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Abstract: The Cabibbo-suppressed decay Λ0
b → χc1pπ− is observed for the first time us-

ing data from proton-proton collisions corresponding to an integrated luminosity of 6 fb−1,

collected with the LHCb detector at a centre-of-mass energy of 13 TeV. Evidence for the

Λ0
b → χc2pπ− decay is also found. Using the Λ0

b → χc1pK− decay as normalisation channel,

the ratios of branching fractions are measured to be

B
(

Λ0
b → χc1pπ−

)

B
(

Λ0
b → χc1pK−

) = (6.59 ± 1.01 ± 0.22) × 10−2 ,

B
(

Λ0
b → χc2pπ−

)

B
(

Λ0
b → χc1pπ−

) = 0.95 ± 0.30 ± 0.04 ± 0.04 ,

B
(

Λ0
b → χc2pK−

)

B
(

Λ0
b → χc1pK−

) = 1.06 ± 0.05 ± 0.04 ± 0.04 ,

where the first uncertainty is statistical, the second is systematic and the third is due to

the uncertainties in the branching fractions of χc1,2 → J/ψγ decays.
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1 Introduction

The amplitude analyses of the beauty-baryon decays Λ0
b → J/ψpK− established the exis-

tence of a new class of baryonic resonances in the J/ψp system, hidden-charm pentaquarks,

that cannot be described within the simplest pattern of baryon structure consisting of three

constituent quarks [1–3]. Evidence for a pentaquark contribution in the same J/ψp mass

region was obtained in the study of the Cabibbo-suppressed decays Λ0
b → J/ψpπ− [4]. Re-

cently, further evidence for a new pentaquark candidate in the Ξ−

b → J/ψΛK− decay has

been reported [5]. Up to now, such hidden-charm pentaquark resonances have been ob-

served only in the J/ψp and J/ψΛ systems. Investigation of such resonances in other decay

modes, such as ηcp, χc1p and χc2p could shed light on the nature of these exotic states.

The partial widths of the Λ0
b → χc1pK− and Λ0

b → χc2pK− decays are measured to be

almost equal [6]. For beauty mesons a different pattern is observed. The known partial

widths for the B→ χc1K(∗) and the B→ χc2K(∗) decays [7–9] exhibit a large suppression

of the decay modes with the χc2 state with respect to the χc1 state. Such suppression

agrees with expectations from QCD factorisation [10]. More information on the decays of

beauty baryons to the χc1 and χc2 states is needed to clarify the role of QCD factorisation

in baryon decays.

In this paper, a search for the Λ0
b → χc1pπ− and Λ0

b → χc2pπ− decays is reported,

where the χc1 and χc2 mesons are reconstructed via their radiative decays χc1,2 → J/ψγ,

and the J/ψ mesons are reconstructed in the µ+µ− final state. The Λ0
b → χc1pK− de-

cay mode, which has a similar topology, is used as normalisation channel. The study is

based on proton-proton (pp) collision data, corresponding to an integrated luminosity of

6 fb−1, collected with the LHCb detector at a centre-of-mass energy of 13 TeV. Throughout

this paper the inclusion of charge-conjugated processes is implied and the symbol χcJ is

used to denote the χc1 and χc2 states collectively.
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2 Detector and simulation

The LHCb detector [11, 12] is a single-arm forward spectrometer covering the pseudorapid-

ity range 2 < η < 5, designed for the study of particles containing b or c quarks. The de-

tector includes a high-precision tracking system consisting of a silicon-strip vertex detector

surrounding the pp interaction region, a large-area silicon-strip detector located upstream

of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip

detectors and straw drift tubes placed downstream of the magnet. The tracking system pro-

vides a measurement of the momentum, p, of charged particles with a relative uncertainty

that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of

a track to a primary pp collision vertex (PV), the impact parameter (IP), is measured with

a resolution of (15 + 29/pT)µm, where pT is the component of the momentum transverse

to the beam, in GeV/c. Different types of charged hadrons are distinguished using informa-

tion from two ring-imaging Cherenkov (RICH) detectors. Photons, electrons and hadrons

are identified by a calorimeter system consisting of scintillating-pad and preshower detec-

tors, an electromagnetic and a hadronic calorimeter [13]. Muons are identified by a system

composed of alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger, which consists of a hardware

stage, based on information from the calorimeter and muon systems, followed by a software

stage, which applies a full event reconstruction. At the hardware trigger stage, events are

required to have a muon with high transverse momentum or dimuon candidates in which

a product of the pT of the muons has a high value. In the software trigger, two oppositely

charged muons are required to form a good-quality vertex that is significantly displaced

from every PV, with a dimuon mass exceeding 2.7 GeV/c2.

Simulated events are used to describe signal shapes and to compute the efficiencies

needed to determine the branching fraction ratios. In the simulation, pp collisions are

generated using Pythia [14] with a specific LHCb configuration [15]. Decays of unsta-

ble particles are described by EvtGen [16], in which final-state radiation is generated

using Photos [17]. The interaction of the generated particles with the detector, and its

response, are implemented using the Geant4 toolkit [18, 19] as described in ref. [20].

The transverse momentum and rapidity spectra of the Λ0
b baryons in simulated samples

are adjusted to match those observed in a high-yield low-background sample of recon-

structed Λ0
b → J/ψpK− decays. In the simulation, the Λ0

b baryon decays are produced

according to a phase space decay model. Simulated Λ0
b → χcJpK− decays are corrected

to reproduce the pK− mass and cos θpK− distributions observed in data, where θpK− is

the helicity angle of the pK− system, defined as the angle between the momentum vec-

tors of the kaon and the Λ0
b baryon in the pK− rest frame. Large calibration samples

of low-background decays D∗+ →
(

D0 → K−π+
)

π+, K0
S → π+π−, D+

s →
(

φ→ K+K−
)

π+,

Λ→ pπ− and Λ+
c → pK−π+ [21, 22] are used to resample the combined detector response

used for the identification of protons, kaons and pions. To account for imperfections in

the simulation of charged-particle reconstruction, the track reconstruction efficiency deter-

mined from simulation is corrected using control channels in data [23].
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3 Event selection

The signal Λ0
b → χcJpπ− and the normalisation Λ0

b → χcJpK− decays are both reconstructed

using the decay modes χcJ → J/ψγ and J/ψ→ µ+µ−. A loose preselection similar to that

used in refs. [9, 24–27] is applied, followed by a multivariate classifier based on a decision

tree with gradient boosting (BDTG) [28].

Muon, proton, pion and kaon candidates are identified combining information from

the RICH, calorimeter and muon detectors. They are required to have transverse momenta

larger than 550, 500, 200 and 200 MeV/c, respectively. To ensure efficient particle identifica-

tion, kaons and pions are required to have a momentum between 3.2 and 150 GeV/c, whilst

protons must have momentum between 10 and 150 GeV/c. To reduce the combinatorial

background due to particles produced in pp interactions, only tracks that are inconsistent

with originating from any PV are used.

Pairs of oppositely charged muons consistent with originating from a common vertex

are combined to form J/ψ→ µ+µ− candidates. The transverse momentum of the dimuon

candidate is required to be in excess of 2 GeV/c, and the mass of the µ+µ− system is re-

quired to be between 3.020 and 3.135 GeV/c2, where the asymmetric mass range around

the known J/ψ mass [29] is chosen to account for final-state radiation. The position of

the reconstructed dimuon vertex is required to be inconsistent with that of any recon-

structed PV.

To create χcJ candidates, the selected J/ψ candidates are combined with photon candi-

dates that have been reconstructed using clusters in the electromagnetic calorimeter. Only

clusters that are not matched to the trajectory of a track extrapolated from the tracking

system to the cluster position in the electromagnetic calorimeter are used in the analy-

sis [13]. The transverse energies of the photon candidates are required to exceed 400 MeV.

To suppress the large combinatorial background from π0 → γγ decays, photons that

can form a π0 → γγ candidate with mass within 25 MeV/c2 of the known π0 mass [29]

are ignored [30, 31]. The χcJ candidates are selected in the J/ψγ mass region between

3.4 and 3.7 GeV/c2.

The selected χcJ candidates are combined with pπ− or pK− pairs to create Λ0
b→χcJpπ−

or Λ0
b→χcJpK− candidates, respectively. A kinematic fit [32] that constrains the four

charged final-state particles to form a common vertex, the mass of the µ+µ− combination to

equal the known J/ψ mass [29] and the Λ0
b candidate to originate from the associated PV, is

performed. Each Λ0
b candidate is associated with the PV that yields the smallest χ2

IP
, where

χ2
IP

is defined as the difference in the vertex-fit χ2 of a given PV reconstructed with and

without the particle under consideration. A good-quality fit is required to further suppress

combinatorial background. In addition, the measured decay time of the Λ0
b candidate,

calculated with respect to the associated PV, is required to be greater than 0.1 mm/c

to suppress poorly reconstructed candidates and background from particles originating

directly from the PV.

To suppress cross-feed from B0 → χcJK+π− decays with the positively charged

kaon (negatively charged pion) misidentified as a proton (antiproton) for the sig-

nal (normalisation) channel, the Λ0
b candidate mass recalculated with a kaon (pion) mass
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hypothesis for the proton is required to be inconsistent with the known B0 meson mass [29].

In a similar way, Λ0
b candidates are rejected if the mass of the pπ− (pK−) combination

is consistent with the known φ-meson mass [29] when a kaon mass hypothesis is used

for both hadrons. To suppress background from the Λ → pπ− decay, candidates with

a pπ− mass that is consistent with the known mass of the Λ baryon [29] are rejected.

The contributions from the Λ0
b → J/ψpπ− and Λ0

b → J/ψpK− decays combined with ran-

dom photons are eliminated by the requirement that the mass of the Λ0
b candidate cal-

culated without a photon is inconsistent with the known mass of the Λ0
b baryon [6, 29].

Finally, the contributions from wrongly reconstructed B0 → J/ψK+π−, Λ0
b → J/ψpK− and

B0
s → J/ψK+K− decays, combined with random photons, are rejected by the requirement

that the mass of the Λ0
b candidate recalculated using different mass hypotheses for the pion,

kaon and proton candidates and ignoring the photon in the final state, be inconsistent with

the known mass of the corresponding beauty hadron.

To suppress a potentially large combinatorial background, separate BDTG classi-

fiers are used for the Λ0
b → χcJpπ− and Λ0

b → χcJpK− candidates. The BDTG clas-

sifier for the Λ0
b → χcJpπ− (Λ0

b → χcJpK−) candidates is trained on simulated sam-

ples of Λ0
b → χc1pπ− (Λ0

b → χc1pK−) decays for the signal and candidates from data

with χc1pπ− (χc1pK−) mass between 5.65 and 6.00 GeV/c2 for the background. The k-fold

cross-validation technique [33] with k = 7 is used to avoid introducing a bias in the BDTG

output. The BDTG classifier for the Λ0
b → χcJpπ− (Λ0

b → χcJpK−) candidates is trained

on variables related to the reconstruction quality, kinematics and decay time of Λ0
b candi-

dates, kinematics of particles in the final state and the estimated probabilities that protons

and pions (kaons) are correctly identified by the particle identification detectors [21, 22].

The requirement on the BDTG output is chosen to maximize the figure-of-merit S/
√

S + B,

where S and B are expected signal and background yields, correspondingly. The signal

yields are estimated from the simulated samples, normalised to the signal yields observed

in data for the loose requirements on the BDTG output, and the background yield B is

estimated from the fit to data using a model, described in section 4.

After application of the BDTG requirement, 6% of events with Λ0
b → χcJpπ− candidates

in the 5.4 < mχc1pπ− < 5.8 GeV/c2 region and 13% of events with Λ0
b → χcJpK− candidates

in the 5.3 < mχc1pK− < 5.8 GeV/c2 region contain multiple candidates. These multiple can-

didates are predominantly caused by the J/ψpπ− or J/ψpK− combination being combined

with different photons in the event. A study using simulation shows that the random

photons causing multiple candidates typically have lower transverse energy with respect to

that of the photons originating from the Λ0
b baryon decay. Therefore, to reduce multiple

candidates for each event, only the Λ0
b candidate with the highest transverse energy photon

is retained.

To improve the Λ0
b mass resolution, the mass of the Λ0

b candidates is calculated using

a kinematic fit [32], similar to the one described above, but with an additional constraint

fixing the mass of the J/ψγ combination to the known χc1 mass [29]. For the Λ0
b → χc1pπ−

and Λ0
b → χc1pK− decays, the mass calculated with such a constraint forms a narrow peak

at the known mass of the Λ0
b baryon, while for the Λ0

b → χc2pπ− and Λ0
b → χc2pK− decays

the narrow peak is shifted towards lower values [6, 9].
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4 Signal yields and efficiencies

The mass distributions for selected Λ0
b → χcJpπ− and Λ0

b → χcJpK− candidates are shown

in figures 1 and 2, respectively. The signal yields are determined using unbinned extended

maximum-likelihood fits to these distributions. For the Λ0
b → χcJpπ− channel, the fit model

consists of two signal components, corresponding to the Λ0
b → χc1pπ− and Λ0

b → χc2pπ− de-

cays, as described below, and a combinatorial background component that is described by

the product of an exponential function and a first-order polynomial function, required to be

positive in the relevant mass range. For the Λ0
b → χcJpK− channel, the fit model consists

of two signal components, corresponding to the Λ0
b → χc1pK− and Λ0

b → χc2pK− de-

cays, a combinatorial background component which is described by a concave third-order

positive polynomial function and a component from partially reconstructed Λ0
b baryon de-

cays, such as Λ0
b → ψ(2S)pK− with subsequent decays ψ(2S)→ J/ψππ, ψ(2S)→ J/ψη or

ψ(2S)→ (χc1 → J/ψγ)γ, which is described by a Gaussian function. Each of the four signal

components is described by the sum of two Crystal Ball (CB) functions [34] with a com-

mon mean and power-law tails on both sides. The tail parameters of the CB functions,

the ratio of the widths of the two CB functions, and their relative normalisation are fixed

to the values obtained from simulation. The widths and the difference in the mean values

for the large Λ0
b → χc1pK− and Λ0

b → χc2pK− components are allowed to vary in the fit,

while for the small Λ0
b → χc1pπ− and Λ0

b → χc2pπ− components, the difference in the mean

values and the ratio of widths are constrained to the values obtained from simulation.

The signal yields for the Λ0
b → χc1pπ−, Λ0

b → χc2pπ−, Λ0
b → χc1pK− and Λ0

b → χc2pK−

decay modes are summarized in table 1. The statistical significance for the Λ0
b → χc1pπ−

and Λ0
b → χc2pπ− fit components is estimated using Wilks’ theorem [35]. The significance

for the Λ0
b → χc2pπ− signal is confirmed by simulating a large number of pseudoexperiments

according to the background distributions observed in data. The statistical significance is

found to be 9.6 and 3.8 standard deviations for the Λ0
b → χc1pπ− and Λ0

b → χc2pπ− decay

modes, respectively.

The measured yields for the Λ0
b → χc1pπ−, Λ0

b → χc2pπ−, Λ0
b → χc1pK− and

Λ0
b → χc2pK− decay modes are used to calculate the ratios of branching fractions

Rπ/K ≡ B
(

Λ0
b → χc1pπ−

)

B
(

Λ0
b → χc1pK−

) =
NΛ0

b
→χc1pπ−

NΛ0

b
→χc1pK−

×
εΛ0

b
→χc1pK−

εΛ0

b
→χc1pπ−

, (4.1a)

Rπ
2/1 ≡ B

(

Λ0
b → χc2pπ−

)

B
(

Λ0
b → χc1pπ−

) =
NΛ0

b
→χc2pπ−

NΛ0

b
→χc1pπ−

×
εΛ0

b
→χc1pπ−

εΛ0

b
→χc2pπ−

× B(χc1 → J/ψγ)

B(χc2 → J/ψγ)
, (4.1b)

RK
2/1 ≡ B

(

Λ0
b → χc2pK−

)

B
(

Λ0
b → χc1pK−

) =
NΛ0

b
→χc2pK−

NΛ0

b
→χc1pK−

×
εΛ0

b
→χc1pK−

εΛ0

b
→χc2pK−

× B(χc1 → J/ψγ)

B(χc2 → J/ψγ)
, (4.1c)

where N stands for the measured yield, ε denotes the efficiency of the corresponding decay

and B(χcJ → J/ψγ) are the branching fractions of the radiative χcJ → J/ψγ decays, taken

from ref. [29]. The efficiency is defined as the product of the detector acceptance, recon-

struction, selection and trigger efficiencies, where each subsequent efficiency is defined with

respect to the previous one. Each of the partial efficiencies is calculated using the appro-

priately corrected simulation samples. The efficiencies are determined separately for each

– 5 –
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Figure 3. Background-subtracted mass distributions of the (left) χc1p, (centre) χc1π
− and

(right) pπ− combinations in the Λ0
b → χc1pπ− decay. Expectations from a phase space simula-

tion are overlaid.

5 Systematic uncertainties

Since the Λ0
b → χcJpπ− and Λ0

b → χcJpK− decay channels have similar kinematics and

topologies, systematic uncertainties largely cancel in the ratios R defined by eqs. (4.1).

The remaining contributions to the systematic uncertainties are summarized in table 2

and discussed below.

The systematic uncertainty related to the signal and background shapes is investigated

using alternative parameterisations. For the Λ0
b → χc1pπ− and Λ0

b → χc1pK− compo-

nents, two alternative models are probed. The first model consists of a sum of a Student’s

t-distribution [37] and a double-sided Crystal Ball function (CB2) with power-law tails on

both sides of the peak [38]. The second alternative model is a sum of a Gaussian and

CB2 functions. For the Λ0
b → χc2pπ− and Λ0

b → χc2pK− components, two other alternative

models are probed: a sum of a bifurcated Student’s t-distribution with a CB2 function, and

a sum of a skewed Gaussian function [39] with a CB2 function. The alternative parame-

terisations for the component from partially reconstructed Λ0
b decays include a bifurcated

Gaussian function and a Student’s t-distribution. Two alternative shapes are used for

the background parameterisation. The first model consists of a product of an exponential

function and a second-order positive polynomial function, while a fourth-order concave

positive polynomial function is used as the second alternative model. The systematic un-

certainty related to the fit model is estimated by producing pseudoexperiments generated

with the baseline fit model and fitted with alternative models. Each pseudoexperiment

is approximately 100 times larger than the data sample. The maximal deviations for

the ratios of the signal yields with respect to the baseline model are taken as systematic

uncertainties in the ratios R. The assigned systematic uncertainties are 2.4%, 3.7% and

3.7% in the ratios Rπ/K, Rπ
2/1 and RK

2/1, respectively.

An additional systematic uncertainty in the ratios R arises due to differences between

data and simulation. The transverse momentum and rapidity spectra of the Λ0
b baryons

in simulated samples are adjusted to match those observed in a high-yield low-background

sample of reconstructed Λ0
b → J/ψpK− decays. The finite size of this sample causes uncer-

tainty in the obtained Λ0
b production spectra. The systematic uncertainty in the efficiency

ratios, related to the imprecise knowledge of the production Λ0
b baryon spectra is estimated

– 8 –
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Source Rπ/K Rπ
2/1 RK

2/1

Fit model 2.4 3.7 3.7

Λ0
b production spectra < 0.1

Λ0
b → χcJpK− decay models < 0.1 < 0.1

Track reconstruction < 0.1

Hadron identification 0.3

Trigger efficiency 1.1

BDTG selection 2.0

Simulation sample size 0.4 0.6 0.7

Total 3.3 3.8 3.8

Table 2. Relative systematic uncertainties (in %) in the ratios of branching fractions. The total

uncertainty is obtained as the sum of individual components in quadrature. Empty cells correspond

to cases where no uncertainty is applicable.

using the variation of the kinematic spectra of the selected Λ0
b → J/ψpK− sample within

their statistical uncertainty. This systematic uncertainty is found to be smaller than 0.1%

in the Rπ/K ratio and even smaller for the Rπ
2/1 and RK

2/1 ratios.

The simulated Λ0
b → χcJpK− decays are corrected to reproduce the pK− mass and

cos θpK− distributions observed in data. The systematic uncertainty in the εΛ0

b
→χc1pK−

and εΛ0

b
→χc2pK− efficiencies, related to the imprecise knowledge of the decay model for

the Λ0
b → χcJpK− decays, is estimated using the variation of the pK− mass and cos θpK−

spectra within their uncertainties. The corresponding systematic uncertainties in the Rπ/K

and RK
2/1 ratios are found to be less than 0.1%.

There are residual differences in the reconstruction efficiency of charged-particle tracks

that do not cancel completely in the ratio due to the different kinematic distributions of

the final-state particles. The track-finding efficiencies obtained from simulated samples

are corrected using calibration channels [23]. The uncertainties related to the efficiency

correction factors, are propagated to the ratios of the total efficiencies using pseudoex-

periments and found to be smaller than 0.1% in the ratio Rπ/K and smaller in the ratios

Rπ
2/1 and RK

2/1. A small difference between data and simulation for the photon reconstruc-

tion is studied using a large sample of B+ → J/ψ
(

K∗+ → K+
(

π0 → γγ
))

decays [30, 40, 41]

The associated systematic uncertainty largely cancels in the ratios R.

The combined detector response used for the identification of protons, kaons and pions

in simulation is resampled from control channels [22]. The systematic uncertainty obtained

through this procedure arises from the kernel shape used in the estimation of the probability

density distributions. An alternative combined response is estimated using an alternative

kernel estimation with a changed shape and the efficiency models are regenerated [42, 43].

The difference between the two estimates for the efficiency ratios is taken as the systematic

uncertainty related to hadron identification and is found to be 0.3% in the ratio Rπ/K.

In the ratios Rπ
2/1 and RK

2/1 this systematic uncertainty cancels as it is assumed to be fully

correlated between the modes with χc1 and χc2 mesons.

– 9 –
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A systematic uncertainty in the ratios related to the knowledge of the trigger efficiencies

has been previously studied using high-yield B+ → J/ψK+ and B+ → ψ(2S)K+ decays

by comparing ratios of trigger efficiencies in data and simulation [44]. Based on these

comparisons, a relative uncertainty of 1.1% is assigned to Rπ/K, while for Rπ
2/1 and RK

2/1 it

is expected to cancel in the ratio due to resemblance of the kinematics of the corresponding

decay channels.

The imperfect data description by the simulation due to remaining effects is studied by

varying the BDTG selection criteria in ranges that lead to ±20% changes in the measured

efficiency. For this study, the high-statistics normalisation channel is used. The resulting

difference between the efficiency estimated using data and simulation does not exceed 2.0%,

which is taken as a systematic uncertainty in Rπ/K. This systematic uncertainty in Rπ
2/1

and RK
2/1 is considered negligible due to the similarity of the kinematics of the corresponding

decay channels.

Finally, the uncertainties in the ratios of efficiencies from eqs. (4.2) are 0.4%, 0.6%

and 0.7% and are taken as systematic uncertainties due to the finite size of the simulated

samples for the Rπ/K, Rπ
2/1 and RK

2/1, respectively.

For each choice of the fit model, the statistical significance of the Λ0
b → χc2pπ− signal

is calculated from data using Wilks’ theorem [35] and confirmed by simulating a large

number of pseudoexperiments. The smallest significance found is 3.5 standard deviations,

taken as its significance including systematic uncertainties.

6 Results and summary

A search for the Cabibbo-suppressed decays Λ0
b → χcJpπ− is performed using a data sample

collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy

of 13 TeV and corresponding to 6 fb−1 of integrated luminosity. The Λ0
b → χc1pπ− decay

is observed for the first time with a yield of 105 ± 16 and a statistical significance above

9 standard deviations. First evidence for the Λ0
b → χc2pπ− decay is obtained with a yield of

51 ± 16 and a significance of 3.5 standard deviations. The ratios of the branching fractions

are measured to be

Rπ/K =
B

(

Λ0
b → χc1pπ−

)

B
(

Λ0
b → χc1pK−

) = (6.59 ± 1.01 ± 0.22) × 10−2 ,

Rπ
2/1 =

B
(

Λ0
b → χc2pπ−

)

B
(

Λ0
b → χc1pπ−

) = 0.95 ± 0.30 ± 0.04 ± 0.04 ,

RK
2/1 =

B
(

Λ0
b → χc2pK−

)

B
(

Λ0
b → χc1pK−

) = 1.06 ± 0.05 ± 0.04 ± 0.04 ,

where the first uncertainty is statistical, the second is systematic and the third is related to

the uncertainties in the branching fractions of the χcJ → J/ψγ decays [29]. The ratio Rπ/K

is similar to analogous ratios for other Cabibbo-suppressed decays of the Λ0
b baryon [26, 45].

The expected value for the ratio Rπ/K, if neglecting the resonance structures in the

Λ0
b → χc1pπ− and Λ0

b → χc1pK− decays, is

Φ3
(

Λ0
b → χc1pπ−

)

Φ3
(

Λ0
b → χc1pK−

) × tan2 θC ≃ 9.9% ,
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where Φ3 denotes the full three-body phase space and θC is the Cabibbo angle [46].

The ratio RK
2/1 agrees well with the previous measurement by the LHCb collaboration

of 1.02 ± 0.10 ± 0.02 ± 0.05 [6]. This result has better precision and arises from a sta-

tistically independent sample from that of ref. [6]. Similarly to RK
2/1, the new result for

Rπ
2/1 shows no suppression of the χc2 mode relative to the χc1 mode, which challenges

the factorisation approach for Λ0
b decays [10].

The background-subtracted χc1p and χc1π
− mass distributions for the Λ0

b → χc1pπ−

decay are investigated. With the present dataset, the results are consistent with a phase

space model, and no evidence for contributions from exotic states is found.
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