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1 Introduction

The standard model (SM) has been extensively verified by experiment, nonetheless there
exists evidence that the SM is only an effective theory. Many possibilities for physics beyond
the SM have been proposed, including the possibility that quarks are composite. Such
quarks would have an internal structure that, excited, could produce a state with higher
mass [1, 2]. Such a phenomenon is predicted by Randall-Sundrum models [3, 4] and models
with a heavy gluon partner [5-7].

In this paper, we search for a heavy resonance decaying to a top quark t and a W boson
in the fully hadronic final state, using proton-proton (pp) collision data at a center-of-mass
energy of 13 TeV. The search uses data corresponding to an integrated luminosity of 137 fh!
recorded by the CMS experiment [8] at the CERN LHC during 2016-2018.

As a benchmark resonance, we consider an excited bottom quark, referred to as a b*
quark [2]. The strong interaction is the dominant production mechanism and can produce
a single b* quark at the LHC via the collision of a bottom quark and a gluon, bg — b*.
The interaction is described by the Lagrangian

s v b b *
£y = JxGpybo" (FLLPL 4 HRPR> b* + h.c., (1.1)



where gg is the strong coupling, G, is the gauge field tensor of the gluon, b is the bottom
quark field, o' is the Pauli spin matrix, b* is the excited bottom quark field, and A is
the scale of compositeness [1], which is chosen to be the mass of the b* quark. The chiral
projection operators are represented as Fj, and Pg, and HE and ng are the relative coupling
strengths [9].

The b — tW decay is the dominant decay channel, with a branching fraction of
approximately 40% for a b* quark with m, > 1.2TeV [9]. The decay takes place through
the weak interaction and is described by the Lagrangian

£2 = &W:E’}/”(QLPL =+ gRPR)b* + h.C., (12)
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where gy is the SU(2);, weak coupling and g;, and g are the relative couplings of the W
boson to the left- and right-handed b* quark, respectively [9]. The full interaction chain is
then bg — b* — tW. The b* quark width is expected to be less than 10% of the b* quark
mass, which leads to a distinct resonant structure in the mass spectrum.

Three hypotheses for the left- and right-handed b* quark couplings are considered:

left-handed (LH): /@E =g =1and /ﬁ% =gr =0, (1.3)
right-handed (RH): IQE =g, = 0 and /{]}D{ =gr =1, and (1.4)
vector-like (LH+RH): HE =g, =1 and /i% =gr =1. (1.5)

Searches for the b* quark in the tW decay mode have been performed at the LHC by the
ATLAS Collaboration at /s = 7TeV [10] and by the CMS Collaboration at 8 TeV [11].
Additionally, searches for a b* quark decaying to a bottom quark and a gluon were conducted
by the CMS Collaboration at 8 TeV [12] and by the ATLAS Collaboration at 13 TeV [13].
The CMS tW decay mode search included a combination of fully hadronic, lepton+jets, and
dilepton final states, and excluded b* quark masses at 95% confidence level (CL) below 1.4,
1.4, and 1.5 TeV, for the left-handed, right-handed, and vector-like hypotheses, respectively.

Given the range of these exclusions, the present analysis considers a b* quark with
a mass greater than 1.2 TeV. For these mass values, the top quark and the W boson
are commonly produced with a high Lorentz boost. Because of this, the hadronic decay
products of the top quark and the W boson can each merge, resulting in two massive,
large-radius jets, referred to as a “top jet” and a “W jet”, respectively. These jets have a
distinct substructure that is used to discriminate them from the background [14, 15]. The
b* quark mass is reconstructed as the invariant mass of the top jet and W jet system, myy.
This variable, along with the reconstructed top jet mass, my, is used to search for the b*
quark resonance.

The background is dominated by jets produced through the strong interaction, referred
to as quantum chromodynamics (QCD) multijet production, and is estimated using multijet-
enriched control regions based on inverting the top jet selection criteria. The SM W+jets
and Z+jets production backgrounds are also accounted for with this technique. The
tt background is estimated with simulation templates fit to data simultaneously in the
signal region and a dedicated control region enhanced in tt production that constrains the
simulation templates.



A binned maximum likelihood fit to data is performed in the two-dimensional mw
versus my distribution, in a process where the signal and background models are fit
simultaneously. From this fit, b* quark mass limits are derived for the three b* chirality
hypotheses expressed in egs. (1.3), (1.4), and (1.5).

In addition, we interpret the results under the hypothesis of a singly produced B singlet
vector-like quark [16, 17] decaying into tW. For B quark masses above 1.2 TeV, the decay
products would be heavily boosted with a similar signature to the b* quark decay described
above. In the model considered, the Vt1f3 mixing parameter defined in ref. [16] is set to unity,
which results in a relative signal width of less than 5% in the B mass range of interest, with
a branching fraction to tW of approximately 50%. In contrast to the b* model, the B quark
would be produced via an electroweak interaction in association with a top or bottom quark.
We consider both scenarios, but typically the associated top or bottom quark has a much
lower transverse momentum than the B quark decay products, thus the effect of either on
the analysis is small.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the
barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in
the steel flux-return yoke outside the solenoid. A more detailed description of the CMS
detector, together with a definition of the coordinate system used and the relevant kinematic
variables, can be found in ref. [8].

Events of interest are selected using a two-tiered trigger system [18]. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a fixed latency of about 4 us.
The second level, known as the high-level trigger, consists of a farm of processors running a
version of the full event reconstruction software optimized for fast processing, and reduces
the event rate to around 1kHz before data storage.

The analysis reflects the fact that the pixel detector was changed in the winter of
2016/2017. The newer detector increased the number of barrel layers from three to four
and decreased the distance of the innermost layer from the beamline in order to improve
the vertex reconstruction.

3 Data and simulated samples

CMS data taking operates on annual cycles, and thus data collection and simulation
performance can change from year to year. Therefore, we categorize both the data and
simulation by year and apply dedicated scale factors before combining the distributions
from all three years to derive the final result.



We analyze events from the 2016 data set recorded by a trigger that requires the scalar
sum of transverse momenta, pr, of all jets in the event, Hy, to be at least 800 or 900 GeV,
or the presence of a jet with pp > 450 GeV. For 2017 and 2018 data, we analyze events
recorded by a trigger that requires a minimum H of 1050 GeV or the presence of a jet with
pr > 500 GeV. Additionally, 2018 data events are recorded by a trigger that requires a jet
with pp > 400 GeV with a mass of at least 30 GeV, where the jet trimming algorithm [19]
has been used to reconstruct the jet mass at the trigger level. This trigger did not exist
for the 2016 or 2017 data collection, but the addition of events recorded by this trigger
provides a higher overall selection efficiency at lower Hp for 2018. The choice of higher Hp
and jet pp thresholds used for 2017 and 2018 are due to an increase in the instantaneous
luminosity of the LHC between 2016 and 2017. The combination of these triggers is nearly
fully efficient for mw > 1200 GeV.

The efficiency of the trigger selection is measured in data as the ratio of the number of
events recorded by the combined triggers to the number of events recorded by a trigger that
requires a muon candidate with pp > 50 GeV. A muon trigger is used for this measurement
because it is largely uncorrelated with the triggers used for data taking.

The trigger efficiencies are parameterized as a function of dijet invariant mass (m;;) and
both the numerator and denominator of the ratio include events that pass the preselection
described in section 5. The uncertainty assigned to the efficiency measurement is one half
of the trigger inefficiency.

Figure 1 shows the trigger efficiency derived from 2016, 2017, and 2018 data separately.
Simulated samples are corrected using the efficiency measurement from the corresponding
data-taking year.

A trigger inefficiency referred to as “prefiring” occurred during the 2016 and 2017 data
taking. Over that time period, a gradual shift in the timing of triggering systems based on
the ECAL in the endcap caused certain events to not be recorded. Event corrections were
calculated from data and applied to the 2016 and 2017 simulations to model this inefficiency.
The uncertainties in these corrections are taken as systematic uncertainties.

The SM tt and single top quark Monte Carlo (MC) simulated samples are used as
templates for background estimation in the maximum likelihood fit to data. A scale factor
is applied to the generated top quark pr spectrum to correct for the differences between
data and tt simulation. It is based on a dedicated measurement [20, 21], in which the ratio
of the distribution of the top quark pp measured in data to the distribution as measured in
POWHEG+PYTHIA is derived. This scale factor may be described by the expression

; (3.1)

where ¢; and ¢y are taken to be 1, as obtained in refs. [20, 21]. The pp-dependent event
weight is given by vw (pr)wg(pr), where wy (pr) and wg(pr) are evaluated using the top
quark and antiquark pp, respectively. We use the same form for the scale factor but treat

w, (pT) _ e1210.()615—122(0.0005/ GeV)pr

c; and ¢y as fit parameters initialized to 1 and constrained in the fit to a Gaussian with a
width of 0.5.

To simulate the SM tt and single top quark production, we use the POWHEG
v2 [22-26] matrix element event generator. For QCD multijet simulation, we use



35.9 fb! (2016) + 41.5 fb (2017) + 60.0 fb™ (2018) (13 TeV)
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Figure 1. The efficiency of the full trigger selection as a function of m;;, shown separately for 2016,

2017, and 2018 data. The minimum m;; considered in the analysis is 1200 GeV and is marked with

a dashed line and an arrow. The efficiency below my; of 1000 GeV is not measured. The points for
2017 and 2018 data are not visible in the plateau because they are overlapped by the points for
2016 data.

MADGRAPH5 aMC@NLO version 5 [27] with subversion 2.2.2 for 2016 and 2.4.2 for 2017
and 2018. The QCD multijet simulated samples are used to derive a scale factor to the
multijet background estimation procedure and for cross checks of self consistency of the
background estimate. The b* signal samples are simulated using MADGRAPH5 aMC@QNLO
version 5 over a mass range of 1.4 to 4.0 TeV in steps of 200 GeV. Subversion 2.2.2 is used
for 2016 b* signal samples with b* quark masses from 1.4 to 3.0 TeV and 2016 B+t and
B+b signal samples. Subversion 2.4.2 is used for 2017 and 2018 b* signal samples with b*
quark masses from 1.4 to 3.0 TeV. Subversion 2.6.5 is used for all b* signal samples with b*
quark masses above 3.0 TeV. For the B signal simulations, we use samples based on the
2016 conditions and scale the final distributions to the integrated luminosity of the full data
set, after correcting for differences in annual selection efficiencies that are measured with
the b* signal samples. We simulate B quark masses from 1.4 to 1.8 TeV in steps of 100 GeV.

Hadronization and parton showering are simulated using the PYTHIA 8 software pack-
age [28]. The NNPDF3.0 [29] parton distribution functions (PDFs) are used with the
CUETP8M1 [30] underlying event tune for the 2016 simulations and the NNPDF3.1 [31]
PDFs are used with the CP5 [32] underlying event tune for the 2017 and 2018 simulations.
The CMS detector simulation is performed with GEANT4 [33]. Pythia version 8.212 is used
for all the 2016 simulations with the exception of 2016 b* signal samples with b* quark
masses from 1.4 to 3.0 TeV, which use version 8.226, and 2016 B signal samples, which use
version 8.205. Pythia version 8.230 is used for all the 2017 and 2018 simulations.

To simulate the effect of additional pp collision data within the same or adjacent bunch
crossings (pileup), additional inelastic events are superimposed using PYTHIA. Simulated



samples are then reweighted to correct the pileup simulation, using the total inelastic cross
section of 69mb [34, 35] to estimate the distribution of the number of primary vertices
in data.

4 FEvent reconstruction

The candidate vertex with the largest value of summed physics-object p’QI‘ is taken to be the
primary pp interaction vertex. The physics objects are the jets, clustered using the anti-kt
jet finding algorithm [36, 37] with a distance parameter of R = 0.4 and with the tracks
assigned to candidate vertices as inputs, and the associated missing transverse momentum,
taken as the negative vector sum of the transverse momentum of those jets.

A particle-flow algorithm [38] aims to reconstruct and identify each individual particle
in an event, with an optimized combination of information from the various elements of the
CMS detector. The energy of muons is obtained from the curvature of the corresponding
track. The energy of charged hadrons is determined from a combination of their momentum
measured in the tracking detector and the matching ECAL and HCAL energy deposits,
corrected for the response function of the calorimeters to hadronic showers. Finally, the
energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL
energies. Jets are clustered with the anti-kp jet finding algorithm, using all particle-flow
objects as input. Jet momentum is determined as the vectorial sum of all particle momenta
in the jet. Jets with a distance parameter of R = 0.8 are used to reconstruct the top jet
and W jet candidates in an event.

The pileup per particle identification (PUPPI) algorithm [39] is used to mitigate the
effect of pileup at the reconstructed particle level, making use of local shape information,
event pileup properties, and tracking information. A local shape variable is defined, which
distinguishes between collinear and soft diffuse distributions of other particles surrounding
the particle under consideration. The former is attributed to particles originating from
the hard scatter and the latter to particles originating from pileup interactions. Charged
particles originating from pileup vertices are discarded. For each neutral particle, a local
shape variable is computed using the surrounding charged particles compatible with the
primary vertex within the tracking detector acceptance (|n| < 2.5), and using both charged
and neutral particles in the region outside of the tracking detector coverage. The momenta
of the neutral particles are then rescaled according to the probability that they originate
from the primary interaction vertex as deduced from the local shape variable, superseding
the need for jet-based pileup corrections [40].

Jet energy corrections are derived from simulation studies so that the average measured
response of jets becomes identical to that of the jets from the reconstructed particle level.
In situ measurements of the momentum balance in dijet, photon+jet, Z+jet, and multijet
events are used to determine any residual differences between the jet energy scale in data
and in simulation, and appropriate corrections are made [41]. Additional selection criteria
are applied to each jet to remove jets potentially dominated by instrumental effects or
reconstruction failures [42].



4.1 Top quark identification

The soft-drop algorithm [43], a generalization of the modified mass drop algorithm [44, 45],
with angular exponent 3 = 0 and soft threshold z = 0.1, is applied to all jets in the event
to reconstruct the jet mass and to identify subjets, and includes a grooming step to remove
soft radiation, including pileup. We only consider top jets with a minimum soft-drop mass
of 65 GeV.

The N-subjettiness algorithm [46] defines 7, variables, which describe the consistency
between the jet energy deposits and the number of assumed subjets, N. When compared
to jets originating from a gluon or a light quark, a top jet is more consistent with three
hard decay products, and the ratio of 73 and 7 allows top jets to be distinguished from
QCD multijet background [47]. A lower ratio indicates the jet is more consistent with a
three-pronged structure than a two-pronged structure.

The b" signal region selection requires 75/ < 0.65. The N-subjettiness ratios are
correlated with the jet mass, so a relatively loose selection for the signal region is used to
avoid biasing the mass distribution of multijet processes.

We also require the top jet to contain a subjet from the soft-drop algorithm to be
identified as a bottom quark by the DeepCSV algorithm [48]. The combination of the 73 /7
and DeepCSV selections has a QCD jet misidentification rate of approximately 1% and
a top tag signal efficiency of approximately 45% [42, 49]. This selection has been chosen
because it leads to an optimal sensitivity of the cross section limits.

A jet that passes both the 73/ and DeepCSV b tagging selection is considered “top
tagged”. A pp-dependent correction is applied to correct for differences in the top tagging
efficiency between data and simulation [49]. Separate corrections are used based upon the
merging of the top quark decay products in simulation. Taking the line defined by the top
quark’s trajectory as the central axis, three scenarios are considered. In the first, the three
decay products are within R < 0.8 of the central axis and the jet is considered “merged”.
In the second, two out of three decay products are within R < 0.8 of the central axis and
the jet is “semi-merged”. Finally, with any other configuration of the three decay products
the jet is “not merged”. The merged component is the dominant contribution for the b*
signal process among these three scenarios.

4.2 W boson identification

Similar to top tagging, the W boson identification algorithm requires a selection based on
7xn and soft-drop mass. The W jet is required to have a soft-drop mass between 65 and
105 GeV to be consistent with the W boson mass [50]. The ratio of N-subjettiness 75 and
71 variables is used to select the characteristic two-prong structure of a hadronic W boson
decay since the W jet is more consistent with having two subjets than one. The b* signal
region selection requires /7 < 0.4 for 2016 data and simulation, and 75/7; < 0.45 for
2017 and 2018 data and simulation. The combined selection on the mass and 75/7 has
a QCD jet misidentification rate of approximately 10% and a W tag signal efficiency of
approximately 80%, which are consistent across the three years [42, 49]. This selection was
chosen because it leads to an optimal sensitivity of the cross section limits.



A jet that passes the 75/7 and soft-drop mass selections is considered “W tagged”.
Differences in the W tagging efficiency between data and simulation are corrected using
simulation-to-data weights [49]. Additionally, differences in the soft-drop mass scale and
resolution between data and simulation are accounted for by scaling and smearing the
soft-drop mass in simulation [42].

5 Event selection

To select signal-like events, two jets are required with pp > 400 GeV and |n| < 2.4. Only
the two jets with the highest pp are considered in the following. The jets are required to
satisfy that the difference in rapidity, |Ay|, be less than 1.6 and that |A¢| be greater than
7/2. The |A¢| requirement selects back-to-back dijet events while the |Ay| requirement
suppresses multijet events with high myy, which arise from the scattering of valence quarks.
These requirements comprise the “preselection”, with an event then being selected as signal
if one of the two jets is W tagged and the other is top tagged.

Because the background estimate relies on data in a control region defined by inverting
the top tag selection, we first require that one of the two jets can be identified as a W jet.
In the case that both jets can be W tagged, the jet with lower pr is taken as the W boson
candidate in the event. If neither jet can be W tagged, the event is not selected. The jet
that is taken as the W boson candidate is referred to as the initially tagged or first jet and
the other jet is called the remaining or second jet. If the event is selected, it is categorized
in either the signal region or the multijet control region depending on whether the second
jet passes the top tagging requirement. The final selection efficiency for simulated events is
calculated as the number of events that pass the signal selection divided by the number of
events generated. Over the range of generated b* quark masses, signals with left-handed
couplings are selected with an efficiency of 9-10%. Signals with right-handed couplings have
slightly higher efficiencies, ranging from 10-11%, because of their harder jet pr spectra.

We additionally define a dedicated tt measurement region. For this, events are required
to pass the preselection but the W tag is changed to a top tag selection for the initial
jet tag. This jet tag also requires a top jet mass value between 105 and 220 GeV to be
consistent with the top quark mass [50]. The second top tag will be used to distribute
events between the tt measurement region selection and the dedicated multijet control
region for the tt measurement region. Additionally, for the initial jet tag, the subjet bottom
quark requirement remains the same but a tighter selection of 73/m < 0.54 is required.
The tighter selection on the initial jet tag increases the relative tt contribution. The 73/7
selection on the second jet tag remains the same as for the b* signal region selection to
avoid distorting the mass distribution because of the correlation described in section 4.1. If
both jets fulfill the selection of the initial top tag, the jet with the lower pr is takes as the
initially top tagged jet in the event. The tt background measurement region is described in
more detail in section 6.2. The four tagging selection regions are summarized in table 1.

Comparisons of the N-subjettiness ratio, soft-drop mass, and DeepCSV algorithm
score in simulation between signal and background events are shown in figure 2. The QCD
contribution to the multijet background is shown, but the W+jets and Z+jets contributions



W tag Top tag

Top tag Signal region (SR) tt measurement region (tt MR)

Inverted top tag | Multijet control region (for SR) Multijet control region (for tt MR)

Table 1. A summary of the four selection regions considered in the likelihood fit to data. The
columns indicate the possible jet tag for the jet considered in the preselection while the rows indicate
the possible classification of the second jet when using the top tagging algorithm.

are omitted since simulations of these processes are not used in this analysis (as discussed
in section 6.1).

6 Statistical model and background estimation

The background for this analysis is comprised of multijet, tt, and tW-channel single top
production. The multijet component is estimated from data while the tt and single top
components are obtained by fitting simulation templates to data.

The m; range considered is larger than the signal mass window of 105 to 220 GeV
defined in section 5. As shown in figure 2, an my selection is not efficient at discriminating
signal from tt background. However, by using m, as one of the two measurement dimensions,
one can constrain the multijet background in the m; sidebands while distinguishing the
multijet background from the top quark backgrounds in the m; signal region. Thus, the m;
range comprises both the signal peak region and the lower and upper sidebands of the peak.
The signal region considers the range of 65 to 285 GeV while the tt measurement region
exists between 105 and 285 GeV, where the lower mass bound of 105 GeV is used to ensure
the orthogonality with the W jet mass window of the signal region.

For each bin in the two-dimensional (my, myy ) distribution, we compare the number
of expected events from both the background-only and signal-plus-background hypotheses
with the number of observed events in data.

The expected number of events from b* quark production is calculated as Nexpected =
o,B(b* — tW — hadrons)eL, where o+ is the b* quark cross section, B(b" — tW —
hadrons) is the branching fraction of b* — tW in the fully hadronic decay mode, ¢ is the prod-
uct of the acceptance and the efficiency, and L is the integrated luminosity of the data set.

A likelihood fit to data is used to test the signal hypothesis, where the total background
model is constructed as a sum of the individual background contributions using a Poisson
model for each bin of the (m, miyw) distribution.

The number of expected events with failing, ny, and passing, np, top tags in a given
bin is given by

(i, ) = niFP(0) + ny! (3, 0) + mg"™ P (0. 6) + n " (0.6) (6.1)
np (i, 0) = nSP (i) + nis (4, 0) + nii"Ee P (. G) + Sl 6), (6.2)

where i is a bin in the (m, myw) plane, and g is the set of all nuisance parameters that

quantify the systematic uncertainties, as described in section 7. The variable n%CD(i) is an
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ng P (i)

unconstrained positive real number. Finally, is given by

”QCD(Z) = ”8013( )f (me, mew ), (6.3)

where f(m, myw) is a transfer function defined by the ratio of top tagging pass and fail
events, and is described in section 6.1.

The negative log-likelihood is then

p Npins,F Npins,p .
In L(d: 6) = (76 (3, 0) — dp (i) Innp(i,0)] + > [np(5,0) — dp(i) nnp(i, 6)] ,
i=1 i=1

(6.4)
where Npins p and Ny p are the total number of bins and dp(i) and dp(i) are the number
of observed events in a given bin, for the fail and pass distributions, respectively. Thus,
there is one likelihood which combines four separate categories — signal region “pass” and
“fail” and tt measurement region “pass” and “fail”.

6.1 Multijet background estimate

After applying the kinematic selection along with the W jet identification, we define the
ratio of the multijet background distributions that pass and fail the top tagging require-
ment in data and QCD multijet MC simulation as deé}tl?(mt, myw) and Rg[/%(mt, mew ),
respectively. Because of the combinatorial nature of multijet processes, R%Z}?(mt,mtw)
and R%/I/(]F(mt,mtw) are both smooth as a function of m; and myw . The data-to-simulation
ratio of these ratios is therefore also smooth and can be used to correct for differences in
simulation and data by parameterizing it with an analytic function, R ., (mq, myw)-

While RP /1? (my, myw ) could also be described by analytic functions, isolated features
of the shape can be factored out by using simulation. By factoring out Rll\)/[ /%(mt,mtw), the
fit of the analytic function to data is only responsible for describing the residual differences
between data and simulation that can be parameterized with fewer parameters than the
shape of degjtl?(mt,mtw).

The number of events in a given bin of the passing category can then be estimated
from the equation

CDy,. CD,.
ng P (4) = ng " (i) REve (my, mow ) Ryatio (e, mow ), (6.5)

where f(my,mw) has been replaced by Ry/%(mt7th)Rratio(mt ymyw) and Ryago (Mg, mew)
is a surface parameterized by the product of two one-dimensional polynomials in the
(my, miyw) plane with coefficients determined from the fit to data. A second-order polynomial
was chosen for the m; axis and a first-order polynomial was chosen for the my axis. These
choices were based on a Fisher test [51] where polynomial terms were added until the p-value
obtained in the test was less than 0.95. The parameters of the two-dimensional polynomials
are uncorrelated between years. The form of R, (M, mw ) is then

(po +p1my + p2mt)(1 + psmyw )- (6.6)
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To reduce the effect of statistical fluctuations when calculating le\fl /CF(mt,th) in the QCD
multijet simulation, the pass and fail distributions are smoothed by using an adaptive
kernel density estimate [52] (KDE) prior to calculating the ratio. Additionally, the residual
contributions from the W-+jets and Z+jets backgrounds are accounted for in this analysis,
as they are absorbed by the unconstrained R, ., (my, myw ) function.

6.2 Top quark measurement region

By performing the maximum likelihood fit to data in the signal region simultaneously with
the tt background enriched measurement region, we further constrain the tt contribution
to the total background estimate. In particular, this region is used to make measurements
of the ¢; and ¢, fit parameters of eq. (3.1).

The tt measurement region is evaluated in the (my,my) plane, where m, is the mass
of the second jet when using the top tagging algorithm and my; is the invariant mass of the
tt pair. Only the multijet and tt SM processes are considered in this selection since the
single top quark contribution is negligible.

The strategy to estimate the multijet background in the tt measurement region is similar
tTMR

ratio

to the signal region. The R (my,m¢;) in this region is parameterized with the same
polynomial form as in the signal region, but the parameters are uncorrelated with those of
the signal region. Additionally, the RIP\)/I/% (my, myy ) is derived using QCD multijet simulation
events that pass the same selection as the tt measurement region. Events from W+jets
and Z+jets backgrounds are suppressed by the initial top tag requirement, and any that
remain are accounted for by the multijet background model as they are in the signal region.

The negative log-likelihood calculated from the tt measurement region is constructed
similarly to eq. (6.4). The total negative log-likelihood is obtained from the sum of the
negative log-likelihoods of the signal region and the tt measurement region. Because the fit
to data can constrain the tt background in both selections, the values of the free parameters
that determine the shape and normalization of the tt simulation are constrained by the

simultaneous fit to the tt- and signal-enriched selections.

7 Systematic uncertainties

This analysis takes into account several systematic uncertainties that can affect both the
shape and normalization of the simulation.

Normalization uncertainties include those in the production cross section and in the
measured integrated luminosity of the data. The uncertainties in the tt and single top tW-
channel production are taken as 20 and 30%, respectively, to account for the uncertainties
in the cross section and in the factorization and renormalization scales of each process.
Specifically, these values were chosen based on the largest variations in yield of the simulated
samples from varying the factorization and renormalization scales. The uncertainty in the
measured integrated luminosity is 1.8% [53-55] for the complete Run 2 (2016-2018).

Several uncertainties exist that affect both the shape and normalization of the (my, mw)
distributions. The uncertainties in the jet energy scale and resolution are estimated through
variations in p and 7 of the PUPPI jets [41]. The uncertainty in the pileup reweighting
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correction is evaluated by varying the total inelastic cross section by +4.6% [34]. The
uncertainty in the trigger correction is taken into account as a variation of one half of
the trigger inefficiency. The uncertainty in the PDFs is derived by either evaluating the
root-mean-square of the set of NNPDF MC replicas or by evaluating the contributions of
eigenvectors provided in a Hessian set [56], depending on whether the PDF set represents
variations as MC replicas or Hessian eigenvectors. The uncertainty due to differences in
the data and simulation efficiency for the top jet tagging algorithm is evaluated by using
the variations of the top tagging scale factor [49]. The scale factors and uncertainties vary
depending on the merging scenarios defined in section 4.1. The W tagging uncertainty
is evaluated from variations in the W tagging scale factor and includes an additional
uncertainty when extrapolating to jets outside of the p region used to extract the scale
factor. Additionally, the uncertainty in the W tagging soft-drop mass selection is evaluated
from variations in the jet mass scale and resolution [49]. No variations in the jet mass scale
and resolution are considered for the candidate top jet since the effect is negligible with
respect to the current results.

Unique to the tt simulation is the uncertainty in the top quark pr reweighting procedure
described in section 3, which is extrapolated to high pp. The uncertainty is represented as
uncorrelated variations of +£50% in each of the ¢; and ¢, parameters from eq. (3.1).

Each uncertainty affecting both the shape and normalization is Gaussian constrained
where the +1 standard deviation of each distribution is mapped to the %1 standard deviation
of the corresponding unit Gaussian constraint.

The uncertainty in the multijet background estimation is taken from the maximum
likelihood fit to data. The parameters of each two-dimensional polynomial are uncorrelated
and fitted freely with no a-priori constraints. An additional uncertainty in the “bandwidth”
parameter of the KDE algorithm is accounted for by varying the parameter up and down
by 1, where the nominal value is 4. This parameter acts as a scale to determine the width
of the adaptive kernels.

All systematic uncertainties are considered in the simultaneous fit to data such that
all correlations are preserved. The uncertainties are always correlated across tW and tt
selections within a given year of data and simulation. The cross section, PDF, and top quark
pr reweighting c¢; and cy uncertainties are individually correlated across the data-taking
years. Table 2 summarizes the sources of uncertainty and indicates where correlations
between samples exist.

Additionally, table 2 includes a calculation of the “impact” of a parameter on the
measurement of the final signal strength for a 2.4TeV b* quark signal. This value is
calculated by comparing the measured signal strength in the full fit against the measured
signal strength in a fit where the given nuisance parameter has been changed either “up” or
“down” one standard deviation from its post-fit value in the full fit.

As can be seen in table 2, the multijet estimate from data is the dominant source of
background uncertainty in the measurement of the signal strength. In particular, variations
of one post-fit standard deviation of the linear term in the myy axis of the signal region
can change the measurement of the signal strength by approximately 19%.
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Impact

Source Uncertainty Samples Up Down

tt cross section +20% tt —4.6  +4.4%
Single top cross section +30% Single top +1.2  —-1.4%
Integrated luminosity +1.8% tt, single top, signal +16 —-1.1%
Pileup Shape (6,,3) tt, single top, signal +0.3  —0.2%
Trigger prefiring Shape (pt, 1) tt, single top, signal +0.0  +0.1%
Jet energy scale Shape (p) tt, single top, signal +0.3 —0.6%
Jet energy resolution Shape (pt, 1) tt, single top, signal —-04 —-0.5%
Jet mass scale Shape (myy) tt, single top, signal -0.1 —-0.0%
Jet mass resolution Shape (myy) tt, single top, signal +0.0 +0.9%
W tagging Shape (pr) Single top, signal +09 —-0.9%
W tagging: pr extrapolation Shape (pr) Single top, signal +4.9 —4.9%
Top tagging, merged Shape (pr) tt, single top, signal +0.2  —0.2%
Top tagging, semimerged Shape (pr) tt, single top, signal +1.1  —-0.9%
Top tagging, not merged Shape (pr) tt, single top, signal —-0.1  +40.1%
Trigger Shape (Hr) tt, single top, signal +0.3 —0.4%
Top quark p correction ¢; Shape (pr) tt -0.3 +0.3%
Top quark pp correction cy Shape (p) tt -39 +3.5%
PDF Shape (my, myw) Signal +0.1  —-0.1%
KDE bandwidth Shape (mg,myw) Multijet (from simulation) —-1.2  40.2%
Ri&lo(mt,mtw) Do Shape (my, myw) Multijet (from data) —4.4  +40.0%
Riﬁlo(mt,mtw)pl Shape (my, myw) Multijet (from data) -2.0 +2.2%
RO} (my, mow Do Shape (mq, myw) Multijet (from data) +0.9 —-0.8%
R} (my, mow )ps Shape (my, myw) Multijet (from data) +18.6 —18.8%
Ri;tl\iiR( &> Mt )P0 Shape (my, my) Multijet (from data) —-0.4 +40.6%
Rgtl\ﬁ)R(mt,mtt)pl Shape (my, my) Multijet (from data) —-0.4  +0.6%
Rggf)R(mt,mtt)pQ Shape (my,my;) Multijet (from data) +0.5 —0.6%
RE;&R( &> Mt )D3 Shape (my, mgy) Multijet (from data) —-0.6 +0.6%

Table 2. Sources of uncertainty that are taken into account in the statistical analysis of the data.
The sources affecting the normalization are given with their percentage uncertainties, while the

sources affecting the shape are listed as “Shape” together with the dependent parameter.

The

rightmost column indicates the impact of the parameter on the 2.4 TeV b* signal strength when
the parameter is changed “up” and “down” by one standard deviation from its post-fit value. For
parameters where the uncertainties are uncorrelated between data-taking years, the average impact
is calculated. An impact of 40.0 (—0.0) denotes an impact that is less (greater) than 0.1 (—0.1) but

greater (less) than 0.
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8 Results

The (my, myw) and (my, my,) distributions are used in a simultaneous binned maximum
likelihood fit to data. The signal strength is a free parameter in the model and the
systematic uncertainties are accounted for as nuisance parameters as described in section 6.
Normalization uncertainties are modeled with log-normal priors, and uncertainties affecting
simulation shapes are modeled using a template morphing approach with Gaussian priors.

While the fit is performed in two dimensions, evaluating the agreement of the background
model with the data is more convenient when examining projections onto one dimension.
The background estimate and measured two-dimensional distributions from the simultaneous
fit of the signal region, tt measurement region, and multijet-enriched control regions are
shown in figures 3 and 4, respectively, as one-dimensional projections where either the
my, or m; distribution has been separated into three regions. The lower panels show the
pull, defined as the difference between the number of events observed in the data and the
predicted background, divided by the systematic uncertainty in the background and the
statistical uncertainty in the data, added in quadrature. All plots shown are for the signal-
plus-background hypothesis post-fit, where the 2.4 TeV bjy quark sample is normalized to
the post-fit signal cross section.

In figure 3, the left column shows distributions of m; obtained for the selection of the tt
measurement region, but with a jet failing the top tagging requirement. The right column
shows the same distributions, but for jets passing the top tagging requirement. The rows
give the distributions for separate intervals of m;;. The background estimation is observed
to model the data well in both regions, validating the estimation of the multijet background
and the modeling of the tt simulation. The contribution from a possible signal is negligible
in this region and therefore not visible.

In figure 4, distributions of myy;, obtained for events passing the signal region selection
are shown, where the distributions in the left and right columns have been obtained for
jets failing and passing the top tagging requirement, respectively. Plots in the row are for
separate intervals of m;. The total background estimate agrees with the data within the
uncertainties. The largest excess in data relative to the total background is observed for
a left-handed b* quark with a mass of 2.4 TeV, which results in a local significance of 2.3
standard deviations.

Additionally, the post-fit top quark p reweighting measurements are consistent with the
pre-fit values, and are measured to be ¢; = 1.01 £0.25 and ¢y = 1.16 = 0.16. The agreement
of the background-only model is evaluated using the saturated test statistic [57, 58] and has
a p-value of 0.3. Additionally, the post-fit nuisance parameter values are consistent with
the pre-fit values and the nuisance parameter values from the background-only model fit
are consistent with those from the signal-plus-background model fit.

Asymptotic frequentist statistics are used to derive exclusion limits on o «B(b* —
tW — hadrons) at 95% CL [59]. These limits are derived separately for the by, by, and
bl ra quark signal hypotheses. The +1 and +2 standard deviations in the expected limit
are derived from pseudo-experiments under the background-only hypothesis in which the
nuisance parameters are randomly varied within the post-fit constraints of the maximum
likelihood fit to data.
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The limits are shown in figure 5. The theoretical b cross sections included in the figure
as a function of b* quark mass are calculated using MADGRAPH5 aMC@NLO. Masses
below 2.6, 2.8, and 3.1 TeV (2.9, 3.0, and 3.3 TeV) are observed (expected) to be excluded at
95% CL for the left-handed, right-handed, and vector-like hypotheses, respectively. These
limits nearly doubles the mass exclusions of the previous result [11].

The sensitivity of this analysis can also be compared to the sensitivity of the CMS
dijet search [60]. The branching fraction for b* — bg approaches 20% asymptotically for
high masses [9]. From the dijet search, the expected upper limit on the product of the
cross section and branching fraction for a resonance decaying to a quark and a gluon is
approximately 0.09 pb at 2 TeV so the cross section upper limit on b* quark production
is approximately 0.45 pb. Using the left-handed couplings result in figure 5, this analysis
achieves an expected upper limit of approximately 0.015pb at 2 TeV. With the b* — tW
branching fraction of 0.4, the cross section upper limit on b i quark production at 2 TeV is
approximately 0.0375 pb. Thus, at 2 TeV, this search is about an order of magnitude more
sensitive to the excited b* quark than the dijet search.

The results of this search can also be used to test models of a single B quark produced
via the electroweak interaction in association with a bottom or top quark, and decaying
into a top quark and a W boson. Because the cross section for this process is much
smaller than for a b* quark produced through the strong force, and because of the selection
myw > 1.27TeV, we consider the mass range 1.4 to 1.8 TeV in this interpretation. The
exclusion limits on ogB(B — tW — hadrons) at 95% CL are shown in figure 6. Over the
mass range of 1.4-1.8 TeV, the observed upper limit ranges 0.027 to 0.009 pb when produced
in association with a bottom quark and from 0.036 to 0.012 pb when produced in association
with a top quark. Because of the small theoretical cross section for the model considered,
no mass limit is set. When compared to the b* quark in this mass range, the expected cross
section upper limits for a B quark produced with an associated bottom quark are uniformly
more sensitive by approximately 22%. The equivalent comparison for a B quark produced
with an associated top quark shows the sensitivity is worse by no more than 7%.

These results based on 137 b~ " of data can be compared directly to those of ref. [61],
which analyzed the lepton+jets channel in 35.9 fb~! of data recorded with the CMS
experiment at /s = 13 TeV. At a B quark mass of 1.4 TeV, this analysis is less sensitive
than the results from ref. [61] by about 20% when considering B quark production with
an associated top quark. However, this analysis has about 20% higher sensitivity than
the previous analysis when the production is in association with a bottom quark. As the
B quark mass increases, the sensitivity of this analysis increases faster than the analysis
described in ref. [61]. Thus, the sensitivity of this analysis at 1.8 TeV is about 27% higher
for the associated top quark hypothesis and about a factor of two higher for the associated
bottom quark hypothesis. This comparison is also applicable to the results for a left-handed
B hypothesis in ref. [62], which analyzed the lepton+jets channel in 36.1 fb~! of data
recorded with the ATLAS experiment at /s = 13 TeV and which has comparable results to
those in ref. [61].
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Figure 3. Distributions of m; in the tt measurement region for three intervals of my: 1200—
1300 GeV (upper), 1300-1800 GeV (middle), 1800-3000 GeV (lower). The data are shown by points
with error bars and the individual background contributions by filled histograms. The signal is not
visible because the contamination in this region is negligible. The barely visible shaded region is
the uncertainty in the total background estimate. The left and right columns show distributions
for events with the second jet failing and passing the top tagging requirement, respectively. The
lower panels of each figure show the pull, as a function of m,, defined as the difference between the
number of events observed in the data and the predicted background, divided by their combined
uncertainty.
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Figure 4. Distributions of m.yw in the b" signal region for three intervals of m,: 65-105 GeV
(upper), 105-225 GeV (middle), and 225-285 GeV (lower). The data are shown by points with error
bars, the individual background contributions by filled histograms, and a 2.4 TeV by signal is
shown as a solid line. The barely visible shaded region is the uncertainty in the total background
estimate. The left and right columns show distributions for events with a jet failing and passing the
top tagging requirement, respectively. The lower panels of each figure show the pull, as a function of
myw, defined as the difference between the number of events observed in the data and the predicted
background, divided by their combined uncertainty.
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Figure 5. Upper limits on the product of the cross section and branching fraction at 95% CL for a
by (upper), bry (middle), and by, gy (lower) quark as a function of the b* quark mass. The
expected (dashed) and observed (dot-solid) limits, as well as the b™ quark theoretical cross sections
(shaded-solid), are shown. The vertical dashed lines indicate the intersection of the theoretical
cross sections with the expected and observed limits. The inner and outer shaded areas around the
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Figure 6. Upper limits on the product of the cross section and branching fraction at 95% CL
for a B produced in association with a bottom quark (left) and top quark (right) as a function of
the B quark mass. The expected (dashed) and observed (dot-solid) limits, as well as the B quark
theoretical cross sections (shaded-solid), are shown. The inner and outer shaded areas around the
expected limits show the 68% and 95% CL intervals, respectively.

9 Summary

A search for a heavy resonance decaying to a top quark and a W boson in the fully hadronic
final state has been presented. The analysis uses proton-proton collision data at a center-of-
mass energy of 13 TeV corresponding to an integrated luminosity of 137 fbfl, collected by
the CMS experiment at the LHC during 2016-2018.

This analysis considers the explicit case where the heavy resonance is an excited bottom
quark, b*. The search evaluates b* quark masses greater than 1.2 TeV, which result in
highly Lorentz-boosted top quarks and W bosons that are reconstructed as single jets.
Using jet substructure algorithms designed to distinguish heavy resonance decays from
light-quark and gluon jets, the top quark and W boson decays are identified as a top quark
jet and a W boson jet, respectively.

The background processes in the analysis are a result of multijet processes from the
strong interaction, tt production, and single top quark (tW-channel) production. The
search is performed using a two-dimensional binned likelihood fit to the data that allows
all backgrounds to be fit simultaneously. The multijet component in the signal region is
estimated via a two-dimensional transfer function method that uses a multijet-enriched
control region. The tt and single top background estimates are determined via a template
fit to data. In particular, a dedicated tt measurement region is used to constrain the shape
and yield of the tt background.

No statistically significant deviation from the standard model expectation is observed.
The hypotheses of b* quarks with left-handed, right-handed, and vector-like chiralities are
excluded at 95% confidence level for masses below 2.6, 2.8, and 3.1 TeV, respectively. These
are the most stringent limits on the b™ quark mass to date, extending the previous best
mass limits by almost a factor of two.
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