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SUMMARY

To robustly assess the antibacterial mechanisms of nanotopographies, it is critical
to analyze the bacteria-nanotopography adhesion interface. Here, we utilize
focused ion beam milling combined with scanning electron microscopy to
generate three-dimensional reconstructions of Staphylococcus aureus or Escher-
ichia coliinteracting with nanotopographies. For the first time, 3D morphometric
analysis has been exploited to quantify the intrinsic contact area between each
nanostructure and the bacterial envelope, providing an objective framework
from which to derive the possible antibacterial mechanisms of synthetic nanoto-
pographies. Surfaces with nanostructure densities between 36 and 58 per pm?
and tip diameters between 27 and 50 nm mediated envelope deformation and
penetration, while surfaces with higher nanostructure densities (137 per pm?
induced envelope penetration and mechanical rupture, leading to marked reduc-
tions in cell volume due to cytosolic leakage. On nanotopographies with densities
of 8 per um? and tip diameters greater than 100 nm, bacteria predominantly
adhered between nanostructures, resulting in cell impedance.

INTRODUCTION

The nanostructures found on cicada and dragonfly wings are widely reported to induce physical stretching
of bacterial and fungal cell envelopes upon contact, leading to mechanical rupture, cell lysis, and death
(lvanova et al., 2012; Nowlin et al., 2014). The antimicrobial properties of insect wings have provided sig-
nificant inspiration for the design of synthetic nanostructures with bactericidal activity (Diu et al., 2014; Dun-
seath etal., 2019; Fisher et al., 2016; Hazell et al., 2018a, 2018b; Ishak et al., 2020; Jenkins et al., 2020). Deter-
mining the underlying mechanisms that drive bacterial cell death on synthetic nanotopographies is crucial,
as this will guide the rational design of medical implant surfaces that are resistant to biofilm formation.
Several biophysical models have been proposed to explain the mechanisms that drive this antimicrobial
phenomenon (lvanova et al., 2020; Li and Chen, 2016; Linklater et al., 2018; Pogodin et al., 2013; Xue
et al., 2015). Alongside the mechanistic theory of contact killing, several biological, chemical and physical
factors have been directly linked to promoting nanotopography-mediated antimicrobial activity, including
oxidative stress (Jenkins et al., 2020), microbial adhesion force (Bandara et al., 2017; Nowlin et al., 2014),
bacterial cell wall thickness (Hasan et al., 2013; Pogodin et al., 2013), chemical composition (Devlin-Mullin
etal., 2017, Ewald et al., 2006) and nanotopography geometry (Dewald et al., 2018; Diu et al., 2014; Hazell
et al., 2018a, 2018b; Liidecke et al., 2016; Velic et al., 2019; Watson et al., 2019).

Visualizing the cell-surface interface is crucial for elucidating the antibacterial mechanisms of a nanotopog-
raphy. Traditionally, these analyzes have been performed using scanning electron microscopy (SEM) (lva-
nova etal.,, 2012; Jenkins et al., 2018). However, this approach cannot resolve cellular ultrastructures such as
the bacterial cell wall and membranes. Furthermore, the area of nanotopography that interfaces with the
cell envelope is generally concealed from the incident electron beam, thereby restricting the study to sur-
face morphology, mostly in two dimensions. These limitations have prompted alternative techniques that
can visualize both nanotopography and bacterial ultrastructure at nanometer resolution; one such tech-
nique is focused ion beam scanning electron microscopy (FIB-SEM). Using this approach, biological spec-
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potential to generate three-dimensional (3D) volume reconstructions that enable all microbe-nanotopog-
raphy interactions to be visualized simultaneously (Jenkins et al., 2020).

With precise control over the exact location of surface ablation, FIB-SEM has proved a powerful tool for
directly visualizing the contact points between bacteria or fungi and nanotopographies (Bandara et al.,
2020; Bhadra et al., 2015; Dewald et al., 2018; Linklater et al, 2017, 2018; Liidecke et al., 2016). Two main
approaches have been utilized to investigate bacteria-nanotopography interactions via FIB-SEM. One
method involves generating thin sections, known as lamellae, through bacteria and the underlying nano-
topography. Lamellae can then be analyzed by transmission electron microscopy (Jenkins et al., 2018; Link-
lateretal., 2018). Alternatively, bacteria-nanotopography interactions can be investigated in situ, by gener-
ating single cross sections through bacterial cells adhered directly to the nanotopography. This approach
has been widely used to visualize the interactions between bacteria and individual nanostructures. FIB mill-
ing of Pseudomonas aeruginosa adhered to cicada wings revealed how natural nanostructures can rupture
the bacterial envelope, causing cells to submerge into the nanotopography (lvanova et al., 2012). Similarly,
FIB-SEM analysis of P. aeruginosa on dragonfly wing-inspired titanium nanostructures found membrane
deformation caused by the energy gain from surface attachment (Bhadra et al., 2015). Initial stretching
of Staphylococcus aureus and P. aeruginosa cell envelopes on black silicon (bSi) nanostructures has also
been discovered by FIB-SEM cross-sectional analysis (Linklater et al., 2018). Furthermore, FIB-SEM has
identified cytoplasmic leakage from Staphylococcus epidermidis cells caused by envelope penetration
from spear-like titanium nanostructures (Cao et al., 2018). Most recently, localized envelope deformation
and penetration of Escherichia coli and S. aureus cells incubated on TiO, nanostructures generated by
thermal oxidation was identified (Jenkins et al., 2020).

Although single cross sections generated by FIB milling reveal how bacterial envelope morphology
changes at the point of nanostructure contact, this approach does not enable the frequency of nanostruc-
ture-induced envelope deformation or penetration to be quantified at a single cell level. Furthermore, it
does not reveal the surface area of bacterial envelope that is in direct contact with each nanostructure
and to what degree this influences the extent of deformation and/or frequency of penetration. To compre-
hensively quantify these parameters, this study generated four surface types with distinct nanostructure ge-
ometries and utilized a slice-by-slice FIB-SEM milling approach to directly visualize the adhesion interface
between S. aureus or E. coli and individual nanostructures. Slice-by-slice FIB-SEM data were then used to
generate 3D volume reconstructions of whole bacteria in contact with the underlying nanotopography,
enabling all contact points between the bacterial envelope and nanostructures to be resolved simulta-
neously with nanometer resolution. This approach was previously impossible using conventional 2D imag-
ing tools. Furthermore, advances in 3D analysis software (Cocks et al., 2018; Jorstad et al., 2015) enabled
direct quantification of bacteria-nanotopography interactions, including the effective contact surface area
between each nanostructure and the bacterial envelope. These analyses demonstrate how this approach
canbe used to develop an objective framework from which the antibacterial mechanisms of synthetic nano-
topographies can be derived.

RESULTS

Fabrication and characterization of nanotopographies

Three nanofabrication methods were utilized to generate four nanotopographies that cover a broad range
of nanostructure geometries. The nanofabrication methods shown here have previously been used to
generate nanotopographies with bactericidal properties, these include alkaline hydrothermal treatment
(Cao et al.,, 2018; Diu et al., 2014), thermal oxidation (Jenkins et al, 2018, 2020; Sjéstrom et al., 2016), and
plasma etching (Dunseath et al., 2019; Hazell et al., 2018b). Alkaline hydrothermal treatment was used to
generate titanium dioxide (TiO,) nanostructures on commercially pure titanium discs (cpTi), measuring
approximately 500 nm in height and =50 nm in tip diameter, with a density of 36 per um?. These surfaces
are referred to as alkaline hydrothermal nanostructure medium (AH-NS-medium) (Figure 1A). Thermal
oxidation was used to generate two different TiO, nanostructure surfaces on grade 5 titanium alloy (Ti-
6Al-4V). One surface comprised shorter (350 nm £ 52 nm), sharper (27 nm + 4 nm), and more dense (58
per pm? + 3 per um?) nanostructures than AH-NS-medium, herein called thermal oxidation nanostructure
short (TO-NS-short) (Figure 1B), while the other comprised much longer nanostructures (1700 nm =+
347 nm), with increased tip diameter (114 nm £ 26 nm) and low density (8 per pum? + 1 per um?), referred
to as thermal oxidation nanostructure long (TO-NS-long) (Figure 1C). Plasma etching was used to generate
a nanotopography with the shortest (181 nm + 26 nm) and most dense (137 per um? + 6 per um?)
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Surface type Nanostructure height (nm) Nanostructure tip diameter (nm) Nanostructure density (per um?2)
IAH-NS-Medium 444 + 85 43+9 36+4
TO-NS-Short 350 + 52 27+4 58+3
TO-NS-Long 1700 + 347 114 + 26 81

PE-NS-Short 181 +54 50+ 6 137+£2

Figure 1. Characterization of TiO, nanostructure surfaces

Scanning electron micrographs of AH-NS-medium (A), TO-NS-short (B), TO-NS-long (C), or PE-NS-short (D) surfaces
visualized from top view or side view. AH-NS-medium surfaces were generated using the alkaline hydrothermal treatment
outlined in Methodology. TO-NS-short surfaces were generated at 715°C for 45 min and 300 standard cubic centimeters
per minute (SCCM) flow rate, while TO-NS-long surfaces were generated at 850°C for 45 min and 300 SCCM. PE-NS-short
surfaces were generated by plasma reactive ion etching. Average nanostructure height (nm), tip diameter (nm) and
density (per um?) for each surface (E) are shown.

nanostructures on bSi wafers (PE-NS-short) (Figure 1D). SEM was used to quantify the average dimensions
and densities of these different nanotopographies (Figure 1E).

FIB-SEM optimization

To determine sample stability during focused ion beam milling and the extent of beam-induced artifacts
introduced, single cross sections were first generated through individual E. coli or S. aureus cells on
different nanotopography types. Generating single cross sections through E. coli or S. aureus caused min-
imal movement of bacteria (Figure 2). Consistent with this, generating consecutive cross sections by a slice-
by-slice approach produced little sample movement; however, nanostructure charging caused bacteria to
move laterally across the field of view on longer nanostructures, resulting in only partial visualization of

iScience 24, 102818, July 23, 2021 3
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Figure 2. Focused ion beam milling of E. coli or S. aureus adhered to synthetic nanotopographies
Scanning electron micrographs of E. colior S. aureus adhered to AH-NS-medium, PE-NS-short, and TO-NS-long, before

(upper image) and after (lower image) focused ion beam milling.

bacteria-nanotopography interactions (Figure S1). To reduce sample movement during sequential ion
beam milling, a protective layer of platinum (0.5 um in thickness) was deposited on top of each bacterium
before slice-by-slice analysis. The addition of platinum greatly reduced bacterial cell drifting during slice-
by-slice ion beam milling and minimized curtaining artifacts, providing micrographs with enhanced defini-
tion (Figure S2).

Quantification of bacteria-nanotopography interactions

Area searches of each nanotopography type were performed using SEM to select individual E. coli or
S. aureus cells for analysis by focused ion beam milling. A combination of single cross-sectional analysis
and sequential ion beam milling were performed. Slice-by-slice ion beam milling was used to generate
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Figure 3. Cross-sectional analysis of E coli and S. aureus on AH-NS-medium surfaces

Asingle cross section was generated through E. coli (A) or S. aureus (B) without platinum deposition. The side of E. coliin
contact with nanostructures is concave, with the mid-cell positioned furthest away from the nanotopography. In contrast,
S. aureus is positioned on top of the nanotopography with no change in cell shape.

consecutive cross sections through selected E. coli and S. aureus cells. The micrographs collected during
sequential cross-sectional analysis were reconstructed into three-dimensional volumes to determine the
number of nanostructures in contact with each bacterium. Using these data, a framework was developed
to quantify the proportion of nanostructure-induced envelope deformation, penetration, and cell impe-
dence (Jenkins et al., 2020) on a single cell basis. In this study, deformation is defined as the process by
which nanostructures directly change bacterial envelope morphology, through indentation. When nano-
structures interact with the bacterial envelope with no change in morphology, this is defined as no effect.
Penetration is observed when nanostructures peirce through the bacterial envelope, while rupture is
defined as penetration combined with a loss of turgor pressure. Furthermore, the effective surface area
of bacterial envelope in contact with each nanostructure was determined, and the effect of each interaction
on cell morphology and size was investigated.

On AH-NS-medium surfaces, E. coliand S. aureus cells predominantly adhered on top of the nanostruc-
tures and mainly displayed continuous envelope morphologies with minimal evidence of deformation or
penetration. In one example, an E. coli cell interacting with nanostructures displayed a concave shape,
with the cell midpoint positioned higher above the nanotopography relative to the cellular poles, resulting
in very few points of nanostructure contact (Figure 3A). This morphology was not observed for S. aureus,
leading to more contact points with the nanotopography (Figure 3B). It was noted, however, in one
example, that the envelope of S. aureus cells on AH-NS-medium surfaces was slightly deformed, which
may indicate loss of turgor pressure (Figure 4A). To investigate these interactions in more detail, slice-
by-slice ion beam milling of two S. aureus cells was performed, and 3D reconstructions were generated
to determine whether nanostructures had deformed or penetrated the cell envelope (Figure 4B). Three-
dimensional reconstructions revealed three nanostructures interacting with S. aureus cell 1 and also for
S. aureus cell 2 (Figure 4C, Videos S1A and S1B). For S. aureus cell 1, two nanostructures (NS1, NS2) had
penetrated the envelope (Figures 4D and 4E), reaching depths inside the cell of 30.8 nm and 37.1 nm,
respectively (Figure 4H). Two nanostructures (NS4, NS5) had also penetrated the envelope of S. aureus
cell 2 (Figures 4F and 4G), with nanostructure tips located 45.9 nm and 49.9 nm inside the cell, respectively
(Figure 41). The remaining nanostructures interacting with S. aureus cells 1 and 2 (NS3, NS6) had no effect on
cell morphology and interacted with 225 nm? and 237 nm? of the cell envelope respectively, representing
less than 0.015% of the total cell surface area. Despite multiple nanostructures penetrating the envelope of
S. aureus cells 1 and 2, there was no evidence of cytosolic leakage, indicating that neither cell lost signif-
icant turgor pressure due to nanostructure penetration.

To determine whether nanostructure-induced envelope penetration occurred in other S. aureus cells
adhered to AH-NS-medium surface, slice-by-slice ion beam milling was performed on additional
S. aureus cells with similar envelope morphologies (Figure 5A). Slice-by-slice analysis revealed a total of
three nanostructures in contact with S. aureus cell 1 and three nanostructures in contact with S. aureus
cell 2 (Figure 5B, Videos S2A and S2B). For S. aureus cell 1, two nanostructures had deformed the envelope
(NS1, NS2), interacting with 463 nm? and 147 nm? of the cell envelope, respectively. The remaining nano-
structure (NS3) had no effect on envelope morphology, interacting with 248 nm? of the cell envelope. In
contrast, the envelope of S. aureus cell 2 was penetrated by one nanostructure (NS4) to a depth of
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Figure 4. Evidence of nanostructures penetrating and deforming the S. aureus cell envelope

Top view SEM of two S. aureus cells interacting with AH-NS-medium surfaces (A) and 3D reconstruction (B and C). Analysis of S. aureus cross section (D) #15
(nanostructure [NS] 1 of cell 1), (E) #25 (NS2 of cell 1), (F) #51 (NS4 of cell 2), and (G) #53 (NS5 of cell 2) showed that a significant portion of each nanostructure
had penetrated (white arrows indicate the tip of the nanostructure) into the bacterial envelope by 30.8 nm, 37.1 nm, 45.9 nm and 49.9 nm, respectively. This is
clearly shown in the 3D reconstruction (H and I).

74.7 nm (Figure 5C). A further nanostructure (NS5) had deformed the bacterial envelope and NS6 had no
effect on morphology, interacting with 2926 nm? and 155 nm? of the cell envelope, respectively. Consistent
with the previous S. aureus cell slice-by-slice analysis, envelope penetration did not result in a loss of turgor
pressure. In contrast to S. aureus, there was no evidence that AH-NS-medium surfaces had penetrated the
envelope of E. coli and only localized deformation of the cell envelope was observed by generating single
cross sections (Figure S3).

Nanostructures generated via alkaline hydrothermal treatment (AH-NS-medium) were slightly longer
(444 nm £ 85 nm) and wider at the tip (43 nm £ 9 nm) than the nanostructures found on TO-NS-short sur-
faces, which displayed average lengths of 350 nm + 52 nm and a tip diameter measuring 27 nm + 4 nm.
Consistent with AH-NS-medium surfaces, E. coli cells attached to TO-NS-short surfaces displayed a
concave morphology. In one example, the cellular poles of E. coli had deformed into the nanotopography,
while the mid-cell was suspended above the nanotopography (Figure 6A). Slice-by-slice analysis revealed a
total of 8 nanostructures in contact with the cell (Figure 6B, Videos S3A and S3B). Two nanostructures (NS2
and 4) interacted with the side of E. coli cell at the same position without penetrating (Figures 6C and 6D),
causing the envelope to deform by over 50 nm (Figure 4E). At the cell midpoint, a single nanostructure
(NS6) had penetrated the bacterial envelope by 52 nm, without loss of turgor pressure (Figures 6F and
6G). A further nanostructure (NS8) at the cell pole had penetrated the bacterial envelope by 37 nm (Fig-
ure 6H). Of note, all eight nanostructures shared a common orientation with respect to the E. coli envelope,
but only NS6 and NS8 had penetrated the cell, indicating that the point of nanostructure contact along the
bottom of the bacterial envelope may be significant in determining the likelihood of penetration. NS2 and
NS4 interacted with the side of the E. coli cell via the nanostructure tip, causing only envelope deformation.
The remaining four nanostructures interacted with the side of E. coli but rather than interacting via the
nanostructure tips, the side wall of nanostructures formed the point of contact. For S. aureus, no evidence
of envelope deformation or penetration was observed on TO-NS-short surfaces but in some cases, cells
adhered between nanostructures, giving rise to possible cell impedance (Figure S4).

6 iScience 24, 102818, July 23, 2021
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Figure 5. 3D FIB-SEM reconstruction of S. aureus on AH-NS-medium surfaces

SEM micrographs of S. aureus cells before automated FIB-SEM cross-sectional analysis was performed (A and D). (B) Six
nanostructures directly interacted with two S. aureus cells (i and ii). It was found that 3 nanostructures (NS1, 2, 5) caused
cell envelope deformation (E and F), while NS4 penetrated the cell by 74.7 nm (C and E).

Similar to TO-NS-short surfaces, the nanotopography of PE-NS-short surfaces consisted of short (181 nm +
26 nm) and densely packed (137 per um? + 6 per pm?) nanostructures, measuring 50 nm + 6 nm in diam-
eter. In contrast to the other nanotopographies, which comprised randomly orientated nanostructures, PE-
NS-short nanostructures were aligned in the same vertical direction. Area searches using SEM identified a
single E. coli cell with significant envelope deformation, synonymous with loss of cytosolic content (Figures
7A-7D). Sequential cross-sectional analysis revealed a total of 24 nanostructures in contact with the E. coli
cell envelope (Videos 4SA and 4SB). Three-dimensional reconstructions and morphometric analysis re-
vealed that two nanostructures (NS1 and NS2) had penetrated the E. coli envelope to depths of
29.51 nm and 24.14 nm, respectively, which may have caused the significant deformation observed (Figures
7E and 7F). The majority of nanostructures (92%) did not penetrate the bacterial envelope, interacting with
a total collective surface area of 9000 nm?, which corresponds to 0.42% of the total bacterial cell surface
area.

In contrast to the other surfaces, for TO-NS-long nanotopographies, E. coli and S. aureus cells predomi-
nantly adhered between adjacent nanostructures, leading to nanostructure-induced cell impedance for
both. In one example, an E. coli cell expressing significant numbers of fibril-like appendages had adhered
between nanostructures (Figures 8A and 8C). Slice-by-slice analysis of the E. coli cell identified three nano-
structures in direct contact with the side of the E. coli cell (Figure 8, Videos 5SA and 5SB). The combined
surface area of the three nanostructures in contact with the bacterial envelope was 0.026 umz, collectively
interacting with less than 1% of the total cell envelope surface area (14.9 um?). Although none of the nano-
structures had penetrated the bacterial envelope, their positioning on either side of the E. colicell could be
expected to have acted as a physical barrier that may have prevented cell division. Consistent with this, the
dimensions of the E. coli cell were highly abnormal, measuring approximately 4 um in length and 1 um in

iScience 24, 102818, July 23, 2021 7



¢? CellPress

OPEN ACCESS

_Ptlayer

Cytosol ‘ Cytosol

NS8

200 nm 200 nm
——

Figure 6. 3D FIB-SEM reconstruction of E. coli on TO-NS-short surfaces

Automated FIB-SEM cross-sectional analysis was performed on an E. coli cell (A and B). The focused ion beam produced
80 cross sections (30 nm each) that were imaged and reconstructed in Avizo. Analysis of E. coli cross section #32 showed
that NS1 had deformed the bacterial envelope without rupture or penetration (C); this is clearly shown in the 3D
reconstruction (D and E). Analysis of E. coli cross section #42 and #63 showed that NS3 and NS8 had penetrated the
bacterial envelope by 52 nm and 37 nm, respectively (F-H).

diameter (Figure S6). The combination of abnormally large size and absence of cell division septa support
our hypothesis of cell impedance and may indicate a nanotopography-induced bacterial stress response,
as previously identified (Jenkins et al., 2020). Evidence of nanotopography-induced cell impedance was
also observed for S. aureus attached to TO-NS-long surfaces. Cross-sectional analysis revealed no evi-
dence of envelope deformation or penetration (Figure S5). In contrast to AH-NS-medium, TO-NS-short,
and PE-NS-short surfaces, where the interface between nanotopography and bacteria was primarily
formed between the nanostructure tips and the underside of the bacterial cell, for TO-NS-long surfaces,
these interactions mostly occurred between the sides of the nanostructures and bacterial cells (Figure 9).
In S. aureus, the depth of nanostructure penetration varied from 34 nm to 75 nm, while in E. coli depths
between 27 nm and 45 nm were observed. Additionally, the depth of deformation in the S. aureus envelope
was 38 nm-64 nm while in E. coli deformation from 51 nm to 243 nm was observed. Since these measur-
ments were recorded from different nanotopographies, and different cell numbers, it is unclear whether
nanotopography geometries (i.e. density, tip diameter or height) significantly influenced penetration or
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Figure 7. Evidence of potential nanostructure-induced cell impedance of E. coli on PE-NS-short surfaces

SEM micrographs of E. coli cell before FIB-SEM milling (A and B). Cross-sectional analysis of (C) slice #11 (NS1) and (D)
slice #18 (NS2) highlights that two nanostructures penetrated the bacterial envelope by 29.5 nm and 24.1 nm, respectively.
(E) 3D reconstruction shows the location of the penetrated nanostructures inside the cell, which could have led to the
significant change in cell morphology shown in (F).

deformation depth. Additional research on a larger sample size is required to more comprehensively
assess this. The quantitative data derived from each 3D model are presented in Table 1.

DISCUSSION

Itis generally accepted that the antibacterial activity of natural and synthetic nanotopographies is driven by
physical contact with nanostructures (i.e. nanowires, nanopillars, nanocones, nanospikes, nanospears). This
canresult in penetration or rupture of the bacterial cell envelope, or damage can be inflicted via cell imped-
ance or induction of oxidative stress responses (Jenkins et al., 2020; Linklater et al., 2021; Tripathy et al.,
2017). Visualizing the adhesion interface between bacteria and nanotopographies is thus of critical impor-
tance for determining by which mechanisms they mediate their antibacterial effects. In this study, we uti-
lized an FIB-SEM method for directly viewing, in three-dimensional space, physical interactions between
the cell envelope of S. aureus or E. coli and four nanotopographies of different geometries (AH-NS-me-
dium, PE-NS-short, TO-NS-short or TO-NS-long). Morphometric analysis was performed to quantify these
interactions. The first published morphometric analysis of 3D volume reconstructions generated by FIB-
SEM was of brain cells (Jorstad et al., 2015). In this study, Jorstad et al. recognized that a gap exists between
rapid 3D volume reconstruction techniques, such as slice-by-slice FIB milling, and software for model quan-
tification; analyses that have previously been achieved via manual segmentation methods. Similarly, gener-
ating a 3D model of bacteria interacting with nanostructured surfaces may provide additional qualitative
insights, but does not directly provide morphometric data. Therefore, we utilized NeuroMorph software
package to quantify morphometric parameters of bacteria-nanotopography interactions, including the
intrinsic contact area of the nanostructured surface with the bacterial cell envelope and the bacterial cell
volume.

The number of bacteria-nanotopography interactions correlated with nanotopography density, with PE-
NS-short surfaces displaying the highest number of physical points of contact (24 interactions per cell)
and TO-NS-long nanotopographies having the lowest (3 interactions per cell). However, number of contact
points did not correspond to frequency of nanostructure-induced envelope penetration. Rather, nanoto-
pographies with reduced nanostructure density (TO-NS-short and AH-NS-medium) exhibited higher levels

iScience 24, 102818, July 23, 2021 9
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Figure 8. 3D FIB-SEM reconstruction of E coliimpedance on TO-NS-long surfaces

Automated FIB-SEM cross-sectional analysis was performed on an E. coli cell (A and C) that was pinned between three
nanostructures (NS1, 3 and 4) after incubation on a TO-NS-long surface for 3 hr (E-H). There was no evidence of envelope
deformation or penetration, and no indication of cytosolic leakage, as the width of the E. coli cell remained constant from
pole to pole (B, D, I, and J).

of nanostructure-induced envelope penetration (25% and 66%, respectively) compared with PE-NS-short
(8%). One possible explanation for this could be the relative surface area of bacterial envelope that nano-
structures interact with simultaneously. From the bacteria analyzed in this study, nanostructures on PE-NS-
short surfaces interacted with <1% of the total bacterial surface area, while on AH-NS-medium and TO-NS-
short nanotopographies, the surface area of physical contact was 3.5-22 times greater. It is also possible
that these differences were influenced by nanostructure orientation and/or the simultaneous variation in
height or tip diameter between nanotopographies, which affects the precise contact point with the bacte-
rial envelope and forces exerted. Although nanostructure tip diameter is generally greater on PE-NS-short
surfaces compared with AH-NS-medium and TO-NS-short surfaces, the nanostructures have the same
orientation and a much higher density, meaning that bacteria-nanotopography interactions will be medi-
ated by the nanostructure tips. In contrast, nanostructure orientation on all the other surface types was
random, giving rise to bacteria-nanotopography interactions that were mediated by nanostructure tips
and/or nanostructure sidewalls.

In this study, analysis of three-dimensional reconstructions of E. coli on PE-NS-short surfaces revealed
nanostructure-mediated envelope penetration and significant loss of turgor pressure, indicating that the
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Figure 9. Evidence of potential nanostructure-induced cell impedance on TO-NS-long surfaces
SEM micrographs of E. coli cell before FIB-SEM milling (A and B). Cross-sectional analysis highlights that E. coliis pinned
between two nanostructures (NS1-NS2) (C). The cross section through E. coliis highlighted in green with a white outline.

cell wall may have been ruptured, as predicted by the biophysical model (Li, 2015; Pogodin et al., 2013; Xue
et al., 2015). However, due to the resolution limit of FIB-SEM, no qualitative evidence of cell wall rupturing
was identified. Evidence of nanostructure-mediated envelope penetration was also observed on AH-NW-
short and TO-NS-short nanotopographies, but this did not result in cell rupture or loss of turgor pressure.
One possible explanation for this observation could be the increased nanostructure density on PE-NS-
short surfaces, which would lead to more points of contact with the bacterial envelope. Combined with en-
velope penetration, this could result in the cell rupturing. Current dogma infers that bacterial cells rupture
interstitially between nanopillars (lvanova et al., 2012). Rather, our observations suggest that cumulative
levels of envelope penetration or simply deformation localized at the bacterium-nanostructure tip interface
could be a principal driver of physical damage and subsequent antibacterial activity. This is consistent with
our previous studies (Jenkins et al., 2020) and is supported by recent modeling that indicates that envelope
deformation around nanopillar tips delivers sufficient in-plane strain to locally damage and penetrate bac-
teria (Velic et al., 2021). It is also possible that the biophysical model is only applicable to cicada wing-like
nanotopographies such as PE-NS-short, where nanostructure height, spacing, and diameter are more uni-
form across the surface, whereas dragonfly wing-like nanotopographies, including AH-NS-medium, TO-
NS-short and TO-NS-long, display uneven distribution of height, density, and tip diameter. Thus, stretch-
ing and rupturing of the suspended bacterial cell wall may be unlikely on surfaces comprising nanostruc-
tures of random height and orientation.

Morphometric analysis of the 3D volume reconstructions revealed a strong correlation between cell imped-
ance and cell dimensions. Cell impedance was observed for S. aureus cells incubated on TO-NS-short sur-
faces but not for E. coli. One possible explanation for these differences is the size and shape of E. coli rela-
tive to S. aureus. Based on the longer, elongated shape and larger surface area of E. coli cells, it is more
likely for adhesion to occur on top of the nanostructures rather than in-between. Furthermore, nanotopog-
raphy density influenced the likelihood of cell impedance, since E. coli cells were mostly found to adhere
between nanostructures on TO-NS-long surfaces, where nanostructure spacing was generally greater than
the width of E. coli cells (=500 nm). In contrast, the smaller cell diameter and coccoid morphology of
S. aureus increased the likelihood of attachment between nanostructures, irrespective of surface type.
These findings are consistent with previous literature investigating the effects of microtopography on mi-
crobial retention. Titanium surfaces with 0.5 um-2 um pit sizes were found to retain significantly more
S. aureus cells compared to P. aeruginosa or Candida albicans following 1 hr incubation, owing to the
smaller diameter of S. aureus (Whitehead et al., 2005). A similar mechanism was recently observed on tita-
nium nanostructure surfaces with pocket-like formations. S. epidermidis cells were found to settle inside
the pockets, limiting biofilm growth (Cao et al., 2018). Considering these findings, it is reasonable to hy-
pothesize that cell impedance would occur more frequently with smaller bacterial cells, such as
S. aureus, according to the relative dimensions of bacteria and nanostructure. Other factors, including
cell surface charge and hydrophobicity, may have also influenced bacterial adhesion to nanostructured sur-
faces (Krasowska and Sigler, 2014).

¢? CellPress

OPEN ACCESS

iScience 24, 102818, July 23, 2021 11




4"

120z '€Z AInf ‘818201 bz 82usIdg!

SS300V N3dO

Table 1. Quantitative analyses of bacteria-nanotopography interactions

Depth of
Envelope  Cell No. penetrating  No. Depth of No. Total Nanopillar ~ Contact
surface volume penetrating nanostructure deforming deformation impeding points of tip contact surface
Bacteria Nanotopography Figure area (umz) (um3) and % (nm) and % (nm) and % contact area (nm?) area (%)
S.aureus 1 AH-NS-medium 4 1.5 0.14 2 66.66 33.95* 0 0 - 0 0 S 225 0.01
S. aureus 2 AH-NS-medium 4 1.6 0.16 2 66.66 47.90* 0 0 - 0 0 3 237 0.01
S. aureus 1 AH-NS-medium 5 2.3 0.31 0 0 - 2 66.66 38 0 0 3 858 0.04
S. aureus 2 AH-NS-medium 5 2.1 0.28 1 33.33 74.70 1 33.33 64 0 0 3 3081 0.14
E. coli TO-NS-short 6 5.5 0.72 2 25 44.50* 2 25 51 4 50 8 60,958 10.60
E. coli PE-NS-short 7 2.3 0.23 2 8 26.83* 5 21 243 0 0 24 9001 0.43
E. coli TO-NS-long 8 14.9 3.35 0 0 - 0 0 - 3 100 3 62,630 0.18

Quantitative analyses were performed on each 3D model derived from slice-by-slice FIB-SEM analysis, providing an objective framework from which to derive the possible bactericidal mechanisms of each
nanotopography. Definitions for each parameter are indicated below.

Envelope surface area (umz) - the total surface area of bacterial envelope, expressed in um.2.

Cell volume (um?) — the total volume of each bacteria, expressed in um.2.

No. penetrating and % — The number of nanostructures penetrating the bacterial envelope, represented as a single integer and percentage of the total number of nanostructures interacting with the cell.
Depth of penetrating nanostructure (nm) — The depth of nanostructure penetration. Averages were calculated for cells with multiple nanostructure penetrations.

No. deforming and % — The number of nanostructures deforming the bacterial envelope, represented as a single integer and percentage of the total number of nanostructures interacting with the cell.
Depth of deformation (nm) — The depth of envelope deformation. Averages were calculated for cells with multiple envelope deformations.

No. impeding and % — The number of nanostructures impeding the bacterial envelope, represented as a single integer and percentage of the total number of nanostructures interacting with the cell.
Total points of contact — The total number of bacteria-nanotopography interactions.

Nanopillar tip contact area (um?) — The total surface area of nanopillar interacting with the bacterial envelope, expressed in pm?. Calculated by summing individual nanopillar tip contact areas.

Contact surface area (%) — The proportion of the bacterial cell envelope interacting with nanostructure tips, expressed as a percentage of the total bacterial envelope surface area.
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The FIB-SEM method presented in this study enabled physical contact points between bacteria and nano-
topography to be visualized. This method was applied to a range of nanotopographies of varying nano-
structure geometries and composition. The staining protocol used here enabled the envelope of
S. aureus and E. colito be resolved with nanometer resolution and was clearly distinguishable from the bac-
terial cytosol. A further advantage of this approach was that cross sections could be generated through
bacteria at any desired location, enabling all points of contact between bacteria and nanotopography
to be resolved. Additionally, by performing sequential slice-by-slice ion beam milling, three-dimensional
volume reconstructions could be generated to allow 360° visualization and quantification of the morpho-
metric information. The data generated from these analyses demonstrate how a framework for quantifying
bacteria-nanostructure interface interactions can be developed to better assess the antibacterial mecha-
nisms of nanotopographies. We anticipate that the FIB-SEM approach highlighted in this study could be
widely used to progress our mechanistic understanding of nanotopography-mediated antibacterial
activity.

Limitations of the study

The cross-sectional analyses of E. coliand S. aureus in contact with nanostructured surfaces performed in
this study are representative of a single time point (3-hr surface incubation). This study explored two bac-
terial species only, future research should include a greater variety of microorganism in both planktonic and
biofilm phases of growth. Owing to cost and limited access to FIB-SEM equipment, and long data collec-
tion times for each bacteria, the analyses and conclusions in this study are representative of a small sample
size of seven bacteria, which the authors recognize is a limitation. Additional access to FIB-SEM equipment
is required to assess the morphological changes more comprehensively in Gram-negative and Gram-pos-
itive bacteria over a broader time range.

STARXMETHODS

Detailed methods are provided in the online version of this paper and include the following:

o KEY RESOURCES TABLE
o RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
o EXPERIMENTAL MODEL AND SUBJECT DETAILS
O Bacterial strains and culture conditions
o METHOD DETAILS
O Thermal oxidation
Alkaline hydrothermal treatment
Plasma etching
FIB-SEM sample preparation
Sequential ion beam milling
O FIB-SEM image processing and 3D volume reconstruction
o QUANTIFICATION AND STATISTICAL ANALYSIS
O Morphometric analysis of 3D models
o ADDITIONAL RESOURCES

O O OO0

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102818.

ACKNOWLEDGMENTS

We acknowledge funding from the Medical Research Council (MRC) Doctoral Training Program (J.J.). B.S.
and A.H.N. would like to thank the MRC for funding (MR/N010345/1 & MR/S010343/1). We thank Wolfson
Bio-imaging Facility at the University of Bristol for their help with electron microscopy. We thank the Henry
Royce Institute for FIB-SEM access funding. This research project has received funding from the EU H2020
framework programme for research and innovation under grant agreement n. 654360, having benefitted
from the access provided by DESY NanoLab in Hamburg (Germany) within the framework of the NFFA-Eu-
rope Transnational Access Activity.

¢? CellPress

OPEN ACCESS

iScience 24, 102818, July 23, 2021 13




¢? CellPress

OPEN ACCESS

AUTHOR CONTRIBUTIONS

iScience

J.J. wrote the manuscript and contributed to editing of the manuscript, fabricated titanium nanostructured
surfaces by thermal oxidation, analyzed and interpreted FIB-SEM data. M.1.I. contributed to editing of the
manuscript and analyzed and interpreted FIB-SEM data. M.E. generated titanium nanostructure surfaces
using alkaline hydrothermal processing. B.S. and A.H.N. conceived the project and contributed to the edit-
ing of the manuscript. A.G. and S.K. collected FIB-SEM data and T.F.K. contributed to editing of the manu-
script. P.W.M. fabricated black silicon nanostructured surfaces by plasma etching.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 7, 2020
Revised: March 4, 2021
Accepted: July 2, 2021
Published: July 23, 2021

REFERENCES

Baba, T., Bae, T., Schneewind, O., Takeuchi, F.,
and Hiramatsu, K. (2008). Genome sequence of
Staphylococcus aureus strain Newman and
comparative analysis of staphylococcal genomes:
polymorphism and evolution of two major
pathogenicity islands. J. Bacteriol. 190, 300-310.
https://doi.org/10.1128/JB.01000-07.

Bandara, C.D., Ballerin, G., Leppénen, M.,
Tesfamichael, T., Ostrikov, K.K., and Whitchurch,
C.B. (2020). Resolving bio-nano interactions of
E. coli bacteria-dragonfly wing interface with
helium ion and 3D-structured illumination
microscopy to understand bacterial death on
nanotopography. ACS Biomater. Sci. Eng. 4,
3925-3932. https://doi.org/10.1021/
acsbiomaterials.9b01973.

Bandara, C.D., Singh, S., Afara, 1.O., Wolff, A,
Tesfamichael, T., Ostrikov, K., and Oloyede, A.
(2017). Bactericidal effects of natural
nanotopography of dragonfly wing on
Escherichia coli. ACS Appl. Mater. Interface 9,
6746-6760. https://doi.org/10.1021/acsami.
6b13666.

Bhadra, C.M., Khanh Truong, V., Pham, V.T.H., al
Kobaisi, M., Seniutinas, G., Wang, J.Y., Juodkazis,
S., Crawford, R.J., and Ivanova, E.P. (2015).
Antibacterial titanium nano-patterned arrays
inspired by dragonfly wings. Sci. Rep. 5, 16817.
https://doi.org/10.1038/srep16817.

Blattner, F.R., Plunkett, G., Bloch, C.A., Perna,
N.T., Burland, V., Riley, M., Collado-Vides, J.,
Glasner, J.D., Rode, CK., Mayhew, G.F., et al.
(1997). The complete genome sequence of
Escherichia coli K-12. Science 277, 1453-1462.
https://doi.org/10.1126/science.277.5331.1453.

Cao, Y., Su, B., Chinnaraj, S., Jana, S., Bowen, L.,
Charlton, S., Duan, P., Jakubovics, N.S., and
Chen, J. (2018). Nanostructured titanium surfaces
exhibit recalcitrance towards Staphylococcus
epidermidis biofilm formation. Sci. Rep. 8, 1071.
https://doi.org/10.1038/s41598-018-19484-x.

Cocks, E., Taggart, M., Rind, F.C., and White, K.
(2018). A guide to analysis and reconstruction of
serial block face scanning electron microscopy
data. J. Microsc. 270, 217-234. https://doi.org/10.
1111/jmi.12676.

14 iScience 24, 102818, July 23, 2021

Devlin-Mullin, A., Todd, N.M., Golrokhi, Z., Geng,
H., Konerding, M.A., Ternan, N.G., Hunt, J.A.,
Potter, R.J., Sutcliffe, C., Jones, E., et al. (2017).
Atomic layer deposition of a silver nanolayer on
advanced titanium orthopedic implants inhibits
bacterial colonization and supports vascularized
de Novo bone ingrowth. Adv. Healthc. Mater. 6,
1-14.

Dewald, C., Liidecke, C., Firkowska-Boden, I.,
Roth, M., Bossert, J., and Jandt, K.D. (2018). Gold
Nanoparticle contact point density controls
microbial adhesion on gold surfaces. Colloids
Surf. B Biointerfaces 163, 201-208. https://doi.
0rg/10.1016/j.colsurfb.2017.12.037.

Diu, T., Faruqui, N., Sjéstrém, T., Lamarre, B.,
Jenkinson, H.F., Su, B., and Ryadnov, M.G. (2014).
Cicada-inspired cell-instructive nanopatterned
arrays. Sci. Rep. 4, 7122. https://doi.org/10.1038/
srep07122.

Dunseath, O., Smith, E.J.W., Al-Jeda, T., Smith,
J.A., King, S., May, P.W., Nobbs, A.H., Hazell, G.,
Welch, C.C., and Su, B. (2019). Studies of Black
Diamond as an antibacterial surface for Gram
Negative bacteria: the interplay between
chemical and mechanical bactericidal activity. Sci.
Rep. 9, 8815. https://doi.org/10.1038/s41598-
019-45280-2.

Ewald, A., Gliickermann, S.K., Thull, R., and
Gbureck, U. (2006). Antimicrobial titanium/silver
PVD coatings on titanium. BioMedical Eng.
Online 5, 22. https://doi.org/10.1186/1475-925X-
5-22.

Fisher, L.E., Yang, Y., Yuen, M.-F., Zhang, W.,
Nobbs, A.H., and Su, B. (2016). Bactericidal
activity of biomimetic diamond nanocone
surfaces. Biointerphases 11, 011014. https://doi.
org/10.1116/1.4944062.

Hasan, J., Crawford, R.J., and lvanova, E.P. (2013).
Antibacterial surfaces: the quest for a new
generation of biomaterials. Trends Biotechnol.
31, 295-304. https://doi.org/10.1016/j.tibtech.
2013.01.017.

Hazell, G., Fisher, L.E., Murray, W.A., Nobbs,
A.H., and Su, B. (2018a). Bioinspired bactericidal
surfaces with polymer nanocone arrays. J. Colloid

Interface Sci. 528, 389-399. https://doi.org/10.
1016/.jcis.2018.05.096.

Hazell, G., May, P.W., Taylor, P., Nobbs, AH.,
Welch, C.C., and Su, B. (2018b). Studies of black
silicon and black diamond as materials for
antibacterial surfaces. Biomater. Sci. 6, 1424—
1432. https://doi.org/10.1039/c8bm00107c.

Ishak, M.I., Liu, X., Jenkins, J., Nobbs, A.H., and
Su, B. (2020). Protruding nanostructured surfaces
for antimicrobial and osteogenic titanium
implants. Coatings 10, 1-19. https://doi.org/10.
3390/COATINGS10080756.

Ivanova, E.P., Hasan, J., Webb, H.K., Truong, V.K.,
Watson, G.S., Watson, J.A., Baulin, V.A., Pogodin,
S., Wang, J.Y., Tobin, M.J., et al. (2012). Natural
bactericidal surfaces: mechanical rupture of
Pseudomonas aeruginosa cells by cicada wings.
Small 8, 2489-2494. https://doi.org/10.1002/smll.
201200528.

Ivanova, E.P., Linklater, D.P., Wernerc, M., Baulin
Vladimir, A., Xu, X., Vrancken, N., Rubanov, S.,
Hanssen, E., Wandiyanto, J., Truong, V.K,, et al.
(2020). The multi-faceted mechano-bactericidal
mechanism of nanostructured surfaces
contributed to elastic modeling analysis. Proc.
Natl. Acad. Sci. 117, 12598-12605. https://doi.
org/10.1073/pnas.1916680117/-/
DCSupplemental.

Jenkins, J., Mantell, J., Neal, C., Gholinia, A.,
Verkade, P., Nobbs, A.H., and Su, B. (2020).
Antibacterial effects of nanopillar surfaces are
mediated by cell impedance, penetration and
induction of oxidative stress. Nat. Commun. 11,
1626. https://doi.org/10.1038/s41467-020-15471-
X.

Jenkins, J., Nobbs, A.H., Verkade, P., Su, B., 2018.
Characterisation of Bactericidal Titanium
Surfaces Using Electron Microscopy, Microscopy
and Analysis (EMEA lIssue).

Jorstad, A., Nigro, B., Cali, C., Wawrzyniak, M.,
Fua, P., and Knott, G. (2015). NeuroMorph: a
toolset for the morphometric analysis and
visualization of 3D models derived from electron
microscopy image stacks. Neuroinformatics 13,
83-92. https://doi.org/10.1007/512021-014-
9242-5.



iScience

Krasowska, A., and Sigler, K. (2014). How
microorganisms use hydrophobicity and what
does this mean for human needs? Front. Cell.
Infect. Microbiol. 4, 112. https://doi.org/10.3389/
fcimb.2014.00112.

Li, X. (2015). Bactericidal mechanism of
nanopatterned surfaces. Phys. Chem. Chem.
Phys. 18, 1311-1316. https://doi.org/10.1039/
c5cp05646b.

Li, X., and Chen, T. (2016). Enhancement and
suppression effects of a nanopatterned surface
on bacterial adhesion. Phys. Rev. E 93, 052419.
https://doi.org/10.1103/PhysRevE.93.052419.

Linklater, D.P., Baulin, V.A., Juodkazis, S.,
Crawford, R.J., Stoodley, P., and Ivanova, E.P.
(2021). Mechano-bactericidal actions of
nanostructured surfaces. Nat. Rev. Microbiol. 19,
8-22. https://doi.org/10.1038/s41579-020-0414-z.

Linklater, D.P., de Volder, M., Baulin, V.A,,
Werner, M., Jess|, S., Golozar, M., Maggini, L.,
Rubanov, S., Hanssen, E., Juodkazis, S., and
Ivanova, E.P. (2018). High aspect ratio
nanostructures kill bacteria via storage and
release of mechanical energy. ACS Nano 12,
6657-6667. https://doi.org/10.1021/acsnano.
8b01665.

Linklater, D.P., Juodkazis, S., Rubanov, S., and
Ivanova, E.P. (2017). Comment on "“bactericidal
effects of natural nanotopography of dragonfly
wing on Escherichia coli”. ACS Appl. Mater. Inter.

9, 29387-29393. https://doi.org/10.1021/acsami.
7b05707.

LiYu, C., Goldberg, M., Richardson, C., Gruber,
M.D., JianSheng, G., Leische, M.N., Muller, W.,
Rensing, K., BoTao, Z., 2014. Application Booklet
Leica EM CPD300 Automated Critical Point Dryer.

Ludecke, C., Roth, M., Yu, W., Horn, U., Bossert,
J., and Jandt, K.D. (2016). Nanorough titanium
surfaces reduce adhesion of Escherichia coli and
Staphylococcus aureus via nano adhesion points.
Colloids Surf. B Biointerfaces 145, 617-625.
https://doi.org/10.1016/j.colsurfb.2016.05.049.

Nowlin, K., Boseman, A., Covell, A., and
LaJeunesse, D. (2014). Adhesion-dependent
rupturing of Saccharomyces cerevisiae on
biological antimicrobial nanostructured surfaces.
J.R. Soc. Interface 12, 20140999. https://doi.org/
10.1098/rsif.2014.0999.

Pogodin, S., Hasan, J., Baulin, V.A., Webb, H.K.,
Truong, V.K., Phong Nguyen, T.H., Boshkovikj, V.,
Fluke, C.J., Watson, G.S., Watson, J.A,, et al.
(2013). Biophysical model of bacterial cell
interactions with nanopatterned cicada wing
surfaces. Biophys. J. 104, 835-840. https://doi.
org/10.1016/}.bp;.2012.12.046.

Sjostrém, T., Nobbs, A.H., and Su, B. (2016).
Bactericidal nanospike surfaces via thermal
oxidation of Ti alloy substrates. Mater. Lett. 167,
22-26. https://doi.org/10.1016/j.matlet.2015.12.
140.

¢? CellPress

OPEN ACCESS

Tripathy, A., Sen, P., Su, B., and Briscoe, W.H.
(2017). Natural and bioinspired nanostructured
bactericidal surfaces. Adv. Colloid Interface Sci.
248, 85-104. https://doi.org/10.1016/j.cis.2017.
07.030.

Velic, A., Hasan, J., Li, Z., and Yarlagadda,
P.K.D.V. (2021). Mechanics of bacterial interaction
and death on nanopatterned surfaces.
Biophysical J. 120, 217-231. https://doi.org/10.
1016/].bp;}.2020.12.003.

Velic, A., Tesfamichael, T., Li, Z., and Yarlagadda,
P.K.D.V. (2019). Parametric study on nanopattern
bactericidal activity. In Procedia Manufacturing
(Elsevier B.V.), pp. 514-521. https://doi.org/10.
1016/j.promfg.2019.02.072.

Watson, G.S., Green, D.W., Watson, J.A., Zhou,
Z., Li, X., Cheung, G.S.P., and Gellender, M.
(2019). A simple model for binding and rupture of
bacterial cells on nanopillar surfaces. Adv. Mater.
Inter. 6, 1-8. https://doi.org/10.1002/admi.
201801646.

Whitehead, K.A., Colligon, J., and Verran, J.
(2005). Retention of microbial cells in substratum
surface features of micrometer and sub-
micrometer dimensions. Colloids Surf. B
Biointerfaces 41, 129-138. https://doi.org/10.
1016/j.colsurfb.2004.11.010.

Xue, F., Liu, J., Guo, L., Zhang, L., and Li, Q. (2015).
Theoretical study on the bactericidal nature of
nanopatterned surfaces. J. Theor. Biol. 385, 1-7.
https://doi.org/10.1016/}.jtbi.2015.08.011.

iScience 24, 102818, July 23, 2021 15




¢? CellPress

OPEN ACCESS

STARXMETHODS

KEY RESOURCES TABLE

iScience

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Bacterial and virus strains

Escherichia coli K12

Staphylococcus aureus Newman

Provided by A. Edwards (UB2568)
Provided by T. Foster (UB1621)

Blattner et al. (1997)
Baba et al. (2008)

Chemicals, peptides, and recombinant proteins

Luria Bertani (LB) broth
Ethanol (99.99%)
Glutaraldehyde (EM grade)
Osmium tetraoxide
Osmium

Sodium cacodylate
Thiocarbohydrazide
Potassium ferrocyanide
Sodium hydroxide

Colloidal silver paste

BD Biosciences
Fisher Scientific
Fisher Scientific
Agar Scientific Ltd. Essex, UK
Agar Scientific Ltd. Essex, UK
Sigma-Aldrich, St. Louis, USA
Sigma-Aldrich, St. Louis, USA
Sigma-Aldrich, St. Louis, USA
Fisher Scientific

Agar Scientific Ltd. Essex, UK

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Software and algorithms

Blender V2.9.0 https://www.blender.org

Avizo V9.7.0 https://www.thermofisher.com/ca/en/home/industrial/
electron-microscopy/electron-microscopy-instruments-
workflow-solutions/3d-visualization-analysis-software/
avizo-materials-science.html

Microsoft Paint 3D V6.21 N/A

NeuroMorph https://github.com/NeuroMorph-EPFL/NeuroMorph

AutoDesk V2020 https://www.autodesk.co.uk/products/autocad/
overview?term=1-YEAR

Excel V16.49 Microsoft

Other

Ti-6Al-4V Grade 5 titanium alloy Titanium Metals LTD N/A

Silicon carbide (SiC) grit papers Struers N/A

Polisher Struers TegraForcel N/A

Tube furnace Elite Thermal Systems LTD N/A

Commercially pure titanium Ti-Tek (UK) LTD N/A

Reactive ion etching system Oxford Instruments N/A

Oven Gallenkamp Plus Il N/A

Critical point dryer Leica CPD300 N/A

PTFE holders This study N/A

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-
tact, Bo Su, University of Bristol, United Kingdom (b.su@bristol.ac.uk)

Materials availability

This study did not generate new unique reagents.
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Data and code availability

All data produced or analyzed for this study are included in the published article and its supplementary in-
formation file. Any additional information required is available from the lead contact upon request. This
paper does not report original code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains and culture conditions

E. coli K12 (Blattner et al., 1997) and S. aureus Newman (Baba et al., 2008) were used in this study. Broth
cultures were incubated for 16 h at 37°C, 220 rpm, subcultured to ODgog 0.1 and grown to mid-exponential
phase. Bacteria were cultured in Luria Bertani (LB) broth (BD Biosciences). Titanium samples were sterilized
in absolute ethanol, washed in dH,0O and dried prior to inoculation with bacterial suspensions. All surfaces
were inoculated with 50 uL of bacterial suspension (10%-10” colony forming units (CFU)), forming a
meniscus, and were incubated statically at 37°C for 3 hours.

METHOD DETAILS

Thermal oxidation

TiOz nanostructure surfaces were generated using a thermal oxidation procedure previously outlined (Jen-
kins et al., 2020). The exact methodology used is as follows: Grade 5 titanium alloy (Ti-6Al4V, Titanium
Metals Ltd) samples (0.64 cm?) were machine polished (Struers® TegraForce1) using decreasing silicon car-
bide grit sizes (#80, #500, #1200, #2000, and #4000). To remove surface contaminants, titanium discs were
placed inside a digital ultrasonic bath (Grant Scientific XUB series) in distilled water (dH,0), and the sam-
ples were cleaned at 40°C for 15 minutes using 100% power. Following ultrasonication, titanium samples
were placed in ethanol (analytical reagent grade (99.99%), Fisher Scientific) for 10 minutes before air drying.
Polished and cleaned titanium samples were sealed inside a horizontal alumina tube (120 cm x 11 cm outer
x 9 cm inner) positioned in a furnace (Elite Thermal Systems Ltd). Prior to thermal oxidation, the furnace was
purged with inert argon gas (Ar) to remove oxygen and achieve a one-directional flow. Following purging,
heating was initiated at 15°C/minute until a predefined maximum was reached; in this study, temperatures
of 715°C and 850°C were used. Once the final temperature was reached, Ar was redirected into a sealed
Duran™ vessel containing liquid acetone (analytical reagent grade (99.99%), Fisher Scientific), maintained
at 25°C. This generated an acetone uvapor phase, which initiates the oxidation reaction with titanium sam-
ples. Following completion of the heating programme, furnace cooling began. The flow of Ar was main-
tained at a constant rate until room temperature was reached.

Alkaline hydrothermal treatment

Commerecially pure titanium (Ti-Tek (UK) Ltd) with 0.7 mm thickness was laser cut into 11 mm circular disks
by Laserit. All disks were mirror polished (TegraPol-15, Struers) before being washed with deionized water
and alcohol for 10 minutes each. The disks were air dried and slotted into custom-made PTFE holders to
keep the disks upright and placed into a 125 ml PTFE acid-digestion vessel containing 1 M NaOH
(52 ml). The vessel was tightly sealed and placed in a preheated oven (Gallenkamp Plus ) for 2 hours at
250°C. After the hydrothermal treatment, the disks were cooled, washed with deionized water and abso-
lute ethanol, dried and treated at 300°C for 1 h before immersion in 0.6 M HCl for exchanging the sodium
ions with hydrogen ions. The disks were rinsed with copious amounts of deionized water and placed in a
furnace for 2 h at 600°C.

Plasma etching

Plasma etching of n-doped single-crystal silicon (100) wafers was performed in Oxford Instruments reactive
ion etching (RIE) systems fitted with inductively coupled plasma (ICP) sources. ICP etching of a Si wafer was
used to generate cicada wing-inspired, short nanopillars (~0.2 um in length).

FIB-SEM sample preparation

Samples were prepared using previously described methods (Jenkins et al., 2020). The exact methodology
used is as followed: Following overnight fixation in 2.5% EM grade glutaraldehyde at 4°C, samples were
washed (3 x 5 minutes) in 0.1 M sodium cacodylate buffer prior to OTO (Osmium tetraoxide — Thiocarbo-
hydrazide — Osmium) processing. Briefly, this method included post fixation in equal volumes of 4%
osmium tetraoxide (Agar Scientific Ltd. Essex, UK) and 3% potassium ferrocyanide (Sigma-Aldrich, St.

¢? CellPress

OPEN ACCESS

iScience 24, 102818, July 23, 2021 17




¢? CellPress

OPEN ACCESS

Louis, MO, USA) for 60 minutes on ice. Following post fixation, samples were rinsed (3 x 5 minutes) in dH,O
before incubating with thiocarbohydrazide (Sigma-Aldrich, St. Louis, MO, USA) for 20 minutes. Additional
dH,0 washing steps (3 x 5 minutes) were applied before incubation in 2% agueous osmium for 30 minutes
at room temperature. Following OTO processing, bacterial samples were stained in 1% aqueous uranyl ac-
etate (1 hour at 4°C) followed by lead aspartate (200 pM) for 30 minutes in the dark. Between these steps,
washing with dH,O was performed. After the final washing step, bacterial samples were dehydrated in a
graded ethanol series of 25%, 50%, 70%, 90% and 100% (Sigma-Aldrich, St. Louis, MO, USA). Samples
were then critically point dried using a Leica CPD300, following an established protocol for microbial cell-
s(LiYuetal.,, 2014). Titanium discs were mounted onto 0.5” aluminum stubs using colloidal silver paste (Agar
Scientific Ltd. Essex, UK), before being coated with a 10 nm chromium layer using an Emitech K757X sputter
coater system.

Sequential ion beam milling

Two microscopes were used to perform ion beam milling: 1) Strata FIB201 (University of Manchester); 2) FEI
Scios (DESY NanolLab). Samples were loaded into the chamber and the system was purged to create a vac-
uum. Before cross-sectional analysis, the stage was tilted by 52°, moving the titanium discs perpendicular
to the gallium ion beam. Area scans were performed at an accelerating voltage of 5 kV and current of 50 pA.
Prior to ion beam milling, a protective platinum layer (500 nm) was deposited onto each bacterium. Rough
cut trenches were milled around coated bacteria to depths of 250 nm using an accelerating voltage of 30 kV
and current of 1 nA. Auto Slice and View software was used to carry out sequential sectioning of E. coliin
30 nm slices and 20 nm for S. aureus cells. This was performed with an accelerating voltage of 30 kV and
beam current of 30 pA. Images of each section were acquired using electron beam accelerating voltages
of 5 kV and current of 50 pA.

FIB-SEM image processing and 3D volume reconstruction

Slice and view data were processed using previously described methods (Jenkins et al., 2020). The exact
methodology used is as follows: The slice and view data acquired from sequential FIB milling was pro-
cessed using the FIB-stack wizard tool in Avizo v9.7.0 (FEI). Briefly, this tool facilitates aligning the FIB-stack
and correction of geometrical artefacts such as stage tilt foreshortening and/or vertical shift. Avizo seg-
mentation editor was utilized to reconstruct 3D volumes of bacteria and to visualize interactions with all
nanostructures.

QUANTIFICATION AND STATISTICAL ANALYSIS
Morphometric analysis of 3D models

Morphometric analysis of the 3D models was performed using NeuroMorph add-on in Blender (V2.9.0) 3D
modeling software, as detailed previously (Jorstad et al., 2015). Briefly, the 3D models reconstructed in
Avizo V9.7.0 software were exported as .obj files, which can be used in other 3D modeling software such
as Blender, Microsoft Paint 3D or AutoDesk suite. The exported 3D models were then imported and the
morphometric analysis was performed inside Blender by using NeuroMorph. Quantification of nanotopog-
raphies and bacteria:nanotopography interactions was performed using Microsoft Excel.

ADDITIONAL RESOURCES

Our study has not generated or contributed to a new website/forum and it is not part of a clinical trial.
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