. Since the time and length scales of the particles and the dispersion
medium are different by several orders of magnitude the dispersion medium can
be considered a continuum. This makes it possible to describe the properties of
colloids while neglecting the microscopic peculiarities of the medium.

Colloidal dispersions occur commonly in our everyday live. Some prominent
examples are milk (fat dispersed in water), blood (cells dispersed in water), or
mayonaise (oil droplets dispersed in water). Furthermore, colloids are widely used
in technological applications such as agents cosmetics, color pigments in paints,
or as a supporting material in industrial processes.

In general, in a colloidal dispersion the dispersed substance and the continuos
medium can occur in various different combinations of aggregate states. In this
work, the focus lies on colloidal suspensions, that is a solid substance is dispersed
in a liquid medium. The underlying properties and principles of colloidal suspen-
sions will be described in the following sections. For the most part, only spherical
particles are considered.

2.1 Van der Waals attraction

If the dispersed particles and the continuous phase exhibit different polarizabili-
ties, which is typically the case for colloidal dispersions, van der Waals forces lead
to an attractive potential between the particles. The attractive forces are a result
of random fluctuations in the electron cloud of the particles which lead to instan-
taneous electric dipoles. These dipoles can induce further dipoles in neighboring
particles and create attractive interactions. These interactions are also referred
to as London dispersion forces [19–21].
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2 Colloidal Systems

A general van der Waals potential is of the form

VvdW(rij) = − C
r6
ij

. (2.1)

Here, rij denotes the distance between two molecules i and j and C is a constant
depending on the substance. Typically, the dispersion energy is in the range
of around 4-10 kJ/mol and therefore weak compared to other interaction mecha-
nisms such as electrostatic interactions. From equation 2.1 it can be seen that the
pair-potential decreases with a factor of r−6

ij , hence it is relatively short-ranged.
For identical, spherical, homogeneous particles of radius R dispersed in a con-

tinuous medium the attractive potential can be described using the Hamaker-
constant H [22,23]

Va(rij) = −H
6

[
2R2

r2
ij − 4R2

+
2R2

r2
ij

+ ln

(
1− 4R2

r2
ij

)]
. (2.2)

The constant H depends on the material properties as well as the medium in
which the particles are dispersed. Equation (2.2) shows that the attractive forces
between two mesoscopic spherical bodies in a medium is more long-ranged in
comparison to the molecular scale.

2.2 Stabilization Mechanisms

Due to the origin of the van der Waals forces, all materials and substances are
subject to attractive interactions. As a result particles dispersed in a medium are
thermodynamically unstable and would inevitably coagulate irreversibly and pre-
cipitate in the form of macroscopic clusters. To overcome this problem, different
stabilization mechanisms can be used to stabilize a colloidal dispersion.

2.2.1 Steric Stabilization

One possible way to avoid agglomeration in colloidal dispersions is steric stabi-
lization [24]. Here, the particles are coated with short-chain ligands in a brush-like
fashion which is displayed schematically in figure 2.1.
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2.2 Stabilization Mechanisms

R

r

Figure 2.1: Schematic of a sterically stabilized colloid dispersion (adapted from
[24]). The open circles represent the constituents of the dispersion
medium. The particles of radius R are separated by a center-to-center
distance r and are colored in gray. Their surfaces are modified with
brush-like ligands resulting in an entropic repulsion at short distances.

Before two particles’ surfaces touch the ligands interpenetrate each other which
leads to an entropic repulsion of the overlapping molecule chains. Usually, the
length of the molecule chains is much smaller compared to the size of the particles.
In this case, the interaction between two particles i and j of radius R can be
described by a simple hard-sphere potential:

VHS(rij) =

{
∞, rij < 2R

0, rij ≥ 2R
(2.3)

It follows from equation (2.3) that the interaction potential is independent of
temperature. The only contribution is the inter-particle distance or the volume
fraction φ, respectively, which can be calculated by

φ =
4

3
πR3ρN , (2.4)

where ρN is the number density of hard-sphere particles. Depending on the
volume fraction, these kind of particles show an interesting phase behavior [25]. At
low volume fractions the particles form a liquid-like structure with short-range
order and long-range disorder. At higher volume fractions even crystalline phases
can be observed, whereas intermediate volume fractions exhibit a coexistance
between both phases.

In addition, non-equilibrium states, such as glassy and supercooled states, can
form. However, the formation of these phases require a disperse sample. A phase
of hard-sphere particles is displayed in figure 2.2.
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2 Colloidal Systems

Figure 2.2: Phase diagram of monodisperse hard spheres as a function of the
volume fraction φ (taken from [25]).

2.2.2 Electrostatic Stabilization

Another possibility of stabilizing colloidal dispersions is the addition of electro-
static interaction. This can be realized by introducing surface charges to the
colloids which is usually achieved by dissociation of acidic end-groups, e.g. silanol
(-Si-OH), carboxyl (-CO2H), or sulfonic acid (-SO3H) groups, in polar solvents.
As a result, the particles become strongly charged, with surface charges between
102 - 105 elementary charges [26].

The surface charge of the particles leads to a long-ranged electrostatic repulsion
which counteracts the short-ranged attractive van der Waals interaction. It must
be taken into account that a dispersion itself must satisfy the principle of elec-
troneutrality, i.e. the colloidal macroions are surrounded by dissolved counterions
which form an electrochemical double layer. The double layer shields the charge
of the particle so that a second particle experiences the force of an effective charge
Zeff which is lower than the nominal charge. A schematic of a charge-stabilized
dispersion is illustrated in figure 2.3.
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Figure 2.3: Schematic of a charge-stabilized colloid dispersion (adapted from
[24]). The constituents of the dispersion medium are illustrated as
open circles. The colloids, colored in gray, carry a negative surface
charge. The positive counterions dissolved in the dispersion medium
form an electrochemical double layer at the colloid surfaces.

The interaction potential of charge-stabilized colloidal dispersions can be de-
scribed by the DLVO-theory [27,28], which is named after Derjaguin, Landau, Ver-
wey, and Overbeek. The DLVO-potential consists of three contributions: a vol-
ume exclusion described by the hard-sphere potential (see equation (2.3)), the
attractive van der Waals potential (see equation (2.1)), and an repulsive electro-
static part which can be expressed by a screened Coulomb or Yukawa potential

VYukawa(rij) =
(Zeffe0)2

4πε0εr

(
exp(κR)

1 + κR

)2
exp(−κrij)

rij
. (2.5)

In equation (2.5) Zeff is the effective charge of the colloidal particles, e0 the
elementary charge, ε0 the vacuum permittivity, and εr the relative permittivity
of the continuous phase. rij is the distance of two particles i and j of radius R.
κ is the inverse Debye-screening length which can be calculated by

κ2 =
4πρc(qe0)2

ε0εrkBT
. (2.6)

Here, ρc is the number density of counterions with a charge of qe0. kB denotes
Boltzmann’s constant and T the absolute temperature. Ultimately, the DLVO
potential can be expressed as

VDLVO = VHS + VYukawa + VvdW . (2.7)

Similar to the hard-sphere particles described in the section before, charge-stabilized
particles can as well form a variety of different phases. In addition to the volume
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2 Colloidal Systems

fraction, also the electrolyte concentration of the dispersion medium contributes
to the phase behavior.

A phase diagram for charged polystyrene particles dispersed in a methanol-
water mixture is displayed exemplarily in figure 2.4 [29]. Due to the charge, the
particles experience a more long-ranged interaction compared to hard-sphere par-
ticles. Hence, phase transitions can be observed at much lower volume fractions.
At a constant electrolyte concentration and with an increasing volume fraction
the dispersions undergo a transition from liquid-like to crystalline to a glassy
state. With increasing electrolyte concentrations, the phase boundaries shift to
higher volume fractions. At high electrolyte concentrations, where the screening
of the particle charges has the largest effect, the particles behave similar to a
hard-sphere systems.

Figure 2.4: Phase diagram of spherical, charge-stabilized, polysterene particles in
a 0.9-methanol-0.1-water mixture (taken from[29]). The phases are
displayed as a function of the volume fraction and the concentration
of hydrochloric acid. Solid squares: bcc crystals; open triangles: fcc-
crystalls; open squares: fcc+bcc coexistance; closed circles: glass;
open circles: liquids. Solid lines are guide-to-the-eye phase boundaries
whereas the dashed line is the theoretical fcc-liquid boundary for a
similar point-charge Yukawa system.
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2.3 Preparation of silica nanoparticle dispersions

2.3 Preparation of silica nanoparticle dispersions

The preparation of silica nanoparticle dispersions can be achieved using two gen-
eral pathways [30]: In the so called bottom-up approach the nanoparticles are
grown chemically starting from a molecular level. On the other hand a macro-
scopic bulk material, e.g. quartz, can be dispersed in a medium using various size
reduction techniques. This latter physical process is referred to as the top-down
approach. In this work, the dispersions are prepared chemically. The method
used is described in the following paragraphs.

In 1968 the Stöber process [31] was developed and is a widely used bottom-up
approach to prepare charge-stabilized, spherical silica particles in the nanometer
to micrometer size range. The advantage of this particular synthesis is that the
resulting particles are uniform, monodisperse and controllable in size [32].

For the synthesis a molecular, silicic acid based precursor, commonly tetraethyl
orthosilicate, is reacted with water in an alcoholic solution. Aqueos ammonia so-
lution is used as a catalyst. The hydrolysis of the orthosilicate leads to a deester-
ification and a subsequent polycondensation of the substrate forming a siloxane
network. The network is end-capped with silanol groups which dissociate in polar
solvents resulting in a negative surface charge of the particles. Thus, the parti-
cles experience an electrostatic repulsion preventing them from agglomeration
while the electrically neutral orthosilicate monomers are still able to diffuse to
the particle surface and propagate the polymer growth.

The reaction mechanism can be described as follows. In the beginning of the
reaction, tetraethyl orthosilicate is deesterified with water using aqueous ammonia
solution as a catalyst

Si(OEt)4 + x H2O
NH4OH−−−−→ Si(OEt)4−xOHx + x EtOH . (2.8)

In the next step, the silanol groups react in a polycondensation to form the
siloxane network

(RO)3Si−OH + HO−Si(OR)3 −−→ (RO)3Si−O−Si(OR)3 + H2O , (2.9)

(RO)3Si−OEt + HO−Si(OR)3 −−→ (RO)3Si−O−Si(RO)3 + EtOH . (2.10)

The nucleation and growth process as well as the influence of the reactant concen-
trations and solvents have been studied extensively and are well understood [33].
By tuning the concentration of ammonia, water, and the monomer the particle
size can be controlled while still obtaining monodisperse particle dispersions. It
is also possible to effectively modify the particle surface using silane-coupling
agents. Both the modified and unmodified particles exhibit interesting mechan-
ical, thermal, physical, and chemical properties and, thus, are widely used as a
filler material in polymer nanocomposites for various applications [30].
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3 Rheology

Rheology is the study of flow and deformation. It investigates the response of
condensed matter to an external stress. As a result of a rheological measurement
one can determine if a material behaves “hard” or “soft” or, viewed differently,
if a substance is more “solid-like” or “liquid-like”, respectively.

In this chapter, the basic principles of this technique will be introduced. The
main sources sued for this section are Rheology: Principles, Measurements, and
Apllications by Christopher Macasko [34] and The Structure and Rheology of Com-
plex Fluids by Ronald G. Larson [35].

3.1 Basic Principles

The basic behavior of matter under shear forces can be visualized by imagining
two parallel plates separated by a small distance h as depicted in figure 3.1. The
gap between both plates is filled with a liquid.

Figure 3.1: Schematic of a shear process. Two plates are separated by a small
distance h. The gap between the plates is filled with a liquid. The
lower plate is stationary while the upper one is moving with a constant
velocity v0. Due to the upper plate’s motion, a velocity gradient forms
inside the liquid.

While the upper plate is moving with a constant velocity of v0 the lower plate
remains at rest. Over time, the liquid layer directly in contact with the moving
plate will start moving, too, and, due to momentum transfer in the normal di-
rection, the adjacent layer will get in motion as well. In steady state, the layer
closest to the moving plate will move with the same velocity as the plate whereas
the bottom most layer will stay stationary. As a result, a linear velocity gradient

10



3.1 Basic Principles

with a velocity distribution of

vx = v0
y

h
(3.1)

is established. To keep the upper plate moving at a constant velocity a force Fx
needs to be applied to overcome the internal friction of the liquid. The ratio of
that force to the area of the plate is called the shear stress

τ =
Fx
A

(3.2)

and has the unit of a pressure.
Another property of interest is the strain or shear deformation γ. Since the

steady state velocity gradient is linear, the shear deformation is independent of
the absolute position y between the plates and, thus, can be defined as

γ =
ds

dh
, (3.3)

where s is the upper plate’s path of deflection.
Finally, the shear rate γ̇ can be defined as the temporal derivative of the de-

formation which is the same as the velocity gradient normal to the applied force
Fx

γ̇ =
dγ

dt
=

d

dt

(
ds

dh

)
=

d

dh

(
ds

dt

)
=

dv

dh
. (3.4)

Shear forces can be induced by two basic principles. The first case, called drag
flow, is described in the section above. Here, the force is exerted by the drag of
a moving surface.

The second possibility is pressure flow. In that case, the material is pushed
through a channel by a pressure difference between the inlet and the outlet. This
kind of shear forces is typically found for liquids flowing through a tube, e. g. in
microfluidics applications or inside the nozzle of a liquid jet experiment [36–38].

Considering liquids the most basic law describing the deformation in response
to external stress is Newton’s law of viscosity

τ = ηγ̇ , (3.5)

where η is the dynamic viscosity of the liquid. Substances following this law, that
is the stress is proportional to the shear rate, are considered Newtonian fluids.
Most molecular liquids and gases, such as water or air, behave like this.

However, there are many liquids, especially dispersions and polymer melts,
that deviate from the Newtonian behavior. Then, the viscosity is a function
of the shear rate which is illustrated in figure 3.2. If the viscosity decreases
with increasing shear rate this phenomenon is referred to as shear thinning. On
the other hand, an increase of the viscosity at higher shear rates is called shear
thickening. This peculiar macroscopic behavior is accompanied by structural
changes on the microscopic level. The investigation of these structural changes
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3 Rheology

under the influence of shear forces is known as structural rheology and is the
main focus in this work.

shear thinning

shear thickening

Newtonian

Figure 3.2: Different kinds of behavior of liquids under the influence of shear.

The most simple way to express deviations from the Newtonian behavior of liquids
is in terms of a power law, the so called Ostwald-de Waele-relationship [39]

τ = Kγ̇n , (3.6)

η = Kγ̇n−1 , (3.7)

where K is called the flow consistency index and n the flow behavior index.
n = 1 indicates Newtonian behavior, whereas n < 1 describes shear thinning
and n > 1 shear thickening. This power law only approximates the behavior in
certain ranges of shear rates. The parameters commonly change in the case of
shear rates close to zero or high shear rates, respectively. This is because usually
the structure of the fluid changes more drastically between the state at rest and
low shear rates as compared to intermediate and higher shear rates, in which case
the structure is more or less retained.

In the case of solids, the most simple relationship between force and deforma-
tion is Hooke’s law

τ = Gγ . (3.8)

The constant of proportionality G is called the elastic modulus and is an inherent
feature of solid materials.

Not all substances behave either “liquid-like” or “solid-like”. Many materials,
such as soft matter, exhibit features in between. These materials are called vis-
coelastic. One way to quantify the “hardness” or “softness” of a material is to
perform rheological measurements under oscillatory shear. In this case, the sam-
ple is deformed as a sinusoidal function of time. As a result, the stress oscillates
with the same frequency f , although shifted by a phase angle δ

γ(t) = γ0 sin(ωt) , (3.9)

τ(t) = τ0 sin(ωt+ δ) , (3.10)
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3.2 Rheometer Setups

where ω = 2πf is the angular frequency. The shear stress can be decomposed
into two components, one in phase with the deformation and one shifted by π/2

τ = τ ′ + τ ′′ = τ ′0 sin(ωt) + τ ′′0 cos(ωt) . (3.11)

Hence, the phase angle can be calculated as

tan δ =
τ ′′0
τ ′0

. (3.12)

The viscous deformation in response to the external stress is time-dependent and
irreversible while the elastic component is instantaneous and reversible. This can
be expressed by defining two dynamic moduli G′ and G′′. G′ is the elastic or
storage modulus and is in phase with the deformation, thus, it corresponds to
the elastic response of a material. G′′ on the other hand is the out of phase
component. It is called the loss modulus and indicates the viscous response to
the external stress

G′ =
τ ′0
γ0

G′′ =
τ ′′0
γ0

tan δ =
G′′

G′
. (3.13)

Both dynamic moduli can be combined by expressing them as a complex modulus

G = G′ + iG′′ , with |G| = τ0

γ0

. (3.14)

As a consequence, the dynamic viscosity becomes a complex property, too:

η = η′ + iη′′ , with |η| = 1

ω
|G| (3.15)

η′ =
τ ′′0
γ̇0

=
G′′

ω
, η′′ =

τ ′0
γ̇0

=
G′

ω
, (3.16)

where the shear rate is given by

γ̇ =
dγ

dt
= γ0ω cos(ωt) = γ̇0 cos(ωt) (3.17)

3.2 Rheometer Setups

Although there are many different setups for rheological measurements, the most
prominent are the plate-plate, cone-plate, and a coaxial cylinder setup, called the
Couette cell. Figure 3.3 shows all of the three setups schematically.
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3 Rheology

Figure 3.3: Different rheometer setups. Left: plate-plate setup, center: cone-
plate setup, right: Couette setup. The arrows indicate the rotation
axes and the direction of the shear gradient, respectively. Note: In
contrast to figure 3.1 where one plane is sliding, here, the planes are
rotating.

In these setups, the rheological measurements all work in the same way. The
device measures the necessary torque required to reach a specific velocity and
therefore a specific shear rate.

When comparing the different cell types in terms of the experiments performed
in this work, the most important difference is the direction of the shear gradient,
indicated by the arrows in figure 3.3. While in the plate-plate and cone-plate
setups the gradient is parallel to the rotation axis, it is perpendicular in the case
of the Couette cell. Considering the rheological measurements, this circumstance
does not make any difference. However, in terms of the structural analysis, the
direction of a probe compared to the direction of shear gradient is an important
property, that needs to be kept in mind.

Even though the plate-plate and cone-plate setups seem similar in their gen-
eral appearence, they exhibit a remarkable difference. In both cells the absolute
velocity changes over the radius since the circumference near the rotation axis is
smaller compared to the circumference at the edge of the cell. This means for the
plate-plate setup, that the gradient of shear is a function of the distance from the
rotation axis, i. e. the shear rate differs over the radius of the plate. The data
analysis in that case is not straight forward. In the cone-plate setup, however,
the opening angle of the cone (typically between 170◦-180◦) is chosen such that
the difference of the velocities is compensated by the different gap widths so that
the shear rate γ̇ = v/h is constant over the whole radius of the cell.
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4 Scattering Methods

In 1895 Wilhem Conrad Röntgen discovered an until then unknown type of ra-
diation while experimenting with cathode rays which he called x-rays [40]. For
this groundbreaking discovery Röntgen was awarded the first ever Nobel Prize in
Physics in 1901.

In the following years scientists began utilizing this new type of radiation.
Max von Laue found out that x-rays are diffracted by crystals and conclusions
could be made about the atomic structure of the sample. With that finding the
first x-ray scattering method was born. From here on out x-ray crystallography
became an established tool to investigate the structure of a wide range of materials
reaching from fairly simple minerals to very complex structures such as the DNA
molecule [41] or protein-structures in general [42].

While crystalline substances with long-range order have been extensively in-
vestigated since the first half of the 20th century, the research of more complex
samples in terms of positional and orientational order such as glasses, complex
liquids, and soft matter [43,44] became possible by exploiting the features of syn-
chrotron light sources beginning in the 1970s.

Since then a lot of progress has been made to refine the x-ray technology and
push the experimental parameters to new limits. The recent advent of modern
third-generation synchrotron sources as well as free-electron lasers and the result-
ing increase in photon flux and collimation enabled x-ray scattering experiments
with exceptionally high spatial and temporal resolution.

In this chapter, the basic principles of the interaction of light, in particular
x-rays, with matter as well as the scattering techniques used in this worked will
be introduced. The main sources for this section are Elements of Modern X-ray
Physics by Jens Als-Nielsen and Des McMorrow [45], Soft-Matter Characterization
edited by Redouane Borsali and Robert Pecora [46], and Dynamic Light Scattering
by Bruce J. Berne and Robert Pecora [47].

4.1 The Interaction of Light and Matter

X-rays are electromagnetic waves with wavelengths in the range of about 0.1 Å
- 100 Å (1 Å = 10−10 m) and thus in the regime of interatomic length scales.
The characteristic wavelength λ is often expressed in terms of the wave vector k
defining the direction of propagation and having a magnitude of k = |k| = 2π/λ.
Mathematically the amplitude of the electric field can be described in the complex
form

E(r, t) = E0 exp [i (k · r− ωt)] , (4.1)
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4 Scattering Methods

where E0 is the maximum field amplitude, r is the spatial coordinate, ω the
angular frequency, and t the time, respectively.

Depending on the energy a photon can interact with the electrons of an atom by
either absorption or scattering. In an absorption process the energy of a photon
is transferred to an electron which causes the electron to be expelled from the
atom and hence results in a positive ionization. Quantitatively, absorption can
be described by the attenuation of an incoming photon beam with a number of
photons I0 penetrating a sample with a penetration depth x by the relation

I(x) = I0 exp (−µx) . (4.2)

Here, µ is called the linear absorption coefficient and is a constant specific for a
material at a given photon energy. The inverse of the absorption coefficient 1/µ
is called the attenuation length which is the penetration depths after which the
initial number of photons has dropped to a value of 1/e.

In a different process, instead of being absorbed, a photon can be scattered by
a sample. The electric field of the incident x-rays exerts a force on the electrons
of the sample. The electrons are accelerated and successively emit electromag-
netic waves themselves isotropically. The scattered wave is then a result of the
interference of these emitted waves. In the classical point of view, the photons
are scattered elastically, i.e. the energies of the incident and the scattered pho-
ton remain the same. This is, however, not necessarily the case in a quantum
mechanical consideration where the photon has a momentum of h̄k which can be
transferred to the electron in the scattering process so that the scattered photon
would be lower in energy. This phenomenon of inelastic scattering is known as
Compton scattering. Nevertheless, the dominating effect exploited by the meth-
ods and photon energies used in this work is the elastic scattering of x-rays and
therefore the inelastic scattering will be neglected in this section.

Figure 4.1: Illustration of an elastic scattering event. Left: Schematic overview;
right: wave vector diagram.

The mechanism of an elastic scattering event is shown schematically in figure 4.1.
The incident wave with wave vector ki interacts with different points of the sample
separated by r and is scattered by an angle θ. The difference of the wave vectors
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of the incident and the scattered wave defines the scattering vector q:

q = ki − kf . (4.3)

The magnitude of the scattering vector can be calculated by

q = |q| = 4πn

λvac

sin
θ

2
(4.4)

where n is the refractive index of the sample and λvac the vacuum wavelength of
the photons. In case of x-rays, the refractive index of a material is close to unity
and often omitted in the calculation.

4.2 Small-Angle X-ray Scattering

Spatial fluctuations of the electron density on length scales much larger than the
wavelength of the incident photons lead to scattering in the region of small angles,
typically below 10◦. Small-angle x-ray scattering (SAXS) commonly considers
scattering vectors in the range of roughly 0.006 nm−1 < q < 6 nm−1 which
corresponds to length scales in the region of 1 nm to 1 µm.

When electromagnetic waves are scattered from multiple electrons, e.g., in
atoms, molecules, or particles the resulting wave is a superposition of all scattered
waves. For an atom containing Z electrons and with an electron density ρ(r)
the superposition of the scattering from all contributing volume elements dr is
described by the atomic form factor fatom defined by

fatom(q) =

∫
atom

ρ(r) exp (iq · r) dr . (4.5)

One can see from equation (4.5) that the scattered wave is the Fourier transfrom of
the electron density. This means the real space electron distribution is converted
to properties in reciprocal space, i.e. large distances d in real space are converted
to small scattering vectors, and therefore small angles, in reciprocal space via
d = 2π/q. For the limit of q → 0, equation (4.5) approaches the total number of
electrons Z of the atom.

For a molecule which consists of multiple atoms the molecular form factor
Fmolecule can be calculated by the sum of scattered waves from each individual
atom

Fmolecule(q) =
∑
j

fatom,j(q) exp (iq · rj) . (4.6)

A direct result from equation (4.6) is that if the scattering amplitude Fmolecule is
measured for sufficiently many values of q in principle the relative positions of
individual atoms rj could be retrieved.

In the next higher step of complexity one can consider particles consisting of
multiple molecules. In that case the scattered wave is described by

E(q, t) = E0

N∑
n=1

Fn(q) exp (iq · rn − iωt) . (4.7)
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In a SAXS experiment the utilized photon detectors will only detect the photon
intensity and not the field amplitude. These properties are related by

I(q, t) = |E(q, t)|2 . (4.8)

Using equation (4.7) this results in

I(q) =
∑
n

Fn(q) exp (iq · rn)
∑
m

Fm(q) exp (−iq · rm)

= |F (q)|2
∑
n

∑
m

exp [iq · (rn − rm)] . (4.9)

As a consequence only the amplitude of the scattered waves is measured and
the information about the phase is lost. This phenomenon is widely known as
the phase problem. To overcome this limitation, e.g. in order to extract the
aforementioned positions of atoms in a molecule, elaborate methods of phase
retrieval must be utilized. These will, however, not be discussed in this work.

4.2.1 Form Factor of monodisperse systems

For a dilute system ofN identical non-interacting particles the scattering intensity
is given by

I(q) = N |F (q)|2 (4.10)

and mainly depends on the shape and size of the particles. Since the particles are
usually dispersed in a medium the relevant parameter determining the scattering
intensity is the difference of the electron density of the particles and the medium
∆ρ = ρP − ρM and thus

F (q) =

∫
∆ρ(r) exp (iq · r) dr . (4.11)

In case of particles with a spherical symmetry the spatial average results in

F (q) = 4π

∞∫
0

∆ρ(r)
sin(qr)

qr
r2dr (4.12)

and is only dependent on the magnitude of the scattering vector q. For a solid
spherical particle with radius R, an electron density difference

∆ρ(r) =

{
∆ρ, r ≤ R

0, r > R
(4.13)

and the integration of equation (4.12) results in

I(q) = |F (q)|2 = V 2∆ρ2

(
3 [sin(qR)− qR cos(qR)]

(qR)3

)2

(4.14)

= V 2∆ρ2P (q, R) (4.15)
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where P (q, R) is the form factor of spherical particles with Volume V .
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Figure 4.2: Calculated form factor of solid spherical particles for different radii.

Figure 4.2 illustrates the calculated form factor of monodisperse spherical par-
ticles with different radii. The form factor exhibits an oscillating behavior with
decreasing amplitude. The slope of this decrease is proportional to q−4, which
is known as Porod’s law, and the minima are shifted to lower scattering vectors
with increasing radii. The first minimum can be observed at qR ≈ 4.49.

4.2.2 Form factor of disperse systems

In reality, most colloidal particles synthesized by e.g. polycondensation or radical
polymerization are not uniform in size. Their size distribution can commonly be
described with a Schulz-Zimm distribution [48–52]:

D(R,R,Z) =
1

(Z + 1)!

(
Z + 1

R

)Z+1

RZ exp

(
−R · Z + 1

R

)
(4.16)

where R and R are the radius and the mean radius of the particles, respectively.
Z is a parameter describing the width of the distribution. One can calculate the
dispersity p via

p =
∆R

R
=

1√
Z + 1

. (4.17)

19



4 Scattering Methods

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
R/R

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
D

(R
, R

,Z
)⋅

10
3

Z = 10, p = 0.30
Z = 50, p = 0.14
Z = 100, p = 0.10

Figure 4.3: Schulz-Zimm distribution for different Z parameters.

Figure 4.3 shows the Schulz-Zimm distribution for varying parameters of Z.
To calculate the scattering intensity of a disperse sample, the size distribution

must be taken into account:

I(q) = N∆ρ2

∞∫
0

D(R)V 2(R)P (q, R)dR with

∫
D(R)dR = 1 . (4.18)

In this case, the form factor can be calculated analytically using equation (4.19) [48]

PZ(X) =
9Z!(Z + 1)6

X6(Z + 6)!

[
1

2
+

1

2

(
Z + 2

Z + 1

)
X2 +

[
G(2X)(1/2)(Z+1)Q(X)

]]
(4.19)

with

X = qR (4.20)

G(y) =
(Z + 1)2

(Z + 1)2 + y2
(4.21)

Q(X) =− 1

2
cos [(Z + 1)F (2X)]−XG1/2(2X) sin [(Z + 2)F (2X)]

+
1

2
X2

(
Z + 2

Z + 1

)
G(2X) cos [(Z + 3)F (2X)] (4.22)
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F (y) = arctan
y

Z + 1
. (4.23)

Figure 4.4 shows the form factors calculated for spherical particles with a mean
radius R = 100 nm for different dispersities. The extrema are less pronounced
with increasing dispersity.
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Figure 4.4: Calculated form factor of monodisperse and disperse spherical parti-
cles with mean radius R = 100 nm. The disperse from factors are
scaled by powers of 10 for better visibility.

4.2.3 Structure Factor

In concentrated particle systems the scattering intensity is additionally influenced
by the inter-particle interaction and is taken into account by the static structure
factor S(q). For diluted, non-interacting particles S(q) ≈ 1. For spherical parti-
cles with a narrow size distribution I(q) can be factorized as [46,53]

I(q) = NV 2∆ρ2P (q)S(q) . (4.24)

The structure factor can be calculated by

S(q) = 1 + 4πρN

∞∫
0

(g(r)− 1)
sin(qr)

qr
r2dr (4.25)

with ρN the number density of particles in the dispersion. g(r) is the pair-
correlation function describing the probability of finding a particle in a volume
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element 4πr2dr at distance r from another particle. This function is dependent
on the inter-particle interaction potential and therefore, by measuring the struc-
ture factor of a sample valuable information about the interaction potential can
be extracted.

The calculation is, however, relatively complex. One can define a total corre-
lation function

h(r) = g(r)− 1 (4.26)

whose calculation involves many-body interactions. Ornstein and Zernike pro-
posed to split the total correlation function into two parts which results in the so
called Ornstein-Zernike integral equation [54]

h(r12) = c(r12) + ρN

∫
c(r13)h(r32)dr3 . (4.27)

Here, c(r12) is the, a priori unknown, direct correlation function describing the
portion of the structure resulting from the pair-potential between two particles 1
and 2. Since the system consists of N particles also indirect interactions between
the two particles caused by the influence of the remaining N − 2 particles need
to be taken into account which is achieved by the second part of the sum in
equation (4.27).

Substituting h(r32) in equation 4.27 results in an infite recursion, thus, to solve
the equation so called closure relations must be introduced which approximate
the direct correlation functions. The simplest approximation is

c(r) = − 1

kBT
U(r) (4.28)

where kB is Boltzmann’s constant, T the absolute temperature, and U(r) the
pair-potential of the particles. This approach is called the mean spherical ap-
proximation (MSA) [55]. The MSA yields good results for highly concentrated
dispersions with short-range interaction [56] but fails to predict structures for di-
luted dispersions and highly charged particles.

As a consequence more elaborate closure conditions have been investigated.
Some of the widely used conditions are the rescaled mean spherical approxima-
tion (RMSA) [57], the hypernetted chain (HNC) [58] and the Percus-Yevick (PY)
approximation [59].

In the framework of this thesis the Percus-Yevick approximation will be used
since it provides sufficient results for short-ranged repulsive potentials, like the
hard-sphere potential, and also for a variety of different concentrations. The
biggest advantage, however, is the existence of analytical solutions for the hard-
sphere potential [60] using the Percus-Yevick approximation. The closure relation
for the Percus-Yevick approximation is

c(r) = g(r)

[
1− exp

(
−U(r)

kBT

)]
. (4.29)
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Once the direct correlation is known, the structure factor can be calculated by

S(q) =
1

1− ρNĉ(q)
(4.30)

where ĉ(q) is the Fourier transform of c(r). Figure 4.5 shows the calculated
structure factor for monodisperse hard spheres of radius r = 100 nm and different
volume fractions φ.
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Figure 4.5: Calculated structure factor of monodisperse particles with radius R =
100 nm and different volume fractions φ.

The structure factor reaches a maximum and afterwards oscillates with decreas-
ing amplitude. This behavior is typical for systems with a liquid-like structure,
i.e. short-range order and long-range disorder. In the region of high values of
q the structure factor approaches unity. Conversely, in the limit of q → 0 the
structure factor reaches a value of

lim
q→0

S(q) = ρNkBTκT (4.31)

with κT beeing the isothermal compressibility.

4.3 X-ray Cross-Correlation Analysis

In 1977 Kam proposed the idea of using angular intensity correlations in scat-
tering experiments to determine the structure of single particles in dilute solu-
tions [61]. Commonly, the scattering pattern resulting from small angle scattering
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experiments displays the orientational average of the dissovled particles. How-
ever, if the scattering intensity is recorded with a time resolution shorter than
the reorientation time of the particle, it is possible to retrieve additional struc-
tural information beyond the ones routinely extracted from the radial intensity
distribution.

When a coherent light beam impinges on a disordered sample it gives rise to
a random scattering signal in the far field, a so called ”speckle pattern”. This
pattern is the superposition of scattered waves from each individual scatterer
and therefore encodes the instantaneous spatial arrangement of particles inside
the scattering volume.

With the advancements made in the development of x-ray sources, such as
third-generation synchrotrons and free-electron lasers, it became feasible to ap-
ply the angular cross-correlation approach to x-ray experiments. The work of
Wochner et al. [16,17] showed that the x-ray cross-correlation analysis (XCCA)
can be used to investigate hidden local symmetries in disordered matter. It was
demonstrated that XCCA can reveal local structures with rotational symmetry
in dispersions of non-crystalline PMMA spheres.

Following this work, multiple theory and simulation studies were performed
to demonstrate the possibilities of this technique [62–66]. In recent experimental
studies, XCCA was applied to investigate the local structure of e. g., colloidal
nanocrystals [67], colloidal thin films [68–71], liquid crystals [72,73] and in situ self-
assembled nanocrystals [74,75]. In addition to that several experiments were carried
out in an effort to retrieve the structure of single particles in solution [76–79].

In the following part, the mathematical background of the cross-correlation
analysis will be described. Figure 4.6 shows a scattering pattern of a SAXS ex-
periment overlayed with the schematic of the principle geometry used for XCCA.

Figure 4.6: Scattering pattern in SAXS geometry showing the schematic of the
geometry used in x-ray cross-correlation analysis. Two scattering in-
tensity signals at scattering vectors q1 and q1 separated by an angle
∆ are correlated over the azimuthal angle ϕ.
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In the framework of this thesis, cross-correlation functions are considered for
scattering vectors with equal magnitudes

q = |q1| = |q2| . (4.32)

The cross-correlation function C(q,∆) is calculated by correlating the scattering
intensities at two scattering vectors separated by an angle ∆

C(q,∆) =
〈I(q, ϕ)I(q, ϕ+ ∆〉ϕ − 〈I(q, ϕ)〉2ϕ

〈I(q, ϕ)〉2ϕ
, (4.33)

where ϕ is the azimuthal angle and 〈. . . 〉ϕ denotes an azimuthal average. The
cross-correlation function can be expressed by a Fourier series

C(q,∆) =
∞∑

l=−∞

Cl(q) exp (il∆) (4.34)

with the Cl being the lth Fourier coefficient of the cross-correlation function. The
Fourier coefficients may be calculated using the inverse Fourier transform

Cl(q) =
1

2π

2π∫
0

C(q,∆) exp (−il∆) d∆ . (4.35)

By normalizing the intensity

Î(q, ϕ) =
I(q, ϕ)− 〈I(q, ϕ)〉ϕ

〈I(q, ϕ)〉ϕ
(4.36)

the Fourier coefficients are related to the intensity via the Wiener-Khinchin the-
orem [80,81]

Cl(q) = |Îl(q)|2 , (4.37)

where Îl is the lth Fourier coefficient of the angular intensity distribution. The
magnitude of the Fourier coefficients is a measure of the local l-fold symmetry of
the scattering pattern and, thus, of the local order of the sample in the illumi-
nated scattering volume. For example, a local hexagonal order is indicated by an
increase of the 6th Fourier coefficient and, possibly, higher order multiples it.

4.4 Dynamic Light Scattering

In addition to the structural information which can be obtained by the techniques
discussed above dynamic properties of a sample can be investigated using dynamic
light scattering (DLS) exploiting visible light as well as x-ray photon correlation
spectroscopy (XPCS) utilizing light in the x-ray regime. Both techniques share
the same underlying principles which will be described in this section.

As described in section 4.3 a disordered sample illuminated by a coherent light
beam gives rise to a speckle pattern. When observed over time, the particle
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movement causes a fluctuation of the pattern, and thus, of intensity recorded by
a detector. The noise-like intensity signal can be analyzed in terms of the second
order intensity auto-correlation function

g2(q, τ) =
〈I(q, t)I(q, t+ τ)〉t

〈I(q, t)〉2t
(4.38)

where τ is the delay time and 〈. . . 〉t denotes the temporal average. In the limit
of short delay times the signal is fully correlated resulting in

lim
τ→0
〈I(q, t)I(q, t+ τ)〉t = 〈I2(q, t)〉t . (4.39)

In case of the other extreme, for sufficiently long delay times the two signals
become completely uncorrelated, and thus

lim
τ→∞
〈I(q, t)I(q, t+ τ)〉t = 〈I(q, t)〉t〈I(q, t+ τ)〉t = 〈I(q, t)〉2t . (4.40)

The corresponding field auto-correlation function, often also called the interme-
diate scattering function, is defined as

g1(q, τ) = f(q, τ) =
〈E(q, t)E∗(q, t+ τ)〉e
〈E(q, t)E∗(q, t)〉e

(4.41)

with 〈. . . 〉e expressing the ensemble average and the intermediate scattering func-
tion

f(q, τ) =
S(q, τ)

S(q, 0)
. (4.42)

Here, S(q, 0) = S(q) is the static structure factor which was already discussed
in section 4.2.3. S(q, τ) is called the dynamic structure factor. In the case of N
identical particles it can be defined as

S(q, τ) =
1

N

N∑
i=1

N∑
j=1

〈exp [iq (ri(t)− rj(t+ τ))]〉e . (4.43)

In an ergodic system, e.g. disordered or liquid-like ordered, diffusive nanoparticles
dispersed in a medium which are investigated in this work, the time-averaged
intensity-correlation function can be connected to the ensemble-averaged field-
correlation function via the Siegert relation

g2(q, τ) = 1 + β(q)g2
1(q, τ) . (4.44)

β is the speckle contrast and is a correction factor dependent on the coherence
properties of the light source and the scattering geometry. Dynamic light scat-
tering experiments commonly exploit laser sources which can be considered fully
coherent within the scope of the experiment and hence β = 1.

Monodisperse particles undergoing Brownian motion can usually be described
with a single exponential decay

g1(q, τ) = exp (−Γ(q)τ) (4.45)
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where Γ is the relaxation rate. The inverse τc = 1/Γ is called the characteristic
relaxation time and is the time period in which the initial value of g1 has dropped
by 1/e. Combining equations (4.44) and (4.45) results in

g2(q, τ) = 1 + β(q) exp (−2Γ(q)τ) . (4.46)

The relaxation rate can be related to the diffusion coefficient D0 by

Γ(q) = D0(q)q2 . (4.47)

When considering diluted, spherical, and monodisperse particles dispersed in a
continuous medium the diffusion coefficient is direction and distance independent
and can be calculated using the Stokes-Einstein equation [82]

D0 =
kBT

6πηRH

. (4.48)

η is the dynamic viscosity of the dispersion medium and RH the hydrodynamic
radius of the particles. Figure 4.7 shows an exemplary intensity auto-correlation
function of diffusing particles in water. The g2-function decays exponentially from
a starting value of two to a final value of unity.
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Figure 4.7: Calculated intensity auto-correlation function for diffusing nano par-
ticles dispersed in water with a hydrodynamic radius of 100 nm. The
calculation assumes a wavelength of 532 nm (typical for a commonly
used frequency-doubled Nd:YAG laser) and a scattering angle of 90◦.
τc marks the characteristic relaxation time.
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4 Scattering Methods

As discussed before, in reality colloidal systems are usually not uniform in size. To
take size dispersity into account, due to the distribution of diffusion coefficients
the g1-function must be expressed as an integral [83]

g1(τ) =

∞∫
0

G(Γ) exp(−Γτ)dΓ (4.49)

with a normalized distribution of relaxation rates G(Γ). However, the inversion of
the experimentally obtained correlation function with the aim to retrieve informa-
tion about the size distribution of a sample is considered an ill-posed problem [84].
Possible solutions to this problem are the cumulant method [83,85] as well as the
CONTIN algorithm proposed by Provencher [86,87].

The cumulant method approximates the distribution by expressing the loga-
rithm of the correlation function as a Taylor series

log [g1(τ)] =
∞∑
m=1

km
m!

(−τ)−1 (4.50)

where km are called the cumulant coefficients. This method, however, assumes
that only one class of particles is present which has a Gaussian size distribution.

In case of a multimodal, non-Gaussian particle size distribution, the CON-
TIN algorithm may give better results compared to the cumulant method. The
algorithm treats the correlation function g1 as a Laplace transform of the relax-
ation rate distribution G(Γ) and uses Tikhonov regularization [88] to calculate the
inverse Laplace transform.
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5 Experiment

This chapter describes the details of the experimental work performed in the
framework of this thesis. The preparation as well as the charaterization of the
samples will be presented and the setup used for the combined rheology and
small-angle x-ray scattering experiment will be shown. Finally, the measurement
protocol which was used for parts of the rheology measurements are explained.

5.1 Sample

The samples used in this work consist of spherical silica nanoparticles coated with
3-trimethoxysilyl propyl methacrylate (TMSPM) that are dispersed in polyethy-
lene glycol with a molar mass of 200 g/mol (PEG-200). The preparation as well
as the characterization are described in this section.

5.1.1 Preparation

The nanoparticles were prepared using a modified Stöber synthesis [31] described
in section 2.3 loosely adapted from Lee et al. [9] In the following, the synthesis of
sample A with a radius of 150 nm and a volume fraction of 0.50 is described in
detail. The other samples are prepared analogously.

A mixture of 6 ml aqueous ammonia solution (NH4OH, 25 % m/m, Sigma-
Aldrich), 32 g deionized water (H2O), and 175 g anhydrous ethanol (EtOH,
Sigma-Aldrich, Rotipuran) is put into a three-neck round-bottom flask and heated
to a temperature of 50 ◦C. Under vigorous stirring 16 g tetraethyl orthosilicate
(TEOS, Sigma-Aldrich) are added rapidly and the reaction is allowed to proceed
for two hours. Then, 9 g of TMSPM (Sigma-Aldrich) are added and the reaction
continues for another hour. After that, the nanoparticles are precipitated by cen-
trifugation and washed with anhydrous ethanol three times. Finally, the particles
are dispersed in PEG-200 (Sigma-Aldrich) such that the desired volume fraction
is reached. The reaction conditions used for the different samples are shown in
table 5.1.

29



5 Experiment

Table 5.1: Reaction conditions used for the sample preparation.

Sample A B C D
NH4OH [ml] 6 7 6.5 15
H2O [g] 32 32 32 32
EtOH [g] 175 175 175 200
TEOS [g] 16.0092 15.9534 16.0052 5.0277
TMSPM [g] 9.0131 8.9916 9.0655 5.0221
Temperature [◦C] 50 50 50 room temperature

5.1.2 Pre-Characterization

The samples are pre-characterized prior to the x-ray scattering experiments at the
storage ring. The particle radius is measured using dynamic light scattering and
the correct shape is confirmed by transmission electron microscopy. The succesful
coating process is inferred in [9] as well as in this thesis, from the stability of the
dispersions in PEG-200 and ethanol, and the lack of stability in water.

Dynamic Light Scattering

To pre-characterize the samples before the x-ray scattering experiment the radii
are determined using dynamic light scattering (see section 4.4). A standard DLS
experiment requires single scattering from the sample. Thus, the extraction of
the radius by means of the Stokes-Einstein equation only works in case of non-
interacting particles. Therefore, the samples are diluted such that the dispersions
are visually transparent but still show scattering effects when light is shone on
them. This makes sure that multiple scattering does not occur and, since the
particles behave hard sphere-like, the sample is diluted enough to avoid particle
interaction.

The radius was found to be independent of the dispersion medium. DLS mea-
surements resulted in the same values for the particles dispersed in ethanol as
well as in PEG-200. For the measurements of the samples A, B, and C, ethanol
was used as a dispersion medium whereas sample D was measured in PEG-200.

DLS measurements are performed using a goniometer setup from LS Instru-
ments (Switzerland) with a laser of wavelength 660 nm. The diluted samples are
measured at scattering angles between 50◦ and 100◦ in steps of 5◦ at a temper-
ature of 20 ◦C for 60 s each. The resulting intensity auto-correlation functions
g2(τ) are fitted using a single exponential function (see equation (4.46)). An
example is shown in figure 5.1.
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Figure 5.1: Intensity auto-correlation function of sample A in PEG-200 at an
angle of 90◦. The blue circles show the measured data and the red
line displays the single exponential fit.

From the fit of the intensity auto-correlation functions the relaxation rate Γ is
extracted for each angle. Using the relation from equation (4.47) the diffusion
coefficient D0 can be extracted. Therefore, the scattering angle is converted into
the scattering vector q using equation (4.4). Afterwards, Γ is plotted against q2

and fitted with a linear function, the slope of which is the diffusion coefficient.
An example is shown in figure 5.2.
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Figure 5.2: Relaxation rates Γ extracted from the exponential fits of the intensity
auto-correlation functions plottet against the square of the scattering
vector q2. The blue circles show the data points and the red line
displays the linear fit.

In the last step, the hydrodynamic radius of the particles is calculated from the
diffusion coefficient using the Stokes-Einstein-equation (4.48). It is important
to note, that the calculated radii are average values. The procedure described
above does not take into account a size distribution but treats the particles as
monodisperse. The results of the DLS analyses are shown in table 5.2.

Table 5.2: Diffusion coefficients and radii of the samples obtained from the DLS
analysis. The errors are the errors of the fit and not to be confused
with dispersities.

Sample A B C D
RH [nm] 157 (±4) 141 (±4) 129 (±8) 80 (±1)
D0 · 1014 [m2 s−1] 2.27 (±0.05) 2.53 (±0.07) 2.78 (±0.15) 213 (±4.3)
Dispersion medium PEG-200 PEG-200 PEG-200 ethanol
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5.1 Sample

Transmission Electron Microscopy

The analysis of the dynamic light scattering experiments, as described in the
section above, only results in average values of the particles’ hydrodynamic radii.
One important feature that is not investigated by that technique is the shape
of the particles. To confirm the spherical shape of the particles the samples are
probed by transmission electron microscopy (TEM).

Therefore, the samples were diluted with ethanol and a droplet of the dispersion
is put onto a copper grid. The sample is then dried in air. An example of the
TEM measurements is displayed for sample A in figure 5.3.

Figure 5.3: Transmission electron micrographs of sample A. The images confirm
the spherical shape and also show a a relatively uniform size distri-
bution. The scale bar in the left image represents 100 nm and the
one in the right image 200 nm. The average radius of the particles as
calculated from these images is 152 nm.

The images show that the samples are spherical in shape and comparably monodis-
perse in size. It is important to note that the radii extracted from the TEM-
measurements are usually smaller compared to the DLS measurements. This is
the case because DLS measures a hydrodynamic radius of the particles, i.e. the
radius of the particles’ silica core plus the polyacrylate coating layer as well as
adsorbed water and ions. As a result, the hydrodynamic radius is always larger
than the radius of the isolated, dried, particle.

As mentioned above, the TEM images were taken to confirm the spherical shape
of the particles. The average radius of the particles of sample A as calculated from
the images in figure 5.3 is 152 nm which is in a reasonable range compared to the
reasults obtained from DLS. However, the images show only a few particles each
so that it is not feasible to determine a size distribution of the sample because of
the non-sufficent statistics.
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5.2 Experiment setup

The experiment was carried out at the coherence beamline P10 at the storage
ring PETRA III at DESY in Hamburg. The samples are investigated using the
unique vertical rheoSAXS setup combining a modified Haake Mars 3 rheometer
with a coherent x-ray beam and a detector in SAXS geometry [89]. A schematic
of the setup as well as a photograph are displayed in figure 5.4.

detector

rheometer

x-ray beam

detector

x-ray beam

cone

plate

Ge-crystal

Figure 5.4: Vertical rheoSAXS setup at the coherence beamline P10 at PETRA
III. The x-ray beam is reflected upwards by the 333-reflection of a
Germanium single crystal, passes the rheometer setup, and is detected
with a LAMBDA 750K detector. Left: photograph; right: schematic
representation.

The parameters used during the experiment are shown in table 5.3. The x-ray
beam generated by the undulator approaches the end station of the beamline hor-
izontally. It is reflected upwards by 90◦ using the 333-reflection of a Germanium
single crystal.

The cone of the rheometer setup has milled windows for the x-ray beam to
pass through and its surface is covered with Kapton to contain the sample. The
plate has a drilled hole which is fitted with a diamond window and the surface is
covered with Kapton, as well.

After passing through the rheometer, the primary photon beam is absorbed
by a beamstop and the scattered photons are detected by a photon counting
detector. In this experiment the LAMBDA 750K (Large Area Medipix3-Based
Detector Array) detector was used [90]. It consists of 1556×516 pixels with a pixel
size of 50×50µm2. Images are detected with exposure times between 0.01 s and
1 s.
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5.3 X-ray Characterization

Table 5.3: Experiment parameters used at beamline P10.

Photon energy 8.052 keV
Detector LAMBDA 750K
Pixel size 55× 55 µm2

Sample-detector distance 2.99 m
Beam size 15× 15 µm2

Rheometer modified Haake MARS 3

The rheological measurements are performed in cone-plate geometry using a cone
with an opening angle of 176◦. Oscillatory shear was used with a frequency of
0.1 Hz. The amplitude is varied throughout the experiment. It is important
to note that the rheometer and the detector are not synchronized, so that the
rheological measurements need to be synchronized with the x-ray measurements
after the experiment.

5.3 X-ray Characterization

In addition to the pre-characterization mentioned in the sections above basic char-
acteristic parameters of the samples at rest were measured using small-angle x-ray
scattering. These measurements were performed at beamline P10 of PETRA III
using the setup described in section 5.2.

5.3.1 Form factor

The radii and dispersities of the samples have been determined by measuring
the form factors. As described before, this procedure is more accurate than the
dynamic light scattering approach. On the one hand, in DLS a monodisperse sys-
tem was assumed and on the other hand, the measured radius is a hydrodynamic
radius.

For the form factor measurements the samples were diluted enough such that
no structure factor could be observed. In case of the samples used here, the
dilution was approximately 1:1000 with PEG-200 resulting in a volume fraction
of around 0.05 %.

The samples were measured with an exposure time of one second. The two-
dimensional intensity patterns are integrated azimuthally so that the intensity
is obtained as a function of the modulus of the scattering vector. The resulting
data points were then fitted assuming hard sphere particles with a Schulz-Zimm
size distribution (see section 4.2.2). The radius can be directly extracted from
the corresponding fit whereas the dispersity is calculated from the Z-parameter
of the Schulz-Zimm distribution using equation (4.17). As an example, the result
of sample A is shown in figure 5.5.
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Figure 5.5: Form factor of sample A. The blue circles represent the data collected
by SAXS and the red line the fit. This particular fit results in a radius
of 160 nm and a dispersity of 0.062.

The parameters extracted from the form factor measurements of all samples are
summarized in table 5.4 at the end of the next section.
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5.3 X-ray Characterization

5.3.2 Structure factor

In the next step the structure factor was measured. The measurements were
carried out in SAXS geometry, as well, utilizing the concentrated samples used
in the rheology experiments afterwards. A typical scattering pattern is shown for
sample A in figure 5.6.
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Figure 5.6: Scattering pattern of sample A with a volume fraction of 0.50 recorded
with an exposure time of 0.1 s. The sample consists of liquid-like
ordered, spherical nanoparticles resulting in the isotropic, annular
scattering pattern.

Similar to the form factor determination, in the first step the scattering function is
calculated from the two-dimensional scattering pattern by azimuthal integration.
The scattering function of sample A is shown in figure 5.7. The scattered intensity
of the sample oscillates around the form factor with decreasing amplitude at large
scattering vectors. This behavior is typical for a liquid-like ordered sample.
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Figure 5.7: Scattering function of sample A (blue) and the corresponding form
factor (red). The intensity of the sample oscillates around the form
factor with decreasing amplitude at large scattering vectors.

Next, the structure factor is calculated using equation (4.24) by dividing the
scattering function of the sample by its form factor. It is important to note, that
the scattered intensity from the concentrated sample differs from the scattered
intensity of the form factor since in the latter case the sample is highly diluted.
Thus, when calculating the structure factor the form factor is scaled by a constant
such that the resulting structure factor oscillates around a value of one. The
resulting structure factor of the samples are shown in figures 5.8 and 5.9.
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Figure 5.8: Structure factors of samples A, B, and C. The graph of sample B is
shifted upwards by one and the one of sample A by two, respectively.
The lines are a guide to the eye and do not represent measured values.
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Figure 5.9: Structure factors of sample D. Because of the smaller radius of this
sample, the structure factor maximum is shifted to higher values of
q. Therefore, this graph is shown separately. The lines are a guide to
the eye and do not represent measured values.

In a last step, the measured structure factor is compared to one calculated us-
ing the Percus-Yevick approximation to extract information about the volume
fraction of the sample. Since this approach assumes monodisperse hard-sphere
particles the Percus-Yevick structure factor is only an approximation. For the
particle radius the radius determined by the form factor measurements is used.
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The volume fraction is chosen such that the calculated structure factor is in good
agreement with the first maximum of the measured data. Because of the ap-
proximative nature the calculated structure factor is more and more out of phase
at larger scattering vectors. The comparison of the calculated and measured
structure factor is shown for sample A in figure 5.10.
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Figure 5.10: Measured (blue) and calculated (red) structure factor of sample A.
The measured structure factor is obtained from small-angle x-ray
scattering and the calculated one using the Percus-Yevick approxi-
mation [60]. As parameters for the calculated structure factor a radius
of 160 nm and a volume fraction of 0.50 are used.

The volume fractions determined by this approach for all samples are shown in
table 5.4.

Table 5.4: Characteristic parameters of the samples used in this work. The values
are determined by small-angle x-ray scattering.

Sample A B C D

R [nm] 160 ±0.7 148 ±0.9 117 ±0.5 64 ±0.2
Z 261 ±26 168 ±19 261 ±31 200 ±13
p 0.062 ±0.003 0.077 ±0.004 0.062 ±0.004 0.071 ±0.002
φ 0.50 0.52 0.22 0.53

In summary, the synthesized particles have radii ranging from 64 nm to 160 nm
and show dispersities below 8 % which can be considered as monodisperse. With
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samples A, B, and D, most of the samples are prepared at volume fractions of
around 50 %, while sample C is considerably lower concentrated at less than half
the volume fraction of the other samples.

5.4 Standard Measurement Protocol

The main protocol used for the combined rheology and SAXS measurements is
described in this section. In the beginning of the experiment, the cone is mounted
to the rheometer and an internal inertia calibration is performed. As long as the
same cone is used for the experiment the calibration does not need to be repeated.

Before measuring each sample all surfaces are cleaned with isopropyl alcohol
and a lint-free wipe. Afterwards, the surfaces are dried and dusted using pressured
air and an internal zero-point calibration is carried out, i. e. calibrating the motor
settings in order to reach a contact between the cone and plate. Following the
calibration, a volume of 450 µl of the sample is dispensed onto the cone and
the gap between the cone and plate is set to a distance of 0.251 mm measured
from tip of the cone. After preparing the rheometer and the beamline the x-ray
scattering as well as the rheometer measurements are started simultaneously.

As mentioned previously, the rheometer is operated using oscillatory shear with
a frequency of 0.1 Hz. The deformation amplitude is varied in the following way:

• The measurement begins with a waiting time of five seconds, i. e. an am-
plitude of γ0 = 0.

• After that, the oscillation starts with an amplitude of γ0 = 0.01 for five
oscillation cycles which corresponds to a time period of 50 s in case of a
frequency of 0.1 Hz.

• In the following, the amplitude is doubled after each consecutive 5 oscilla-
tion cycles until a final amplitude of 0.08 is reached.

• After measuring the cycles at 0.08, the process is repeated starting with
an amplitude of 0.01, again. Like before, after each five oscillation cycles
the amplitude is doubled, this time upto a final amplitude of 0.16, which is
twice as high as the previous final amplitude.

This whole procedure, starting at 0.01, doubling the amplitude after 5 oscillations
up to a final value which is twice as high as the one before, is repeated until a
final amplitude of 2.56 is reached. For clarification, the program is summarized
in table 5.5 and visualized in figure 5.11, as well.
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Table 5.5: Amplitude settings used in the measurement protocol.

set of oscillations amplitudes γ0

first 5 seconds 0
1st 0.01, 0.02, 0.04, 0.08
2nd 0.01, 0.02, 0.04, 0.08, 0.16
3rd 0.01, 0.02, 0.04, 0.08, 0.16, 0.32
4th 0.01, . . . , 0.64
5th 0.01, . . . , 1.28
6th 0.01, . . . , 2.56

set 1 set 2 set 3 set 4 set 1 set 2

Figure 5.11: Visualization of the settings used in the measurement protocol. Left:
Amplitude scheme of the experiment. Shown are the first 4 sets. In
the standard experiment, 6 sets are performed until a final amplitude
of 2.56 is reached. Right: Resulting deformations shown for the first
two sets.

Figure 5.12 displays two oscillation cycles and visualizes the variation of the pa-
rameters over time. For the shear rate, the absolute value is chosen instead. While
the cone of the rheometer alternates between clockwise and counter-clockwise ro-
tation, which is indicated by the sign, the shear rate is independent of the direc-
tion. Note, that for every one oscillation cycle the shear rate shows two minima
and maxima. The maximum shear rate for a given γ0 can be calculated using
equation (3.17) resulting in

max(γ̇) = max[γ0ω cos(ωt)] = γ0ω = γ0 · 2πf (5.1)

In case of the example shown in figure 5.12 with γ0 = 0.01 and f = 0.1 Hz the
maximum shear rate is γ̇max ≈ 0.006 s−1.
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1 oscillation cycle

Figure 5.12: Illustration of the parameters during an oscillation cycle for γ0 =
0.01. While the cone of the rheometer alternates between clockwise
and counter-clockwise rotation, which is indicated by the sign, the
shear rate is independent of the direction. Therefore, for every one
oscillation cycle, the shear rate exhibits two maxima and minima.

The protocol described above is chosen because of mainly two reasons. Firstly,
the behavior of each individual sample at high amplitudes, and, thus, high shear
rates, is not known before the measurement. Shear thinning can lead to such low
viscosities that the samples get ejected from the rheometer at the comparably
high angular velocities reached at high amplitudes. This is the reason for the
gradual increase of the final amplitude in each set. In this way, multiple sets can
be measured even if an incident occurs at higher amplitudes.

Secondly, by repeating the whole measurement process starting from the lowest
amplitude in each set, possible hysteresis effects can be probed. In addition, it
can be investigated if the observed effects are only shear rate-dependent or also
time-dependent.
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6 Structure of Colloidal Systems
Under Shear

In this chapter, the behavior of the samples under oscillatory shear is presented.
The rheological properties are compared with the underlying structural changes
which are measured in situ utilizing small-angle x-ray scattering. The samples
show different behavior for different volume fractions and, hence, are discussed
in different sections.

6.1 Sample at High Volume Fraction

In the first section the behavior of sample D is investigated. This sample consists
of nanoparticles with a radius of 64 nm dispersed in PEG-200 with a volume
fraction of 0.53. Figure 6.1 shows the scattering pattern of sample D at rest.
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Figure 6.1: Scattering pattern of sample D at rest recorded with an exposure time
of one second.

At rest, the sample exhibits the expected pattern of a liquid-like ordered sample
and resembles the structure factor as shown in section 5.
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6.1 Sample at High Volume Fraction

For the rheological measurement of sample D the typical approach of a stress
sweep is used. The sample is measured applying stresses between 0.01 Pa and
100 Pa which correspond to deformations between 10−5 and 0.75 that can be
extracted as an average over the measurement time. For each stress value the
sample is sheared for 200 seconds at 0.1 Hz and 2000 small-angle x-ray scattering
patterns are recorded with an exposure time of 0.1 seconds. All measurements
are performed with the same loading of the sample, i. e. no new sample was filled
into the shear cell between different stresses. The SAXS patterns averaged over
the whole measurements are shown in figure 6.2.
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Figure 6.2: Scattering patterns of sample D averaged over the rheology measure-
ments at different shear stresses with the same sample loading. Be-
tween the images e) and f) the cone of the rheometer was rotated by
half a revolution at a shear rate of γ̇ = 1 s−1.

The slightest rotation of the cone leads to structure formation in this particular
sample. Due to the necessary preparation procedures before the start of the
measurent, the sample is already preordered which is visible in figure 6.2 a).
Bragg reflections with hexagonal symmetry are observable in the second intensity
maximum from the beginning of the experiment. The Bragg reflections are visible
continuously and are not apperaring and disappearing during the oscillation.

The scattering patterns look similar in images a) to c). This indicates, that
the comparably small deformation amplitudes have no effect on the structure
of the sample. Small changes in the form of additional Bragg reflections in the
second intensity maximum become observable beginning from a deformation of
γ0 = 0.01, which is the lowest amplitude used in the measurements of samples A,
B, and C discussed in the next section. During the measurement at τ = 100 Pa
a powder-like scattering pattern forms showing sharp rings at the same q where
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6 Structure of Colloidal Systems Under Shear

the Bragg reflections were visible before.
In section 5.2 it was described that the cone of the rheometer setup has milled

in windows for the x-ray beam to pass through. After the measurement shown in
image e) the cone ended up in a position where one of the metal bridges blocked
the x-ray beam path. In preparation for a measurement of the final structure
the cone was rotated for half a revolution with a shear rate of γ̇ = 1 s−1. As a
consequence, the scattering pattern changed drastically and the result is shown
in figure 6.3. Starting with this structure, another measurement is performed
using the same conditions as the measurement before. The results are shown in
figure 6.2 f).
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Figure 6.3: Scattering pattern of sample D at rest after the cone of the rheometer
was rotated by half a revolution at a shear rate of γ̇ = 1 s−1. The
image is taken with an exposure time of 0.1 seconds.

Initially and in the case of low shear stress τ , Bragg reflections appear in the
second intensity maximum of the sample. Therefore, a peak is visible in the
second structure factor maximum q = 0.086 nm−1 which is shown in figure 6.4.
X-ray cross-correlation analysis is performed to reveal the distribution of the
Fourier coefficients of the cross-correlation function at the scattering vector of
the occuring Bragg reflections. The result is displayed exemplarily for the stress
measurement of τ = 1.0 Pa in figure 6.5. It is representative for the measure-
ments with lower stress, as well. From the XCCA results it is evident that the
Fourier coefficients which are multiples of six show the largest amplitudes. This
is expected because of the six-fold symmetry of the scattering pattern. In the
right image of figure 6.5 the most prominent Fourier coefficient C6 is resolved
as a function of time. At low amplitudes C6 follows a noisy pattern. The sixth
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6.1 Sample at High Volume Fraction

Figure 6.4: Structure factor of sample D calculated from the average of the first
second of the rheology measurement at a stress of τ = 1.0 Pa. A small
peak is visible in the second maximum at q = 0.086 nm−1.

Fourier coefficient fluctuates around a non-zero value, i. e. the six-fold symmetry
is not changing over the course of the measurement.

During the measurement applying the highest shear stress of τ = 100 Pa the
formation of a powder-like scattering pattern is observed. Since figure 6.2 e)
displays only the average pattern over the whole 200 seconds of the measurement,
single scattering patterns at different points of the measurement are shown in
figure 6.6.
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Figure 6.5: Left: Distribution of Fourier coefficients of the cross-correlation func-
tion averaged over the measurement at τ = 1.0 Pa. Fourier coefficients
which are multiples of six show the largest amplitudes; right: Sixth
Fourier coefficient of the cross-correlation function of sample D at
τ = 1.0 Pa resolved over time.
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Figure 6.6: Single scattering patterns recorded at different time points of the shear
experiment applaying a shear stress of τ = 100 Pa. More and more
Bragg reflections appear at the same scattering vector q = 0.086 nm−1

forming a powder-like scattering pattern. The first intensity maxi-
mum becomes narrower over time, as well.
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6.1 Sample at High Volume Fraction

It can be observed that over time additional Bragg reflections become visible at
the same scattering vector of q = 0.086 nm−1 but rotated around the center of the
pattern. Upon closer inspection, Bragg reflections can be observed also at larger
scattering vectors at around q = 0.10 nm−1. In figure 6.6, the visible section of
the detector is quite small to enhance the visibility of the most intense Bragg
reflections. The evolution of a larger section of the structure factor is illustrated
in figure 6.7.
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Figure 6.7: Structure factor of sample D at different time points of the shear
experiment applying a shear stress of τ = 100 Pa. The graphs are
shifted vertically for clarity.

The maximum of the liquid structure factor at around q ≈ 0.053 nm−1 decreases
over time while the Bragg peaks begin to appear and get more pronounced. The
peak at q = 0.086 nm−1 which corresponds to the Bragg reflections with hexagonal
order observable from the beginning of the experiment is the most intense. In
addition to the increasing intensity of the appearing peaks, their position slightly
shifts to larger scattering vectors with time.

The underlying real space structure of the sample is a two-dimensional hexag-
onal layer structure (see also figure 6.32 at the end of section 6). Figures 6.8
and 6.9 show the structure factor of sample D calculated from the powder-like
pattern (image e) in figure 6.2) and the final scattering pattern (image f) in fig-
ure 6.2) together with the calculated positions of Bragg reflections assuming the
two-dimensional hexagonal layer structure.
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Figure 6.8: Structure factor of the powder-like scattering pattern of sample D.
The red lines correspond to the positions of Bragg reflections origi-
nating from a two-dimensional hexagonal layer structure with a lattice
constant of a = 146 nm.
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Figure 6.9: Structure factor of the final scattering pattern of sample D. The red
lines correspond to the positions of Bragg reflections originating from
a two-dimensional hexagonal layer structure with a lattice constant
of a = 144 nm.

The positions of Bragg reflections originating from a two-dimensional hexago-
nal layer structure can be calculated using equation 6.1 [10]. It should be noted
that this calculation predicts only the position of the Bragg reflections while no
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6.1 Sample at High Volume Fraction

statement is made about the intensities.

qhk =
2√
3

2π

a

√
h2 + k2 + hk (6.1)

Here, h and k are the Miller indices and a is the lattice constant of the hexagonal
lattice. The results from the calculation show that the assumption of a two-
dimensional hexagonal lattice is predicting the position of observable peaks in
the structure factor reasonably well. The shoulder close to the {10} reflection
visible in figure 6.8 can be attributed to the residual underlying liquid structure
factor maximum. The peak between the {10} and {11} reflection observable in
both figures is, however, not predicted by the model. A possible explanation
could be an increase of three-dimensional order, in which case this particluar
peak could correspond to the {102} reflection of a hexagonal close-packed unit
cell.

The occurence of Bragg reflections with hexagonal symmetry can be attributed
to the formation close-packed two-dimensional layers of particles when shear is
applied to the sample. In the beginning, only thin layers exist so that only the
most intense {10} reflection can be observed. The other, less intense, reflections
are not observable since they are dominated by the structure factor of the liquid-
like ordered particles. At higher shear rates the layers are growing so that also
these reflections become visible. The formation of a powder-like scattering pat-
tern indicates that multiple layers are forming which are parallel, but randomly
oriented, i. e. randomly rotated around the layer normals.

Apparently, the short rotation with the comparably high shear rate of γ̇ = 1 s−1

in order to position the cone of the rheometer correctly, caused the layers to orient
themselves, the result of which is the scattering pattern with much sharper Bragg
reflections as seen in figure 6.2 f).

The behavior of the sixth Fourier coefficient of the cross-correlation function C6

over time was already shown for the case of low shear stress where no significantly
structured signal could be observed. Beginning from a shear stress of τ = 10 Pa
an oscillating behavior starts to show. Figures 6.10 - 6.12 illustrate the behavior
of C6 over time in the last three measurements of sample D.
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Figure 6.10: Sixth Fourier coefficient of the cross-correlation function of sample
D at τ = 10.0 Pa. Left: clean illustration of C6; right: C6 overlayed
with the corresponding shear rate.
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Figure 6.11: Sixth Fourier coefficient of the cross-correlation function of sample
D at τ = 100.0 Pa. Left: clean illustration of C6; right: C6 overlayed
with the corresponding shear rate.
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Figure 6.12: Sixth Fourier coefficient of the cross-correlation function of sample
D at τ = 100.0 Pa after the sample is ordered due to the application
of rotational shear. Left: clean illustration of C6; right: C6 overlayed
with the corresponding shear rate.

It can be observed that C6 calculated at the {10} reflection is oscillating. The
minima are different from zero which is another indication for the persistent layer
structure.

In case of the τ = 10.0 Pa measurement, the oscillations have the same fre-
quency as the shear rate. However, it can be observed, that every other maximum
has a lower amplitude than the previous one. This is even more obvious in the
first measurement at τ = 100 Pa. Looking at the second measurement at this
shear stress, the oscillation of C6 occurs with only half of the frequency. During
one oscillation period the Fourier coefficient is increasing together with the shear
rate. After reaching the shear rate maximum, C6 is roughly constant for a whole
oscillation period and finally decreases together with the shear rate again. Both
of these phenomena cannot be explained at this point in time and need further
investigation.

Sample D shows the expected shear thinning behavior as illustrated in fig-
ure 6.13.
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Figure 6.13: Viscosity of sample D as a function of deformation.

The viscosity at low deformations is significantly higher compared to the other
samples (see following sections). Sample D is the one with the highest volume
fraction, a possible explanation for the comparably high viscosity is the phase
diagram of hard spheres. As shown in figure 2.2 the phase behavior changes from
liquid-like to supercooled in this regime of volume fractions. The exact volume
fractions of this transition may vary because of the dispersity of the sample. The
overall course of the decreasing viscosity at increasing deformations is, however,
similar.

In figure 6.14, the variance of the sixth Fourier coefficient calculated at the
{11} reflection as a function of deformation is displayed. The dependence of the
variance of the sixth Fourier coefficient can be interpreted as beeing linear. How-
ever, only very few data points can be evaluated for sample D. For the following
samples, the measurement procedure was adjusted to investigate the behavior
in greater detail. Instead of measuring with constant shear stresses τ constant
deformation amplitudes γ0 are applied and the deformations are chosen such that
a sufficient interval of datapoints becomes available. See section 5.4 for a detailed
explanation of the measurement protocol.
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Figure 6.14: Variance of the sixth Fourier coefficient of the cross-correlation func-
tion as a function of deformation of sample D.

6.2 Samples at Intermediate Volume Fraction

The rheological and structural behavior of the samples A and B with volume
fractions of φ = 0.50 and φ = 0.52, respectively, is similar and will be discussed
in detail in this section.

6.2.1 Low Oscillation Amplitudes

In the first part, the behavior of the samples at oscillation amplitudes of γ0 = 0.32
and below are discussed. While the rheological behavior does not change at higher
amplitudes, the x-ray scattering results are different and, hence, discussed in a
separate section.

Small-Angle X-ray Scattering

Figure 6.15 shows the scattering pattern of sample A at rest at the beginning of
the shear experiment. The scattering pattern resembles the one shown before in
the evaluation of the structure factor. Compared to the previous sample D, the
intensity maxima appear at smaller scattering vectors which is expected because
of the larger particle radii. Other than that, they are similar and show the same
behavior as expected for a liquid-like ordered sample.
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Figure 6.15: Scattering pattern of sample A at rest before the start of the shear
experiment recorded with an exposure time of one second. The pat-
tern shows the same intensity distribution as the structure factor
shown before.

For the investigation of this sample, shear forces are applied in the way described
in section 5.4. Oscillatory shear is used at a frequency of 0.1 Hz starting from a
deformation of γ0 = 0.01. Subsequently, the deformation is doubled after every
five oscillation cycles which corresponds to a time of 50 s per deformation. During
the shear experiment x-ray scattering images where taken with an exposure time
of 0.2 seconds each. The scattering pattern displayed in figure 6.16 shows the
scattered intensity of sample A averaged over the first 5000 images, i. e. the first
1000 s of the experiment.
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Figure 6.16: Scattering pattern of sample A under shear averaged over the first

1000 seconds of the experiment. Bragg reflections with hexagonal
symmetry are visible in the second structure factor maximum at
q = 0.035 nm−1.

In figure 6.16, Bragg reflections with a hexagonal symmetry can be observed in
addition to the liquid structure factor. The reflections are located in the second
maximum of the scattering pattern. Upon closer inspection, it can be seen that a
second set of Bragg reflections with hexagonal symmetry is visible rotated by a few
degrees. In the structure factor calculated from the averaged data the existence
of the Bragg reflections is indicated by a small shoulder at q = 0.035 nm−1 in the
second maximum as illustrated in figure 6.17.
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6.2 Samples at Intermediate Volume Fraction

Figure 6.17: Structure factor of sample A calculated from the averaged scattering
patterns recorded over the first 1000 seconds of the shear experiment.
A small shoulder can be observed in the second maximum at q =
0.035 nm−1.

Similar observations were made in various scattering experiments before [1–9]. The
occurence of Bragg reflections with hexagonal symmetry can be explained by the
formation of two-dimensional hexagonal close-packed layers forming perpendic-
ular to the gradient of shear, and, thus, perpendicular to the incident photon
beam [10] (see figure 6.32 at the end of this section). It can be calculated that the
Bragg reflection with the highest relative intensity of this kind of structure is the
(11) reflection [11] which is the one observable here. The twinned Bragg reflections
indicate a second set of layers parallel to the first one but rotated. A possible
explanation is that the layers are forming at both surfaces of the shear cell. How-
ever, this feature seems to occur randomly and no consistent parameters can be
identified in that case. A more in-depth discussion about the two-dimensional
layer structure of the sample forming under shear was already presented in sec-
tion 6.1 for sample D.

As mentioned before, the scattering pattern shown in figure 6.17 is an average
over 1000 seconds. Figure 6.19 shows individual scattering patterns recorded with
an exposure time of 0.2 s at different stages of an oscillation cycle as illustrated
in figure 6.18.
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Figure 6.18: Illustration of the measurements taken in figure 6.19 in relation to
the point in time of an oscillation cycle.

In the beginning of the oscillation period, that is, the cone of the rheometer does
not move and the shear rate is zero, the scattering pattern is isotropic (figure 6.19
a)). When the cone starts rotating in the first direction, Bragg reflections with
hexagonal symmetry become visible and are more and more pronounced as the
cone accelerates. The intensity of the Bragg reflections decreases again when the
cone decelerates and vanishes when the cone comes to stop after the first half
of the oscillation cycle (figure 6.19 e)). The same behavior can be observed in
the second half of the oscillation cycle. This phenomenon is in stark contrast
to sample D where Bragg reflections were visible over the whole course of the
measurement and not disappearing at low shear rates.
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Figure 6.19: Scattering patterns of sample A recorded over one oscillation cycle
with a deformation of γ0 = 0.16 and an exposure time of 0.2 s each.
Image a) represents the beginning of the oscillation cycle and each
following pattern is taken one second after the previous one. In
images a), f), and k) the shear rate is at a minimum and the pattern
is isotropic. In the other images Bragg reflections with a six-fold
symmetry are visible. The images were recorded at the end of set 2
of the protocol.
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X-ray Cross-Correlation Analysis

To quantify the effects observable in the scattering patterns, higher order corre-
lations in terms of the x-ray cross-correlation analysis are considered. To extract
structural information beyond just the structure factor, the small shoulder ap-
pearing in the second maximum is reviewed in greater detail. In the first step, the
cross-correlation function is calculated for the corresponding scattering vector of
q = 0.035 nm−1. The amplitudes Cl of the Fourier coefficients l extracted from
the cross-correlation function and averaged over the whole 5000 images of this
part of the measurement are shown in figure 6.20.
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Figure 6.20: Amplitude of the Fourier coefficients calculated from the cross-
correlation functions of sample A averaged over the first 5000 im-
ages. The cross-correlation functions are calculated at q = 0.035
nm−1 which is the position of the small shoulder in the second struc-
ture factor maximum. Fourier coefficients that are multiples of six
are clearly dominant.

As expected from the scattering pattern shown before, the Fourier coefficients
which are multiples of six are showing the largest amplitude. The sixth Fourier
coefficient itself is a direct result of the hexagonal, azimuthal symmetry of the
scattering pattern which leads to an angular cross-correlation function with six
maxima in the intervall of 0 and 2π. The amplitude of the higher 6nth coefficients
are a result of the narrow width of the Bragg reflections and, thus, narrow width
of the peaks in the cross-correlation function [91]. An examplary cross-correlation

60



6.2 Samples at Intermediate Volume Fraction

function of a single scattering pattern together with the amplitudes of the ex-
tracted Fourier coefficients is shown in figure 6.21.
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Figure 6.21: Cross-correlation function (left) and corresponding amplitudes of the

extracted Fourier coefficients (right) of a single scattering pattern of
sample A. The six-fold symmetry of the scattering pattern at the
specified scattering vector is reflected in the six peaks of the cross-
correlation function occuring at correlation angles that are multiples
of π/3. Consequently, the Fourier coefficients which are multiples of
six show the largest amplitudes.

Since the sixth Fourier coefficient is most dominant, it is investigated extensively
in the following evaluations. To resolve C6 in time, it is calculated for each indi-
vidual scattering pattern and, to have an additional resolution in reciprocal space,
for the measured range of scattering vectors q. The result of these calculations
are shown in figure 6.22 for sample A in the first 1000 seconds of the experiment.
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Figure 6.22: Amplitude of the sixth Fourier coefficient C6 of the x-ray cross-
correlation function resolved in time and reciprocal space of sample
A. A pronounced amplitude is only observable at q = 0.035 nm−1.
At this scattering vector, the amplitude varies over time.

As a first result, it can be seen that a pronounced six-fold symmetry is only
observable at q = 0.035 nm−1. No additional, significant regions of six-fold sym-
metry in reciprocal space are found.

The second observation is that the amplitude of the sixth Fourier coefficient is
not constant but varies over time. First of all, the amplitude increases gradually
and then drops off very sharply at certain points in time. These sudden drops
happen at around 200 s, 450 s, and 750 s, respectively. At these points in time,
the oscillation amplitude switches from its previously highest value to γ0 = 0.01
and a new set of increasing deformations starts. This behavior can be quantified
by evaluating the amplitude of the sixth Fourier coefficient of the cross-correlation
function over time. A few examples are shown in the following figures 6.23 to
6.25.

In these illustrations, C6, calculated at q = 0.035 nm−1, is displayed as a
function of time. The time segments are chosen such that the full five oscillation
cycles at a constant deformation γ0 are included. For an oscillation frequency of
0.1 Hz and five oscillation cycles this corresponds to a time period of 50 seconds.
With an exposure time of 0.2 seconds, 250 scattering patterns are evaluated in
this time frame.
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Figure 6.23: Sixth Fourier coefficient of the cross-correlation function of sample
A at γ0 = 0.01. Left: clean illustration of C6; right: C6 overlayed
with the corresponding shear rate.
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Figure 6.24: Sixth Fourier coefficient of the cross-correlation function of sample
A at γ0 = 0.04. Left: clean illustration of C6; right: C6 overlayed
with the corresponding shear rate.
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Figure 6.25: Sixth Fourier coefficient of the cross-correlation function of sample
A at γ0 = 0.08. Left: clean illustration of C6; right: C6 overlayed
with the corresponding shear rate.

For low deformations γ0 the sixth Fourier coefficient is low in amplitude and
resembles a noisy pattern. As the deformation increases, the amplitude of C6
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becomes larger and, in addition, shows a significant oscillating behavior. When
compared to the shear rate, it can be seen that the amplitude of the Fourier
coefficient follows the oscillation of the shear rate with the same frequency. When
the shear rate drops to zero, the Fourier coefficient shows a minimum as well,
whereas the maximum of the shear rate coincides with a maximum of C6.

It should be highlighted that the absolute value of the shear rate is displayed.
Since the shear rate follows a cosine, in principle, negative values of γ̇ occur.
However, the sign of the shear rate only corresponds to the rotation direction of
the cone. Since both directions are equal, the sign is not considered here.

At this point, it is also important to note that the phase of the shear rate is
corrected such that the maxima of γ̇ and C6 match. As mentioned before, the
rheometer is not synchronized with the detector so that rheological properties do
not match the temporal course of the x-ray measurements perfectly:

First of all, both the detector and the rheometer are not started at exactly the
same time, which leads to a general offset between the x-ray scattering and the
rheology timelines. Secondly, during the first 1000 s of this particular experiment,
the Lambda detector recorded images continuously every 0.2 s. The rheometer,
on the other hand, was started with the amplitude program mentioned above.
The measurement of a single deformation γ0 was continuous over the five oscilla-
tion cycles, i. e. 50 seconds (as for example shown in figures 6.23 - 6.25). However,
whenever the rheometer changes the oscillation amplitude to start the next five
cycles, there is a short delay before the cone’s oscillation continues. To compen-
sate for that, for the evaluations discussed here, the x-ray data was cut into 50
second segments and for each segment an individual time offset was chosen to fit
the criteria mentioned before when calculating the shear rate. The offsets are not
significantly large and range only between from 0 to 1.5 seconds. Furthermore,
the x-ray measurements were performed in sets of 5000 images. Thus, in between
two sets, for a few seconds of the rheology experiment no x-ray images were taken.
For the evaluation of the second 5000 images, again, another general time offset
is chosen to compensate for the missing seconds.

This procedure does not change the general observation that C6 changes with
the same frequency as γ̇. Thus, it can be concluded that the six-fold symmetry
is induced by shear forces. However, since there is no confirmed phase relation
between the rheological data and the x-ray data, it is not necessarily the case that
maxima and minima of both measurements coincide. The formation of six-fold
symmetry could be slightly shifted out of phase from the variation of the shear
rate. Unfortunately, no definitive conclusions can be drawn from the experiment
concerning that matter.

A peculiar feature of C6 as a function of time is that, most of the time, every
other peak is significantly less intense than the previous one. This behavior
was also observable in the case of sample D. In extreme cases, this leads to
the circumstance that sometimes only half of the peaks are observable, whereas
sometimes all peaks show the same amplitude. Intriguingly, there does not seem
to be any systematic scheme and no conclusion can be drawn at this point. An
explanation for this phenomenon requires further investigation.
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Time-Resolved Small-Angle X-ray Scattering

For the evaluation of the sixth Fourier coefficient of the cross-correlation func-
tions, the calculations are performed at the scattering vector, where the small
shoulder in the second structure factor maximum appears. In addition to that,
the first maximum of the structure factor is investigated. Therefore, the position
qmax as well as the height S(qmax) of the structure factor maximum are observed
over the course of time. Both parameters are determined by fitting the first struc-
ture factor maximum to a single Gaussian function as defined in equation (6.2).

f(x) = a exp

(
−(x− b)2

c

)
+ d (6.2)

Using this equation, the parameters mentioned before can be retrieved as

qmax = b

S(qmax) = a+ d .

A typical fit is shown in figure 6.26.

Figure 6.26: First maximum of the structure factor of sample A fitted by a Gaus-
sian function. The height as well as the postion of the maximum can
be retrieved from this fit.

The Gaussian function is chosen because of its simplicity: it can be calculated
relatively fast and the height and position of the maximum are easily extracted.
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A better approach to fit the structure factor would be the Percus-Yevick approx-
imation as used before for the determination of the volume fraction. Fitting such
a function is, however, more time consuming and, more importantly, the extrac-
tion of qmax as well as S(qmax) is not straight forward and involves additional
numerical methods.

Admittedly, it is evident from figure 6.26 that a Gaussian function is a very
rough approximation of the structure factor maximum. It should be highlighted,
that S(qmax) is underestimated but the position of the maximum is relatively well
approximated. Furthermore, two general problems arise because of the resolution
in the scattering vector space. The maximum resolution of one pixel width is used
when integrating the detector signal. This leads to the fact that, on the one hand,
the structure factor maximum is not well resolved in the original function and,
on the other hand, only between five to ten points can be used to perform the
fit. Therefore, the results from the Gaussian fit are used as a relative measure
during the following evaluations. The absolute values are not considered here.

As in the section above, the postion and height of the first structure factor
maximum can be investigated over time. The evolution of these parameters over
the course of the experiment is shown in figures 6.27 - 6.29.

Figure 6.27: Parameters of the first structure factor maximum of sample A at
γ0 = 0.01. In addition to the clean illustration on the left, an overlay
with the corresponding shear rate is shown on the right.
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6.2 Samples at Intermediate Volume Fraction

Figure 6.28: Parameters of the first structure factor maximum of sample A at
γ0 = 0.04. In addition to the clean illustration on the left, an overlay
with the corresponding shear rate is shown on the right.

In the figures 6.27 to 6.29, the behavior of the structure factor maximum seems to
follow the same course as the sixth Fourier coefficient of the cross-correlation as
evaluated in the previous section. At small deformations both the position as well
as the height of the maximum show a noise-like pattern. When the deformation
is large enough the course of the parameters becomes more structured and the
parameters are oscillating with the same frequency as the shear rate. Again, for
the calculation of the shear rate individual time offsets were used. These offsets
are, however, exactly the same as used before in the XCCA evaluations. As a
result, a maximum of the shear rate coincides with a maximum q-position as well
as a maximum of S(qmax).
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6 Structure of Colloidal Systems Under Shear

Figure 6.29: Parameters of the first structure factor maximum of sample A at
γ0 = 0.08. In addition to the clean illustration on the left, an overlay
with the corresponding shear rate is shown on the right.

It is important to note that the outcome of these evaluations should be used
cautiously. When comparing the range of values of both qmax as well as S(qmax)
at the smallest deformation with the highest deformation, it is evident that the
fluctuation range is nearly the same, i. e. approximately 2.35 - 2.55 in case of
the structure factor maximum and 0.0219 nm−1 - 0.0220 nm−1 in case of the
q-position. The difference is only in the “more structured” oscillation of the
parameters. In addition to that, the difference between the lowest and the highest
values of qmax is in the range of the detector resolution and, thus, somehow
artificial.

In comparison, the evaluation using x-ray cross-correlation analysis is more
suited to investigate the structure of colloidal dispersions under shear. Not only
is the calculation of the Fourier coefficients of the cross-correlation functions more
robust, but it contains additional information beyond the structure factor. The
symmetry information is not included in the structure factor but in the cross-
correlation functions.

Rheological Behavior

The viscosity as a function of deformation is shown in figure 6.30 for samples
A and B. Both samples show the same shear thinning behavior. The fits are
calculated using the Ostwald-de Waele relationship shown in equation (3.7) and
are discussed in detail in section 6.2.2. Sample A is measured using the protocol
explained in section 5.4 and two series following this protocol were measured with
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6.2 Samples at Intermediate Volume Fraction

two different loadings of the sample. Sample B on the other hand is measured
at the same deformation values but in individual measurements of 20 seconds
each with an exposure time of 0.01 seconds. The findings and the approach
of evaluation are, however, the same so that for sample B only the results are
presented here.
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Figure 6.30: Viscosity of sample A (left) and B (right) as a function of deforma-
tion.

Since the viscosity is measured over the whole course of the oscillation cycles
it can be considered an averaged value and, thus, it is not time resolved. To
define a relation between the (time-resolved) XCCA results and the rheology
measurements, the variance of the sixth Fourier coefficient is calculated [65]. The
variance of C6 can be used as a measure for the difference in the order of the
sample at rest and the sample under shear. The result is shown in figure 6.31.
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Figure 6.31: Variance of the sixth Fourier coefficient of the cross-correlation func-
tion as a function of deformation for sample A (left) and sample B
(right). In case of sample A the data points marked by an arrow
were omitted for the fit.

For both samples, the variance of C6 increases with higher deformations nearly
linearly. As it is expected from the shear thinning behavior, the magnitude of
order increases at higher deformation and, hence, higher shear rates. This is
well reflected by the growing variance of the sixth Fourier coefficient of the cross-
correlation function.
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6 Structure of Colloidal Systems Under Shear

Discussion of the Results

The small-angle x-ray scatterting data of the sample at rest does not show any
distinctive features other than the structure factor. When exerting oscillatory
shear forces on the sample, the nanoparticles in the dispersion medium begin to
form structures. These structures result in a scattering pattern with hexagonal
symmetry in reciprocal space and, thus, correspond to structures with hexagonal
symmetry in real space.

This phenomenon can be explained with the formation of two-dimensional lay-
ers of close-packed spheres. The close-packing of spheres in two dimensions is the
hexagonal one. When the shear rate increases, the inter-particle distance inside
the layers becomes smaller as indicated by the shift of the position of the first
structure factor maximum qmax to larger q. Thus, the particles become more or-
dered and the six-fold symmetry as measured by C6 increases. It can be assumed
that in this way, the inter-layer distance is maximized and the layers can slide
past each other with less internal friction. This effect can be observed macroscop-
ically in the decrease of the viscosity, i. e. shear thinning. Figure 6.32 illustrates
the assumed real space structure of the sample at rest as well as under shear.

Figure 6.32: Assumed real space structure of the sample at rest as well as under
shear.

6.2.2 High Oscillation Amplitudes

In this section, the behavior of samples A and B at deformations exceeding
γ0 = 0.32 are discussed further. The rheological behavior of the samples dis-
plays the expected course, i. e. the viscosity shows a shear thinning behavior.
The viscosity as a function of deformation is illustrated in figure 6.33 for both
samples. The fits shown in this figure use the Ostwald-de Waele relationship
presented in equation (3.7).
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Figure 6.33: Viscosity of samples A (left) and B (right) as a function of deforma-
tion. Both samples show the characteristic shear thinning behavior.
For sample A, two series with two different sample loadings are mea-
sured in the same way, both of which are displayed here.

Equation (3.7) shows the relation between the viscosity η and the shear rate
γ̇. Since the shear rate is extracted as a temporal average in the rheological
measurements, it can be shown that the Ostwald-de Waele relationship equally
relates the viscosity to the deformation amplitude γ0. Using equation (3.17), one
can show that

〈γ̇〉t = 〈γ0ω cos(ωt)〉t = γ0ω〈cos(ωt)〉t (6.3)

= A · γ0 , with a constant A = ω〈cos(ωt)〉t . (6.4)

Therefore, the Oswald-de Waele relationship can be expressed using γ0 with a
modified flow consistency index K ′:

η = Kγ̇n−1 = K(A · γ0)n−1 = K · An−1 · γn−1
0 = K ′ · γn−1

0 . (6.5)

The values extracted from the fit are displayed in table 6.1.

Table 6.1: Ostwald-de Waele parameters of samples A and B

Sample A Sample B

K ′ n K ′ n
low γ0 2.8 -0.29 0.81 -0.37
high γ0 1.2 -0.56 0.73 -0.43

As discussed in section 3 the interesting parameter is n which is indicative of
the rheological behavior of a sample. As expected, for both samples these values
are less than one indicating shear thinning behavior. Also, as stated earlier, the
values are different in different regions of γ0 and are lower at higher oscillation
amplitudes. The flow consistency index K, or K ′ in this expression, acts as some
kind of reference viscosity which is expectedly lower considering higher shear rates
in the case of shear thinning samples.
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6 Structure of Colloidal Systems Under Shear

While the rheological behavior continues to follow the expected course, the
SAXS and XCCA results differ from the ones observed at lower amplitudes. Fig-
ure 6.35 shows a collection of averaged scattering patterns of sample A recorded
after the sample had been deformed with an amplitude of γ0 = 0.32 for the first
time. The measurement is still the same as discussed in the previous section,
i. e. the sample is deformed using the scheme described in section 5.4, but the
results discussed here are from later points in time of the measurement. The
images in this figure are ordered in time, that is the measurement in a) is directly
followed by the measurement in b). The intervals used to produce the averaged
scattering patterns of figure 6.35 are shown as an overview in figure 6.34.

Figure 6.34: Variation scheme of the deformation amplitude over time. The right
image shows only the grey part of the left image. The intervals
containing the data of the following images in figure 6.35 are denoted
in the right image.

In image a) of figure 6.35 the scattering pattern is analogous to the ones shown
in the previous section at lower oscillation amplitudes. Bragg reflections with a
hexagonal symmetry are observable in the second maximum of the liquid structure
factor at the same value of the scattering vector. Interestingly, in image b) at
a deformation of γ0 = 1.28, all Bragg reflections vanish completely. Since the
images are an average over five oscillation cycles and there are no Bragg reflections
visible at all, no signs of hexagonal order are observable during the whole 50
seconds of measurement at this deformation. The structure of hexagonal layers
is completely destroyed at these high shear rates.

After reaching the first maximum deformation of γ0 = 1.28 at the end of
the fith amplitude set, the sample is deformed with the minimum amplitude
of γ0 = 0.01, again (image c), start of the sixth amplitude set). Instead of
the previously observed oscillating Bragg reflections with six-fold symmetry, a
second set of hexagonal Bragg reflections rotated by 30◦ becomes visible. This
observation corresponds the formation of a second set of close-packed hexagonal
layers rotated with respect to the first one.
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6.2 Samples at Intermediate Volume Fraction

a) b) c)

d) e) f)

g) h) i)

j)

Figure 6.35: Scattering patterns of sample A after being deformed at amplitudes
above γ0 = 0.32. The patterns are taken in the first series of mea-
surements but are respresentative for the second series, as well. Each
scattering pattern is an average over five oscillation cycles at the
specified deformations and the patterns are ordered in time.

When increasing the oscillation amplitude, additional Bragg reflections appear
at the same scattering vector. The number of Bragg reflections increases up until
a deformation of γ0 = 0.16 (image g)) which indicates that until this point more
and more close-packed layers form in the dispersion which are parallel but not
oriented with respect to each other.

Starting from a deformation of γ0 = 0.32 (image h)) the behavior is again the
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6 Structure of Colloidal Systems Under Shear

same as seen previously, i. e. only one set of Bragg reflections with hexagonal
symmetry can be observed. The hexagonal planes seem to orient themselves at
this deformation amplitude. In addition, these reflections vanish once more at
the same oscillation amplitude of γ0 = 1.28 like described before.

In the following part, the degree of ordering of the sample is quantified using
the results from the x-ray cross-correlation analysis. Analogous to the previous
analysis at lower oscillation amplitudes, the variance of the sixth Fourier coeffi-
cient of the cross correlation function calculated at q = 0.035 nm−1 is observed
as a function of the deformation γ0. Figure 6.36 shows that for the first (left) and
second (right) measurement series of sample A in the full range of measurements.
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Figure 6.36: Variance of the sixth Fourier coefficient of the cross-correlation func-
tion of sample A as a function of deformation. Left: first measure-
ment series; right: second measurement series. After reaching a
deformation of γ0 = 0.32, the variance of C6 exhibits a different
behavior, which is found for both series.

Figure 6.36 serves as an overview to display the overall difference in the behavior
of the C6 variance before, and after reaching an oscillation amplitude of γ0 = 0.32
for the first time. For a more detailed analysis, γ0 as well as the variance of C6

are shown as a function of time and, additionally, cut into three time segments
as shown in figure 6.37 - 6.39.
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Figure 6.37: Variance of the sixth Fourier coefficient of the cross correlation func-
tion as well as the deformation as a function of time for sample A.
Left: first measurement series; right: second measurement series.
This figure shows the first time segment up until the deformation
reaches γ0 = 0.32 for the first time in the series.

Figure 6.37 illustrates the course of the variance of C6 and the deformation as
a function of time for the first time segment, in which the deformation does not
exceed γ0 = 0.32. This segment is discussed in detail in the previous section
where the behavior of the sample at low oscillation amplitudes is considered.
Overall, the variance of the Fourier coefficient C6 increases nearly linearly with
the deformation and no hysteresis effects are observed.
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Figure 6.38: Variance of the sixth Fourier coefficient of the cross correlation func-
tion as well as the deformation as a function of time for sample A.
Left: first measurement series; right: second measurement series.
This figure shows the second time segment after the deformation
reaches γ0 = 0.32 for the first time in the series and before the last
set of amplitude changes is performed.

Figure 6.38 shows the time segment of the measurement directly after the ampli-
tude exceeds γ0 = 0.32 for the first time. In the first series, until approximately
t = 1000 s, the variance increases with increasing deformation and reaches a max-
imum at γ0 = 0.32. At γ0 = 0.64, the variance decreases and reaches a minimum
again after the deformation is lowered to γ0 = 0.01.
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In the second series, the variance first starts to increase again, however, much
faster than before. In this time segment, the scattering pattern becomes more
powder-like, i. e. additional Bragg reflections can be observed at the same scat-
tering vector q. The variance of C6 then begins to drop sharply at a deformation
of γ0 = 0.32, in case of the first series, and γ0 = 1.28 in case of the second series,
respectively. The hexagonal close-packed layer structure of the sample is less and
less pronounced at increasing amplitudes and vanishes completely at the highest
deformations.
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Figure 6.39: Variance of the sixth Fourier coefficient of the cross correlation func-
tion as well as the deformation as a function of time for sample A.
Left: first measurement series; right: second measurement series.
This figure shows the third time segment which contains the last set
of amplitude changes of the series.

The time segment displayed in figure 6.39 shows the last set of increasing am-
plitudes of both series. It is separated from the illustration before, since the
variance of the sixth Fourier coefficient is two (first series) or one (second series),
respectively, orders of magnitude lower in the latter case. In both series, the over-
all observable behavior is quite similar: first, the variance of C6 increases with
increasing amplitude. Then, there is a drop (although happening at different
oscillation amplitudes) and afterwards the maximum of the variance is reached
at γ0 = 0.64. Finally, the variance drops sharply and reaches zero at the highest
deformation of γ0 = 2.56.

To the best of the authors knowledge this behavior was not described before
and at this point there is no explanation for the drop of the variance in the middle
of this time segment. Also the overall lower variance of one or two orders of mag-
nitude in the last segment cannot be explained yet. Since the intensity recorded
at the detector is comparable to the measurements in the previous time segments,
a loss of sample due to the high shear rates and corresponding low viscosities can
be excluded. Since this effect is observed in the end of the experiment also ag-
ing effects could be discussed. One could expect evaporation of the dispersion
medium over time but in that case this would lead to further concentration of
the sample and, thus, an increasing viscosity which is not obvserved here.

Figure 6.40 shows the variance of the sixth Fourier coefficient of the cross-
correlation of sample B calculated at the corresponding scattering vector q =
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6.3 Sample at Low Volume Fraction

0.038 nm−1 where the Bragg reflections are visible. As a reminder, the sample
is measured in a different way compared to sample A. Sample B is measured in
distinct series of 20 seconds recorded with an exposure time of 0.1 seconds and
2000 images each. Each series is performed using the same deformation values as
for sample A. The evaluation procedure is, however, the same for both samples
so that only the results are shown for sample B here.

The findings are similar for sample B. The variance of C6 increases roughly
linearly with the deformation until a value of γ0 = 0.32 is reached. At higher os-
cillation amplitudes, the six-fold symmetry of the scattering pattern disappeares
completely.
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Figure 6.40: Variance of the sixth Fourier coefficient of the cross-correlation func-
tion as a function of deformation of sample B.

6.3 Sample at Low Volume Fraction

Sample C consists of monodisperse nanoparticles with a radius of 117 nm dis-
persed in PEG-200 with a volume fraction of 0.22. Although the size of the
particles is similar to samples A and B, the volume fraction of sample C is less
than half as high.

Like sample A, sample C is measured following the same protocol as described
in section 5.4. The scattering pattern averaged over the first 1000 seconds is
shown in figure 6.41.
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Figure 6.41: Scattering pattern of sample C under shear averaged over the first
1000 seconds of the rheology measurement.

In the average of 5000 scattering patterns, no Bragg reflections are observable.
The pattern resembles the structure factor of the sample at rest. To find hid-
den symmetries that are not visible by eye, x-ray cross-correlation analysis is
performed. Since no distinct feature is observable in the scattering pattern, no
scattering vector of special interest can be determined to calculate the averaged
Fourier coefficients of the cross-correlation function.

Therefore, the first three even Fourier coefficients, i. e. C2, C4, and C6, respec-
tively, are calculated and displayed with as a function of time t and scattering
vector q. These distinct Fourier coefficients are chosen because, on the one hand,
the x-ray scattering pattern is centrosymmetric according to Friedel’s law and,
thus, only even Fourier coefficients should be significant. On the other hand, in
terms of close-packing structures, higher order symmetries are not expected to be
present. The analyses of the Fourier coefficients are shown in figures 6.42 - 6.44.
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Figure 6.42: Second Fourier coefficient of the cross-correlation function C2 of sam-
ple C.
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Figure 6.43: Fourth Fourier coefficient of the cross-correlation function C4 of sam-
ple C.
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Figure 6.44: Sixth Fourier coefficient of the cross-correlation function C6 of sam-
ple C.

No significant amplitudes of the Fourier coefficients can be observed in the fig-
ures above. However, the sample still shows the characteristic shear thinning
behavior. The viscosity as a function of deformation is shown in figure 6.45.
Again, the fits are calculated using the Ostwald-de Waele relationship described
in equation (3.7). As before, two different fits are performed for low and high
deformation amplitudes, respectively.

Even though the shear thinning behavior of sample C is observable by the
rheology measurement, it should be noted that the initial viscosity is less than
a tenth of the viscosity measured for samples A and B. The absolute difference
of viscosities between the small deformation and the large deformation is, hence,
minor compared to the previously discussed samples.

In addition, the low volume fraction could lead to comparably large inter-
particle distances inside the potential layer structure. In that way, the particles
are not close-packed and, thus, show no hexagonal order and six-fold symmetry,
respectively. In terms of the phase diagram (figure 2.2), this sample is deep in
the liquid-like phase.
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Figure 6.45: Viscosity of sample C as a function of deformation.

6.4 Discussion of the Results

As mentioned earlier, similar findings, compared to the ones presented here, were
made in small-angle neutron scattering [1–5], light scattering [6–8], and small-angle
x-ray scattering experiments [5,9] before and scattering patterns with hexagonal
symmetry were observed for colloidal samples under shear. In contrast to this
work, the colloidal samples discussed in these experiments were in a crystalline
equilibrium state in the beginning of the rheology experiments. The samples were
found to form crystallites which are oriented under shear and finally melt under
intermediate shear rates. In this state, the samples form hexagonal close-packed
layers sliding past each other and the viscosity of the sample decreases. At even
higher shear rates this ordered layer structure breaks down and an amorphous,
liquid-like, structure is observed which is accompanied by an increase of viscosity.

In comparison, in this work, the samples are in a liquid-like equilibrium state
in the beginning of the experiments. Under shear, the samples become ordered
forming hexagonal layers of close-packed spheres which can be observed by the
emergence of the {11} Bragg reflection with six-fold symmetry corresponding
to such structure. In the evaluation of sample D which forms a structure with
oriented layers it is shown that the {11} reflection is the most intense. Hence,
this reflection is the first one becoming visible while others remain buried under
the liquid structure factor of the sample. A possible explanation for the varying
intensity of this reflection is the growth of the layers under shear, i. e. layers of
close-packed spheres start forming already at low shear rates and the thickness
of the layers is increasing with increasing shear rate. Likewise, the decreasing
shear rate leads to a decrease of layer thickness and, thus, a decrease of intensity
of the {11} reflection. This behavior is resolved over time and quantified by the
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sixth Fourier coefficient of the cross-correlation functions calculated using x-ray
cross-correlation analysis.

Under the influence of low shear rates, only one or two sets of six-fold Bragg
reflections, respectively, can be observed. One can assume that, likely, the layer
structure starts forming at the surfaces of the plate or the cone of the shear cell,
respectively. In case of the formation at both surfaces simultaneously, the layers
are not necesseraly oriented to each other which leads to the occurence of a second
set of {11} Bragg reflections, which is still of hexagonal symmetry but rotated in
the detector plane.

At higher shear rates, additional sets of {11} reflections can be observed which
leads to a more and more powder-like scattering pattern. This can be interpreted
as the independent formation of multiple layers between the layers at the shear
cell surfaces. While the surfaces could facilitate an initial layer formation, the
gradient of shear is constant over the whole rheometer gap so that the emergence
of additional layers is equally likely over the sample volume. As these layers
would form independently, no preferred orientation is expected between them.
In case of sample D, however, it can be seen that the layers can be oriented by
applying rotational shear at a high shear rate for a short amount of time.

The increase of the number of close-packed layers sliding past each other leads
to less internal friction in the sample. This is macroscopically reflected by the
decrease of the viscosity, i. e. shear thinning behavior.

Analogous to the results discussed in the literature mentioned at the beginning
of this section, also in this work it was found that at the highest shear rates,
the hexagonal structure of the samples vanishes. In case of samples A and B,
the hexagonal symmetry of the scattering pattern starts to disappear when the
amplitude exceeds 0.32, i. e. when the maximum shear rate is higher than 0.2 s−1.
The layer structure cannot be retained at these shear rates. Interestingly, the
viscosity of the samples decreases further in the same manner as observed for
lower shear rates and shear-thickening behavior, which is usually explained as the
result of particles jamming each other, as discussed for example in [9], cannot be
observed. It could be, that in the framework of this thesis, the shear rate necessary
to induce shear-thickening is not reached. Since this shear rate depends on the
specific parameters of the individual sample, no definitive answer can be given.
The hexagonal layer structure could, for instance, transition into a structure
of co-flowing strings which could be observed in liquid microjet experiments [38].
Such structure could still minimize internal friction and, as a result, decrease
the viscosity, while no features of hexagonal symmetry would be expected in the
scattering pattern.
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The fact, that non of the above features could be observed for sample C, is likely
due to the comparably low volume fraction. Since shear thinning is nonetheless
occuring for this sample, one could still assume the formation of a layered struc-
ture. One possible reason for the absence of an observable hexagonal symmetry
in the scattering pattern could be that the inter-particle distances in a potential
layer would be larger compared to the other samples. As a result, the particles
would be far from beeing in contact distance to each other and no close-packed,
hexagonal, structure would emerge. As a consequence, no hexagonal Bragg re-
flections would be observable.
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7 Conclusion and Outlook

In this work, the structural changes of nanoparticle dispersions accompanying
shear-thinning behavior were investigated using a combination of rheology, small-
angle x-ray scattering (SAXS), and x-ray cross-correlation analysis (XCCA). The
experiments were carried out at the coherence application beamline P10 of the
storage ring PETRA III at DESY in Hamburg, Germany. A unique, vertical
rheoSAXS setup was used to collect x-ray scattering data in situ while applying
oscillatory shear to the sample in a cone-plate rheometer geometry.

Spherical, colloidal, silica nanoparticles were prepared using the Stöber method [31]

and coated with a poly-acrylate layer. The particles were dispersed in PEG-200
with volume fractions varying from φ = 0.22 to φ = 0.53 and characterized by
dynamic light scattering, transmission electron microscopy, and SAXS.

It could be shown that the higly concentrated colloidal dispersions undergo a
transition from a liquid-like ordered equilibrium state at rest to a two-dimensional
hexagonal layer structure under the influence of shear. While the occurence of
such structures was discussed in the literature previously [1–15], in this thesis the
effect could be time-resolved and quantified for the first time. Therefore, the
SAXS data was evaluated using XCCA. By evaluating the sixth Fourier coefficient
calculated from the cross-correlation functions from the XCCA results over time
and comparing it with the shear rate applied to the sample, it was demonstrated
that the degree of hexagonal order oscillates with the shear rate.

An increasing shear rate is accompanied by an increase of the sixth Fourier
coefficient of the x-ray cross-correlation evaluated at the scattering vector where
the {11} Bragg reflection of a two-dimensional hexagonal layer structure was
observed. The variance of the Fourier coefficient was calculated for time segments
of the same shear deformation as a measure of the average degree of hexagonal
order. It was shown that the variance increases nearly linearly with the shear
deformation in the regime of low deformations. In the regime of high shear
deformations, the hexagonal order disappeared.

The rheological measurements showed a shear-thinning behavior for all sam-
ples investigated, i. e. the viscosity decreased with increasing shear deformations.
Comparing this rheological result with the structural findings from the x-ray scat-
tering data, leads to the final conclusion: The higher the deformation, and, thus,
the higher the shear rate, the larger the variance of the sixth Fourier coefficient
and the lower the viscosity of the sample. Thus, more two-dimensional, hexag-
onal close-packed, layers form within the dispersion with increasing shear rates
which minimize internal friction in the dispersions, reflected by the decrease of
the viscosity.
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As discussed above, in case of high shear rates the hexagonal order vanishes.
This would be expected since the jamming of particles is often observed under the
influence of high shear rates [9,15]. This is, however, accompanied by a shear thick-
ening behavior. In this thesis, the samples still display shear thinning without
showing hexagonal order which was not observed before. As stated before, a pos-
sible explanation could be the formation co-flowing strings in the dispersion. That
kind of behavior could be observed recently in liquid microjet experiments [38].

For future experiments it would be interesting to investigate the influence of
the volume fraction and the particle size on the order formation and the rheolog-
ical behavior. A significant difference in the behavior was observed between the
samples A and B on the one hand and sample D on the other hand. Whether
or not this difference is caused by the different concentrations or the different
particle sizes could not completely be verified.

The second notable difference could be seen between the samples with inter-
mediate volume fraction (samples A and B) and low volume fraction (sample C).
While the former ones show structure formation through the occurence of Bragg
reflections with hexagonal order in the SAXS patterns the latter one does not.
Investigating samples with volume fractions in between would be necessary to
further explore the limits of the XCCA approach in a rheoSAXS setup.
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F. Westermeier, G. Grübel and F. Lehmkühler. Shear-induced ordering
in liquid microjets seen by x-ray cross-correlation analysis. Struct. Dyn.,
7:054901, 2020.

5. L. Frenzel, F. Lehmkühler, M. Koof, I. Lokteva and G. Grübel. The
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