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Single particle imaging (SPI) at X-ray free-electron lasers is particularly well

suited to determining the 3D structure of particles at room temperature. For a

successful reconstruction, diffraction patterns originating from a single hit must

be isolated from a large number of acquired patterns. It is proposed that this task

could be formulated as an image-classification problem and solved using

convolutional neural network (CNN) architectures. Two CNN configurations

are developed: one that maximizes the F1 score and one that emphasizes high

recall. The CNNs are also combined with expectation-maximization (EM)

selection as well as size filtering. It is observed that the CNN selections have

lower contrast in power spectral density functions relative to the EM selection

used in previous work. However, the reconstruction of the CNN-based

selections gives similar results. Introducing CNNs into SPI experiments allows

the reconstruction pipeline to be streamlined, enables researchers to classify

patterns on the fly, and, as a consequence, enables them to tightly control the

duration of their experiments. Incorporating non-standard artificial-intelligence-

based solutions into an existing SPI analysis workflow may be beneficial for the

future development of SPI experiments.

1. Introduction

Artificial intelligence (AI) and machine learning methods are

rapidly becoming an important tool in physics research. We

have witnessed an increased interest in these approaches,

especially during recent years. This is also related to the large

amount of data collected nowadays in experiments not only in

particle physics but also in astronomy and X-ray physics. For

example, petabytes of data can easily be collected within just a

few days at a single beamline of the megahertz European

X-ray Free-Electron Laser (Decking et al., 2020). Machine

learning approaches can help us to use this enormous quantity

of data effectively.

One of the flagship experiments at X-ray free-electron

lasers (XFELs) is single particle imaging (SPI). In these

experiments, single biological particles such as viruses or

protein complexes are injected into the intense femtosecond

XFEL beam in their native environment, and diffraction

patterns are collected before particles are disintegrated as a

result of Coulomb explosion (Neutze et al., 2000). By

collecting a sufficient number of diffraction patterns origi-

nating from reproducible biological samples at different

orientations, the full 3D diffracted intensity may be obtained
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and then, applying phase-retrieval techniques, a high-resolu-

tion image of the biological sample may be reconstructed

(Gaffney & Chapman, 2007). Despite being well defined, the

problem of obtaining high-resolution images of single biolo-

gical particles at an XFEL is still far from being solved. In

order to determine the best strategies to push SPI to higher

resolution, the SPI consortium was formed at the Linac

Coherent Light Source (LCLS) at SLAC National Accelerator

Laboratory (Stanford, USA) (Aquila et al., 2015).

In the framework of this consortium, several strategies for

data analysis were developed. Typical SPI data analysis

comprises a few sequential steps from the raw detector images

to the 3D reconstructed particle structure (see Fig. 1). This

workflow consists of the following steps: initial pre-processing

of diffraction patterns, particle size filtering, single-hit

diffraction-pattern classification, orientation determination

and obtaining the 3D intensity map of the particle, and, finally,

phase retrieval and reconstruction of the 3D electron density

of the biological sample (Gaffney & Chapman, 2007; Rose et

al., 2018; Assalauova et al., 2020). An important step in this

data processing pipeline is single-hit classification. Only

diffraction patterns that contain the scattering signal of a

single particle are of interest for further analysis. In our

previous work (Assalauova et al., 2020), this step was

addressed with the expectation-maximization (EM) algorithm,

first developed in cryogenic electron microscopy (Dempster et

al., 1977). The EM algorithm allows for unsupervised clus-

tering of data when neither initial data assignments to clusters

nor cluster parameters are known. In the end, the clusters that

correspond to single hits of an investigated particle are

selected manually by an expert.

The step of single-hit classification may be significantly

improved by application of machine learning approaches. In

recent work (Cruz-Chú et al., 2021), supervised machine

learning was used to map patterns into a low-dimensional

manifold representation in which the authors were able to

separate single from non-single hits through transformation

into a bimodal distribution. In the computer vision domain,

convolutional neural networks (CNNs) have become the de

facto state of the art in image classification (Krizhevsky et al.,

2012), object detection (Szegedy et al., 2013) and image

segmentation (Long et al., 2015). Thus, it is unsurprising that

CNN-based solutions have been recently successfully applied

in our domain: specifically, the classification of diffraction

patterns in tomography experiments at synchrotron sources

(Yang et al., 2020) and in coherent diffraction imaging

experiments at synchrotron facilities (Wu, Yoo et al., 2021; Wu,

Juhas et al., 2021) and at XFELs (Shi et al., 2019; Zimmermann

et al., 2019). As we showed in our previous work (Ignatenko et

al., 2021), a CNN-based solution can be successfully applied to

the single-hit diffraction pattern classification step (Fig. 1, blue

arrows).

In this work, we further develop this approach (Fig. 1, red

arrows). By classifying single hits first, computationally

intensive steps of the pipeline, such as size filtering and EM-

based selection, need only be performed on a fraction of the

initially collected patterns, saving substantial computational

resources. In addition, the proposed scheme allows the clas-

sification of newly collected patterns independently, without

the need to recompute from the beginning (as would be

required by pure EM-based selection). This is particularly

useful as experimentalists have the possibility to plan the

experiment as it goes and stop it whenever a sufficient number

of single hits have been collected, thereby saving precious

beamtime at the XFEL facility.

2. SPI experiments and data analysis

The SPI experiment [Fig. 2(a)] was performed at the Atomic

Molecular Optics instrument (Ferguson et al., 2015; Osipov et

al., 2018) at the LCLS in the framework of the SPI initiative

(Aquila et al., 2015). Samples of PR772 bacteriophage (Reddy

et al., 2017; Li et al., 2020) were aerosolized using a gas

dynamic virtual nozzle in a helium environment (Nazari et al.,

2020). The particles were injected into the sample chamber

using an aerodynamic lens injector (Hantke et al., 2014;

Benner et al., 2008). The particle stream intersected the pulsed

and focused XFEL beam. The XFEL had a repetition rate of
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Figure 1
SPI workflow. Black arrows indicate the typical steps in SPI data analysis (Assalauova et al., 2020). Blue arrows show the implementation of CNN-based
single-hit diffraction-pattern classification (Ignatenko et al., 2021). Red arrows show the modified workflow for CNN-based classification prior to the
particle size filtering step (this work).



120 Hz, an average pulse energy of �2 mJ, a focus size of

�1.5 mm and a photon energy of 1.7 keV (wavelength

0.729 nm). Diffraction patterns were recorded by a pn-type

CCD detector (Strüder et al., 2010) mounted at 0.130 m

distance from the interaction region. The detector consisted of

two panels. The size of each panel was 512 by 1024 pixels with

a pixel size of 75 � 75 mm. The scattering signal was only

recorded by one (upper) of the two detector panels (the lower

one was not operational during the experiment owing to an

electronic fault).

The total number of diffraction patterns collected during

the experiment was 1.2� 107 (data set D0 in Table 1) (Li et al.,

2020). Out of those images, only a small fraction contained any

scattering patterns. To isolate such patterns, hit finding was

performed using the software psocake in the psana framework

(Damiani et al., 2016). As a result, 191 183 diffraction patterns

(data set D in Table 1) were selected as hits from the initial set

of experimental data (Li et al., 2020). Manual selection of

single-hit diffraction patterns was performed on the data set D

(data set DM in Table 1), which resulted in 1393 single-hit

diffraction patterns [see Li et al. (2020)]. This selection was

used as a ground truth for training and evaluating the CNN in

this work. In our previous work (Assalauova et al., 2020), we

used the EM-classification step (see Fig. 1, black arrows) to

select single-hit diffraction patterns, which gave us the DEM

selection (see Table 1).

3. Methods

3.1. CNN description

A CNN consists of a succession of convolutional layers,

interlaced with nonlinearities. Like most supervised machine

learning models, CNNs need to be trained using a set of

annotated data stemming from the task that they are intended

to solve. As part of the training process, the parameters of the

CNN will be tuned to enable it to learn the requested task.

Here, the vast majority of parameters are represented by the

weights of the convolutional kernels. Training takes place via

stochastic gradient descent, where images from the training set

are given to the network (forward pass) and the output of the

network is compared with the reference annotation through a

loss function. Then, the gradients of that loss function with

respect to each of the model’s parameters are computed

(backwards pass) and used to update the weights. This process

is repeated many times until the model converges, i.e. the

training loss no longer decreases. The advantage of CNNs over

traditional image analysis methods is that the experimenter no

longer needs to manually define and compute informative

feature representations of the input. This is handled intrinsi-

cally by the convolutional layers and learned automatically as

part of the training process. As a consequence, CNNs have far

greater capabilities in terms of the complexity of tasks they

can solve but often require a larger number of annotated

example images.

3.2. CNN architecture

The network architecture used in this work is shown in

Fig. 3. It is inspired by the pre-activation ResNet-18 (He et al.,

2016) and was selected on the basis of initial experiments on

the training data set. The network processes patches of size

192 � 96 and is initialized with 16 convolutional filters. The

number of filters is doubled with each downsampling up to a

maximum of 256. Downsampling is implemented as strided

convolution. We use leaky ReLU activation functions (Xu et

al., 2015) and standard batch normalization (Ioffe & Szegedy,

2015). The final feature map has a size of 6 � 6, which is

aggregated through global average pooling into a vector that is

then processed by a linear layer to distinguish single and non-

single hits.

3.3. CNN evaluation metrics

As evaluation metrics we used precision, recall and the F1

score. These values are defined through true positive (TP),
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Table 1
Number of diffraction patterns obtained at different SPI analysis steps.

Data set No. of diffraction patterns

Initial data set, D0 1.2 � 107

Hit finding procedure, D 191 183
Manual selection of single hits, DM 1393
Selection by EM algorithm, DEM 1085

Single hits Non-single hits

Training and validation data set, Dtr 100 19 900
Test data set, Dtest 1293 169 890

Figure 2
(a) Schematic representation of an SPI experiment. The incoming XFEL
beam interacts with the virus injected by the particle injector. The particle
is destroyed afterwards owing to Coulomb explosion. X-ray radiation
from the non-destroyed virus is scattered to the detector positioned in the
far field. (b) Examples of single hits. (c) Examples of non-single hits. The
diffraction patterns in (b) and (c) are shown in logarithmic scale; an area
of size 192 � 96 pixels from the whole diffraction pattern is shown. The
scale bars in (b) and (c) correspond to 0.2 nm�1.



false positive (FP) and false negative (FN) predictions. The

definition of the evaluation metrics is as follows:

P ¼
TP

TPþ FP
; ð1Þ

R ¼
TP

TPþ FN
; ð2Þ

where P is the precision and R is the recall metrics. The F1

score is the harmonic mean of the precision and recall:

F1 ¼ 2
PR

Pþ R
¼

2 TP

2 TPþ FPþ FN
: ð3Þ

Owing to the pronounced class imbalance in our data set (a

small number of single hits in comparison with a large number

of non-single hits), we mainly use the F1 score for evaluating

our models. In addition, we report the number of single hits.

3.4. Training, validation and test procedure in CNN
classification

We use a training data set that is representative of the

modified workflow introduced in Section 1, where the

experimentalist identifies a limited number of single hits at the

beginning of the experiment. Taking into account the anno-

tation effort that would be required, we chose to use 100 single

hits and a number of non-single hits that corresponds to the

number of images the experimentalist would have seen until

the required number of single hits was collected (see Table 1).

In accordance with the class ratio of the data set used here

(approximately 1:200), our training set (Dtr) consists of 100

single and 19 900 non-single hits. All

hits were sampled randomly without

replacement. We used the manual

selection DM as a ground truth.

To prepare our data for the CNN, all

diffraction patterns were cropped to an

area of size 192 � 96 pixels [see

supporting information Fig. S1, and

Figs. 2(b) and 2(c). All images were

normalized by subtraction of the

training-data-set (20 000 data) mean

value (� = 0.342) and divided by the

standard deviation of the same data set

(� = 2.336).

During method development, our

models were trained and validated

through stratified fivefold cross-

validation on the set of 20 000 training

examples. We report final results on

the test set (Dtest) consisting of the

171 183 remaining patterns (1293

single and 169 890 non-single hits) (see

supporting information Section S3.3)

We trained the network with

stochastic gradient descent using the

Adam optimizer (Kingma & Ba, 2014),

a minibatch size of 64 and an initial

learning rate of 10�4. The standard cross-entropy loss function

was used. Samples within minibatches were sampled randomly

with replacement. We modified the sampling probabilities

such that on average 2% of the presented samples are single

hits. We defined an epoch as 50 training iterations and trained

for a total of 1000 epochs (50 000 iterations). The learning rate

was reduced each epoch according to the polynomial-learning-

rate schedule presented by Chen et al. (2018) (see also

supporting information S3.1).

3.4.1. Data augmentation. Owing to the limited number of

training cases, extensive data augmentation is performed on

the fly during training using the batchgenerators framework

(Isensee et al., 2020). Specifically, we used random rotations,

scaling, elastic deformation, gamma augmentation, Gaussian

noise, Gaussian blur, mirroring, random shift and cutout

(DeVries & Taylor, 2017) (for details regarding the data

augmentation pipeline, see supporting information Section

S3.4).

3.4.2. Inference. For model development we used stratified

fivefold cross-validation on the training set. The resulting five

models are used as an ensemble for test set predictions. We

further use test-time data augmentation (mirroring). Ensem-

bling is implemented via softmax averaging, followed by

thresholding at 0.5 to obtain the final predictions (see

supporting information Sections S3.2 and S3.3).

3.5. CNN variant: identifying more single hits

The CNN model described above is optimized for maxi-

mizing the F1 score on our training cross-validation. We

subsequently refer to it as ‘MaxF1’. In addition, we trained a
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Figure 3
Network architecture. We use a pre-activation ResNet-inspired architecture. It takes patches of size
192 � 96 as input and processes them in a sequence of eight pre-activation residual blocks.
Downsampling is implemented via strided convolution. The architecture is initialized with 16 filters
and doubles the number of filters with each downsampling operation up to a maximum of 256. Global
average pooling reduces the final feature representation (shape 6� 6) to a vector that is then used by
the classification layer to distinguish single from non-single hits. The size of the feature
representations is indicated above each residual block. 16 � 192 � 96 here denotes 16 convolutional
filters with a feature representation of size 192 � 96.



second CNN model that predicts a larger number of single hits

(‘moreSH’) and leans more towards higher recall values. To

achieve that, we made modifications to the sampling strategy

as well as the loss function. Specifically, we increased the

probability of selecting single hits when constructing the

minibatches from 2 to 5% and made use of a weighted cross-

entropy loss which weights samples of ground-truth single hits

higher during loss computation (weights 0.1 and 0.9 for non-

single hits and single hits, respectively). For both models

(MaxF1 and moreSH), we used the same augmentation and

inference scheme.

3.6. Comparison metrics of different data selections

To compare different data selections, we also looked at the

intersection over union � metric, which can be described as

� ¼
A \ B

A [ B
: ð4Þ

Here A and B are two sets of data, and signs \ and [ mean

intersection and union of these two data sets.

As a result of single-hit classification, we obtained data

selections with different numbers of diffraction patterns. In

order to compare these selections, we plotted and analysed the

power spectral density (PSD) function, i.e. the angular aver-

aged intensity. To quantify the contrast values of the PSD

functions for each selection, we introduced the following

metric, which describes the mean difference between the local

minima and maxima over the first three pairs:

� ¼
1

N

XN

i¼1

Imax � Imin

Imax þ Imin

; ð5Þ

where N = 3 is the number of pairs, and Imax and Imin are values

of the PSD function for the maxima and minima, respectively.

By looking at the PSD functions and the corresponding

contrast values we can compare various single-hit selections

and analyse which one has more features.

3.7. Particle size determination

Particle size filtering is also an important part of the SPI

data analysis workflow (see Fig. 1 and supporting information

Section S4). It can help to remove unnecessary diffraction

patterns corresponding to other particles apart from the

viruses under investigation. In the previous approach (Fig. 1,

black arrows), particle size determination was carried out on

the entire data set D prior to applying the EM classification,

and thus the single-hit classification was performed only on

particle sizes between 55 and 84 nm [see Assalauova et al.

(2020)]. In this work we used the CNN classification after the

initial preprocessing step and particle size filtering was applied

afterwards. Here we used the same results for the virus size

estimation as Assalauova et al. (2020), and the same virus size

range (55–84 nm) was considered here.

4. Results

4.1. CNN performance

Table 2 summarizes the performance of our CNNs on the

training set cross-validation. The MaxF1 configuration obtains

balanced precision and recall and an F1 score of 0.645. The

number of predicted single hits (120) is close to the number of

single hits (100) in this data set. The moreSH configuration,

however, trades a higher recall with lower precision, resulting

in an overall decreased F1 score of 0.536. As expected, the

number of predicted single hits is higher, being 221 in this case.

Test set predictions (see Table 3) were obtained by

ensembling the five models obtained during cross-validation

(see supporting information Sections S3.2 and S3.3). On the

test set (171 183 patterns), the MaxF1 configuration obtained

an F1 score of 0.731 with balanced precision and recall.

Interestingly, the F1 score is substantially higher than that on

the training set cross-validation, which we attribute to the use

of ensembling. The predicted number of single hits (1257

patterns) is close to the number of single hits (1393 patterns)

in the reference set DM.

The moreSH configuration, as expected, again displays an

imbalance between precision and recall. Overall, its recall is

higher (0.841 versus 0.721), but its F1 score is lower at 0.644

(versus 0.731). Again, as expected, the number of predicted

single hits is larger (2086 patterns).

On a workstation equipped with an AMD Ryzen 5800X

CPU, 32 GB of RAM and an Nvidia RTX 3090 GPU, training

each individual model took less than 25 min (<2.5 h for all five

models in the cross-validation). The inference speed was�450

diffraction patterns per second for the ensemble and with test-

time data augmentation (five models and mirroring along all

axes for a total of 20 predictions per pattern). Predicting the

171 183 test patterns took less than 7 min. If faster inference is

required, single-model prediction without test-time augmen-

tation can be used to increase the throughput to �8700

patterns per second. Training required merely 3.5 GB of

VRAM, and a much smaller GPU than the RTX3090 used

here would have been sufficient as well.

4.2. PSD comparison, EM and particle size filtering

As a result of CNN classification, we obtained two data sets:

MaxF1 and moreSH with the number of single-hit diffraction
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Table 2
Five-fold cross-validation results (N = 20 000 training samples).

MaxF1 moreSH

F1 score 0.645 � 0.074 0.536 � 0.018
P (precision) 0.591 � 0.062 0.391 � 0.023
R (recall) 0.710 � 0.096 0.860 � 0.065
Predicted single hits 120 221

Table 3
Test set results (N = 171 183 test samples).

MaxF1 moreSH

F1 score 0.731 0.644
P (precision) 0.741 0.522
R (recall) 0.721 0.841
Predicted single hits 1257 2086



patterns 1257 and 2086, respectively (see Table 4). Plotted

PSD functions for both selections are shown in Fig. 4 (blue

dashed lines). Additionally, we plotted the PSD functions for

the DM and DEM selections (Assalauova et al., 2020),

containing 1393 and 1085 diffraction patterns, respectively

(Fig. 4, purple and brown solid lines). The corresponding

number of diffraction patterns and PSD contrast values for all

four data sets (MaxF1, moreSH, DM and DEM selection) are

given in Table 4. From Fig. 4 we observe the same number of

fringes as in our previous paper. However, the contrast values

were lower in the case of CNN classification in comparison

with EM classification. As expected, the PSD functions for

MaxF1 and moreSH mimic the behaviour of the PSD function

of the DM selection which was used as the ground truth for

CNN training.

In order to increase the PSD contrast of the CNN selection,

we applied EM-based selection to the MaxF1 and moreSH

data sets (see supporting information Section S5). The results

of this additional selection are summarized in Fig. 4 (green

dashed lines) and Table 4 with notation ‘+ EM’. The contrast

for moreSH + EM selection showed a substantial improve-

ment (0.64 versus 0.59 without EM), and we also observed a

slight improvement for the MaxF1 + EM selection (0.64 versus

0.63 without EM). At the same time, the EM selection

(Assalauova et al., 2020) still has the best result in terms of

contrast.

The EM classification carried out by Assalauova et al.

(2020) was performed on a size range of viruses from 55 to

84 nm, which was determined prior to EM classification. To

perform particle size analysis in this work, we first plotted

histograms of the particle size distribution for each data set

(MaxF1 with/without EM algorithm applied, moreSH with/

without EM algorithm applied) in Fig. 5. Each data selection

consists of diffraction patterns within a wide size range. This

means that, even after single-hit classification (with/without

EM algorithm), the data sets contain diffraction patterns that

correspond to particles of different sizes. To be consistent with

our previous work, the size range from 55 to 84 nm was

considered for further analysis and particle size selection was
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Figure 4
PSD functions for the different data sets. (a) PSD functions for the
MaxF1 data selection. (b) PSD functions for the moreSH data selection.
Blue dashed line – the whole selection, orange line – selection with size
filtering applied, green dashed line – selection with the EM algorithm
applied, red line – selection with the EM algorithm and size filtering
applied. Both panels (a) and (b) contain the PSD functions of the DM

(puple line) and DEM (brown line) selections. In the legend, the number
of diffraction patterns for each selection is shown in brackets.

Table 4
Number of diffraction patterns in different data sets of single hits and
PSD contrast values for each of them.

Data set No. of diffraction patterns PSD contrast

MaxF1 1257 0.63

MaxF1 + EM 893 0.64

MaxF1 + size selection 1098 0.64

MaxF1 + EM + size selection 829 0.64

moreSH 2086 0.59

moreSH + EM 1204 0.64

moreSH + size selection 1617 0.62

moreSH + EM + size selection 1090 0.65

DM 1393 0.59

DEM 1085 0.71

Figure 5
Particle size histograms for different data sets. (a) Particle size histogram
for the MaxF1 data selection. (b) Particle size histogram for the moreSH
data selection. Blue bins – the whole selection, orange bins – selection
with size filtering applied, green bins – selection with the EM algorithm
applied, red bins – selection with the EM algorithm and size filtering
applied. In both panels (a) and (b), the dashed areas indicate the particle
size range from 55 to 84 nm; the DM selection is shown in purple bins; the
DEM selection is shown in brown bins. In the legend, the number of
diffraction patterns for each selection is given in brackets.



applied. The corresponding PSD functions are plotted in Fig. 4

(solid orange and red lines), and the resulting numbers of

diffraction patterns and contrast values are summarized in

Table 4 with notation ‘+ size selection’.

Fig. 4(a) and Table 4 show that for the MaxF1 data set the

particle size filtering did not change the contrast values

(= 0.64). However, for the selection moreSH with the EM

algorithm applied the particle size filtering gave the best PSD

contrast value (= 0.65).

Even though we were able to increase the PSD contrast

through different classification strategies and particle size

filtering, we, unfortunately, reduced the number of diffraction

patterns along the way. For the MaxF1 data set we started

from a data set of 1257 patterns and finally came to 827

patterns. For the moreSH selection, we started with 2086

patterns and finally came to 1090 patterns. In the context of

our data processing pipeline, where a large number of single

hits is required to get reliable results, this can be detrimental.

In the following, we will consider four final data sets: MaxF1

with size filtering applied [Fig. 4(a), orange solid line; Fig. 5(a),

orange histogram], MaxF1 with the EM algorithm and size

filtering applied [Fig. 4(a), red solid line; Fig. 5(a), red histo-

gram], moreSH with size filtering applied [Fig. 4(b), orange

solid line; Fig. 5(b), orange histogram], and moreSH with the

EM algorithm and size filtering applied [Fig. 4(b), red solid

line; Fig. 5(b), red histogram].

4.3. Intersection over union comparison

We also compared diffraction patterns in our four final data

sets in terms of the intersection over union metric. The values

obtained for different pairs of data sets are shown in Table 5.

In addition, we calculated the intersection over union over

three selections – MaxF1 with size filtering applied, moreSH

with size filtering applied and DEM selection – which gave the

intersection over union � = 29% with 575 diffraction patterns

in the intersection. Another three selections – MaxF1 with EM

algorithm and size filtering applied, moreSH with the EM

algorithm and size filtering applied, and DEM selection – gave

the intersection over union � = 29% with 469 diffraction

patterns. We think that this choice of diffraction patterns in

the intersection of three data selections is providing us with

the most important diffraction patterns that contain the

features of virus structure from all data selections.

4.4. Orientation determination

The next step of the workflow for SPI analysis after single-

hit classification is orientation determination of the diffraction

patterns (see Fig. 1). In SPI experiments particles are injected

into the X-ray beam in random orientations, so to retrieve a

3D intensity map of the virus from the selected 2D diffraction

patterns, orientation recovery has to be done. The expand–

maximize–compress algorithm (Loh & Elser, 2009) in the

software Dragonfly (Ayyer et al., 2016) was used to retrieve

the orientation of each diffraction pattern and to combine

them into one 3D intensity distribution of the PR772 virus. We

retrieved the orientation of all previously selected data sets

with the size filtering applied, with and without the EM clas-

sification.

Visual inspection does not allow us to see a significant

difference between data sets (MaxF1 and moreSH with/

without the EM algorithm applied, and with size filtering

applied). However, for all four data sets the background at

high q values is clearly seen (see supporting information

Fig. S4). Background subtraction is a common task in SPI data

analysis and several techniques have already been developed

(Rose et al., 2018; Lundholm et al., 2018; Ayyer et al., 2019). In

this work we defined the level of the background as the mean

signal in the high-q region, where the presence of meaningful

signal from the particle is negligible. The orientation deter-

mination results after background subtraction on the MaxF1

CNN selection with the EM and size filtering applied is shown

in Fig. 6 (for other data sets see supporting information

Fig. S5).
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Table 5
Number of diffraction patterns in intersections of different pairs of data
sets.

The initial number of diffraction patterns in the sets is shown in brackets. In
the second line, the intersection over union � is shown.

MaxF1
+ size
selection
(1098)

MaxF1
+ EM
+ size
selection
(829)

moreSH
+ size
selection
(1617)

moreSH
+ EM
+ size
selection
(1090)

DM

(1393)
DEM

(1085)

MaxF1 + size
selection (1098)

1098 829 1097 878 875 575
100% 75% 68% 67% 54% 36%

MaxF1 + EM + size
selection (829)

829 829 829 730 678 485
75% 100% 51% 61% 44% 34%

moreSH + size
selection (1617)

1097 829 1617 1090 1006 686
68% 51% 100% 67% 50% 34%

moreSH + EM + size
selection (1090)

878 730 1090 1090 791 651
67% 61% 67% 100% 47% 43%

DM (1393) 875 678 1006 791 1393 574
54% 44% 50% 47% 100% 30%

DEM (1085) 575 485 686 651 574 1085
36% 34% 34% 43% 30% 100%

Figure 6
Reciprocal space representation for the MaxF1 selection with the EM
algorithm and size filtering applied. (a) 3D intensity distribution of the
virus in reciprocal space after background subtraction. (b) 2D cut of the
distribution. All diffraction patterns are shown in logarithmic scale. The
black scale bar denotes 0.5 nm�1.



4.5. Phase retrieval and reconstructions

The next and the final step in our workflow is phase

retrieval and reconstruction of the electron density of our

virus particle from the 3D reciprocal space data (see Fig. 1).

Since the experimental measurements provide only the

amplitude of the complex-valued scattered wavefield, we

applied iterative phase retrieval algorithms (Fienup, 1982;

Marchesini, 2007) in order to determine the 3D structure of

the virus particle. The following algorithms were used in this

work for the phase retrieval: continuous hybrid input–output

(Fienup, 2013), error reduction (Fienup, 1982), Richardson–

Lucy deconvolution (Clark et al., 2012) and shrink-wrap

(Marchesini et al., 2003).

We proceeded in the same way as Assalauova et al.( 2020).

The phase retrieval procedure consisted of two steps. In the

first step, the central gap in the 3D intensity map of the virus

that originated from the masking of the initial 2D diffraction

patterns was filled. Running 3D reconstruction with a freely

evolving central part produced a signal in the masked region

which was used further. In the second step, the 3D intensity

maps with the filled central part were used to perform phase

retrieval. We first performed 50 reconstructions for each

intensity map and then used mode decomposition (Khubbut-

dinov et al., 2019; Assalauova et al., 2020) to determine the

final 3D electron density structure of the virus.

The final virus structure for each data selection, obtained in

the described way, is shown in Fig. 7. All expected features are

present in these reconstructions: the icosahedral structure of

the virus, higher density in the capsid part of the virus and

reduced density in the central part. The resolution of the

obtained images, evaluated by the Fourier-shell correlation

(FSC) method, gave values from 6 to 8 nm (see supporting

information Section S7). The slightly higher resolution deter-

mined in this work relative to our previous work (6.9 nm) may

be related to the comparatively small number of diffraction

patterns used in the FSC method. As we observe in Figs. 7(a)–

7(d), the electron densities of the virus in the CNN MaxF1

selection with size filtering and MaxF1 selection with EM

selection plus size filtering are practically identical. We see

small differences from the previous electron density in the

CNN moreSH selection with size filtering and moreSH with

EM selection plus size filtering [Fig. 7(e)–7(h)]. At the same

time, the central slice in all four reconstructions [Figs. 7(b),

7(d), 7( f) and 7(h)] is practically the same, the capsid layer

being the same size. Since we have 400–500 diffraction

patterns in common with the considered data selections and

our previous work (Assalauova et al., 2020), we can assume

that these were the ones that contributed to and shaped the

final reconstructed results in such a common way for all five

data selections.

5. Discussion and summary

Our studies with the CNN-based single-hit classification

implemented within the SPI data analysis workflow resulted in

a reasonable structure reconstruction of the virus PR772 (see

Fig. 7).
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Figure 7
PR772 virus reconstructed from the different data sets. (a)–(d) Reconstruction of single-hit diffraction patterns selected by MaxF1 with size filtering
applied (a), (b) and MaxF1 with the EM algorithm and size filtering applied (c), (d). (e)–(h) Reconstruction of the single-hit diffraction patterns selected
by moreSH with size filtering applied (e), ( f ) and moreSH with the EM algorithm and size filtering applied (g), (h). (a), (c) The 3D inner structure of the
virus with 88% (brown), 75% (green) and 20% (grey) levels of intensity for the MaxF1 selections. (e), (g) The 3D inner structure of the virus with 86%
(brown), 75% (green) and 20% (grey) levels of intensity for the moreSH selections. (b), (d), ( f ), (h) 2D slices of the corresponding structure with the
same scale bar of 30 nm. For visual representation, each virus structure was upsampled three times.



We compared two competing CNN selections, MaxF1 and

moreSH. The MaxF1 selection was intended to select single

hits with an optimal F1 score. The selection moreSH was

optimized for finding more single-hit diffraction patterns (high

recall). Both selections were refined by applying the EM

algorithm and limiting the selection to particle sizes in the

range 55–84 nm (Table 4). Driven by the need for many single

hits in the reconstruction pipeline, the moreSH configuration

was conceived with the intention of missing as few single hits

as possible; the selection was cleaned up afterwards using EM

selection and size filtering, in the hope of achieving a higher

resolution than could be obtained with the MaxF1 counter-

part. Unfortunately, this goal was missed: MaxF1 yielded

approximately the same resolution even though the moreSH

approach resulted in 1090 selected single hits instead of the

829 found by MaxF1 (with EM and size selection applied). We

therefore conclude that optimizing balanced precision and

recall through maximizing the F1 score is a suitable target for

model development.

CNNs learn from their given training data set. Unfortu-

nately, the selection provided by Li et al. (2020) which was

used for this purpose here, as any other manual selection, may

be subjective. In addition, the task of identifying single hits is

not necessarily identical to the task of finding the ideal set of

patterns needed for reconstruction. In an ideal world, the

CNNs should be trained with the patterns ideally suited for

reconstruction. Until we identify a way of obtaining ideal

patterns from a subset of our data, subjectively selected single

hits are the next-best solution.

The particle size filtering step is quite important and has to

be applied throughout the SPI analysis pipeline. A real

experiment might run in the following way. A trained person

will select a number of single hits and non-single hits and then

will run the CNN selection on the diffraction patterns coming

from the experimental stream. After size filtering, this selec-

tion will be uploaded to the SPI workflow as shown in Fig. 1,

and the electron density of a single particle will be obtained as

a result.

Reconstructing the 3D structure from a selection of single

hits is expensive: both computationally and in terms of manual

labour. We introduced the PSD contrast in the hope that it

would constitute a good substitute measure for the quality of a

selection. If successful, this would have allowed us to optimize

our CNNs more directly towards identifying an optimal set of

single hits for reconstruction through maximizing their PSD

contrast. Comparing the PSD contrast between CNN selec-

tions, DM and DEM (Assalauova et al., 2020) revealed that the

contrast in the CNN and DM selections is always lower than

that in the DEM selection. We initially thought that this may be

problematic for the reconstructions. However, as the results in

Fig. 7 demonstrate, this is not the case and our CNN selection

(which mimics DM) is working well, resulting in an electron

density of the PR772 virus that is similar to that obtained in

our previous work (Assalauova et al., 2020). These results

indicate that the PSD contrast may not be a good substitute

for reconstruction fidelity. Deviations from a circular shape, as

are present in PR772, might explain this observation.

We have proposed an SPI workflow that uses a CNN-based

single-hit classification at an early stage of the data analysis

pipeline. This approach can be beneficial not only because it

can be run during SPI experiments but also because it can

significantly reduce the number of diffraction patterns for

further processing. That is important for data storage, as the

size of collected data sets during one experiment at a mega-

hertz XFEL facility can easily reach several petabytes.

Another convenience of using CNNs for single-hit classifica-

tion is that the network can be trained on a relatively small

quantity of data at the beginning of the SPI experiment and

can be simply applied throughout the rest of the experiment.

Introducing non-standard AI-based solutions into an

established SPI analysis workflow may be beneficial for the

future development of SPI experiments. Here we have

demonstrated the use of CNNs at the single-hit diffraction-

pattern classification step, which can be applied not only after

the experiment but, importantly, also during the experiment

and can significantly reduce the size of data storage for further

analysis stages. That could be an important advantage with the

development of high-repetition-rate XFELs (Decking et al.,

2020) with data collection with the megahertz rate (Sobolev et

al., 2020). Handling experimental data with CNNs also saves

computational time: once the CNN is trained and new data are

obtained, there is no need to retrain the CNN again as is

needed with other classification approaches.

6. Data and code availability

The experimental data sets used in this publication are

publicly available: https://www.cxidb.org/id-156.html. They

were preprocessed (background correction, center estimation)

as described by Bobkov et al. (2020) using the code available

at https://gitlab.com/spi_xfel (see spi_processing section).

For convenience, the preprocessed data are also available at

https://zenodo.org/record/6451444 (Assalauova et al., 2022).

The code for training the CNN and running predictions

on our test set is available at https://gitlab.hzdr.de/hi-dkfz/

applied-computer-vision-lab/collaborations/desy_2021_

singleparticleimaging_cnn.

7. Related literature

The following additional literature is cited in the supporting

information: Harauz & van Heel (1986); van Heel & Schatz

(2005); Scheres et al. (2005).
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Köhler, S., Köhler, W., Kohlstrunk, N., Konopkova, Z., Konstan-
tinov, A., Kook, W., Koprek, W., Körfer, M., Korth, O., Kosarev, A.,
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