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Abstract: In the context of high-energy physics, a reliable description of the parton-level

kinematics plays a crucial role for understanding the internal structure of hadrons and

improving the precision of the calculations. Here, we study the production of one hadron

and a direct photon, including up to Next-to-Leading Order Quantum Chromodynamics and

Leading-Order Quantum Electrodynamics corrections. Using a code based on Monte-Carlo

integration, we simulate the collisions and analyze the events to determine the correlations

among measurable and partonic quantities. Then, we use these results to feed three different

Machine Learning algorithms that allow us to find the momentum fractions of the partons

involved in the process, in terms of suitable combinations of the final state momenta. Our

results are compatible with previous findings and suggest a powerful application of Machine-

Learning to model high-energy collisions at the partonic-level with high-precision.
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1 Introduction

Thanks to recent technological advances and increased computational power, Machine

Learning (ML) has taken by storm our everyday life. Applications of ML cover fields

as diverse as image and speech recognition, automatic language translation, product rec-

ommendation, stock market prediction and medical diagnosis, to mention some examples.

High-energy physics has not remained indifferent to the opportunities offered by these tech-

niques. In the last years several applications have been developed, particularly in regards

to data analysis. Novel jet clustering algorithms that use improved classification to identify

structures [1], reconstruction of the Monte-Carlo (MC) parton shower variables [2], and

reconstruction of the kinematics [3] are just some of the explored uses. In particular, the

high luminosity upgrade of the Large Hadron Collider (LHC) and the upcoming Electron-

Ion Collider (EIC) are feeding the interest of the community in ML1. From a theoretical

1For more information concerning the LHC upgrade, we refer the reader to

https://home.cern/science/accelerators/high-luminosity-lhc. Details about ML developments for the

upcoming EIC were presented at the workshop AI4EIC - Experimental Applications of Artificial

Intelligence for the Electron Ion collider (https://indico.bnl.gov/event/10699/).
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perspective there has been progress in the calculation of higher-order scattering ampli-

tudes assisted by ML algorithms [4] and, in phenomenology the NNPDF collaboration has

pioneered the determination of the partonic structure of hadrons [5–12].

The successes of the perturbative expansion of Quantum Chromodynamics (QCD) to

describe processes involving hadrons lies in the factorisation of the physical observables into

hard (perturbative, process-dependent) and soft (non-perturbative, universal) terms [13].

The former describe the interaction between elementary particles while the latter encode

all the information concerning non-perturbative physics, i.e., the description of the partons

inside the hadrons before the interaction and their posterior hadronisation into detected

particles. For these, only the scale evolution can be determined once they are known at

some other scale, and thus must be obtained from data through global fits2.

The simplest description of a hadron is that of a collection of partons moving in the

same direction. The probability of finding a particular parton a in a hadron H carrying a

fraction x of its momentum is given by the parton distribution function (PDF) fH/a(x, µ),

when the hadron is explored at scale µ. After the hard interaction all outgoing coloured

particles will hadronise; the probability of a parton a to fragment into a hadron H with

a fraction z of its original momentum is described by the fragmentation function (FF)

Da/H(z, µ). This collinear picture is the best explored and in this framework several sets

of PDFs and FFs have been extracted using standard regression techniques (e.g. [15–19]),

MC sampling (e.g. [20, 21]) and MC sampling with neural networks (e.g. [5]).

In order to perform a meaningful calculation, the hard cross-section must be convoluted

with the PDFs and/or FFs, over the corresponding momentum fractions of the partons. In

the inclusive deep inelastic scattering (DIS) process, where a lepton and a parton inside a

hadron interact by exchanging momentum Q2 ≥ 1 GeV2, measuring the scattered lepton

(and/or final hadrons) provides the full kinematics of the event. Unfortunately, in proton-

proton (p+p) collisions the situation is not so simple. One has to estimate the momenta of

the initial partons (that enter in the evaluation of the PDFs) using the measured momenta

and scattering angles of the final state particles. Depending on the process and the charac-

teristic of the detectors, it can become a complicated task. Despite its inherent complexity,

it is of the utmost importance in some situations. For example in the case of asymmet-

ric proton-nucleus (p+A) collisions, particles created in the the backward (nucleus-going)

direction are linked to initial partons in the nucleus with low-x, and those in the forward

(proton-going) direction are related to partons in the nucleus with large-x. Depending on

its exact value, one could have an enhancement or a suppression of the nuclear PDF w.r.t.

the free proton one. Knowing the region of the detector associated with the kinematics of

interest for a given process is also relevant for the efficient design and construction of the

detectors [22]. The proper mapping of the measured kinematics onto the partonic level is

crucial for a correct evaluation of the cross-sections and interpretation of the perturbative

calculations. This can be done analytically at leading order (LO) for processes involving few

particles, but as one considers higher orders the emission of real particles makes it hard to

2Significant progress in the ab-initio calculation of parton densities is being carried out in the field of

Lattice QCD [14].
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fully determine the kinematics, and normally phenomenological approximations are used.

In the present work, we aim to use ML to determine the relation between the measurable

four-momenta of the final particles and the parton-level kinematics. In particular, we focus

on p+p collisions with one photon plus one hadron in the final state, computed using QCD

and Quantum Electrodynamics (QED) corrections. This process has already been identified

as an interesting observable at the Relativistic Heavy-Ion Collider (RHIC) [23]. Our goal

is to obtain the functions that, depending on the four-momenta of the photon and hadron,

give xi (the fraction of momentum of the proton i carried by the parton coming from it,

i = 1, 2) and z, the fraction of energy of the parton coming from the hard interaction that

is taken by the hadron (in our analysis a pion).

This article is organised as follows. In Sec. 2 we describe the framework used to

implement the MC simulation of hadron-photon production, with special emphasis on the

isolation prescription (Sec. 2.1). Relevant phenomenological aspects of the process are

discussed in Sec. 3. The distributions w.r.t. different variables are presented in Sec.

3.1, with the purpose of identifying the most probable configurations. We also explore the

correlations between different measurable variables and the partonic momentum fractions in

Sec. 3.2. In Sec. 4, we detail the implementation of reconstruction algorithms based on ML

to approximate the partonic momentum fractions using only measurable quantities. Finally,

we discuss the results and comment on potential future applications of our methodology in

Sec. 5.

2 Computational setup

From the theoretical point of view, the calculation relies on the factorization theorem to

separate the low-energy hadron dynamics (i.e. the non-perturbative component embodied

into the PDFs and FFs) from the perturbative interactions of the fundamental particles.

This approach is valid in the high-energy regime, under the assumption that the typical

energy scale of the process is much larger than ΛQCD ≈ 900MeV. The process under

consideration is described by

H1(P1) +H2(P2) → h(P h) + γ(P γ) , (2.1)

and the differential cross-section is given by

dσH1H2→hγ =
∑

a1a2a3a4

∫

dx1 dx2 dz1 dz2 fH1/a1(x1, µI) fH2/a2(x2, µI)Da3/h(z1, µF )

×Da4/γ(z2, µF ) dσ̂a1 a2→a3 a4(x1P1, x2P2, P
h/z1, P

γ/z2;µI , µF , µR) , (2.2)

where {ai} denote the possible flavours of the partons entering into the fundamental high-

energy collision. fHi/aj (x, µI) is the PDF of the parton at the initial state factorization

scale µI , and Daj/h(z, µF ) is the FF of the parton at the final state factorization scale

µF . The partonic cross-section, dσ̂, depends on the kinematics of the partons as well on

the factorization and renormalization scales (µR) and can be computed using perturbation

theory. It is worth appreciating that we consider all the partons to be massless.
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In Eq. (2.2) we consider the photon as a parton, i.e. ai ∈ {q, g, γ}. Namely, we rely

on the extended parton model to include mixed QCD-QED corrections in a consistent way

[24–28]. However, we will assume that the fragmentation of a photon into any hadron is

highly suppressed w.r.t. the same process initiated by a QCD parton. This implies that we

neglect Dγ/h and a3 is always a QCD parton (quark or gluon). Also, since we are looking

for a photon in the final state, we can write

Da4/γ(z2, µF ) = δa4,γδ(z2 − 1) + (1− δa4,γ)D̃a4/γ(z2, µF ) , (2.3)

which leads to

dσH1H2→hγ =
∑

a1a2a3

∫

dx1 dx2 dz fH1/a1(x1, µI) fH2/a2(x2, µI)Da3/h(z, µF )

×dσ̂a1 a2→a3γ(x1P1, x2P2, P
h/z, P γ ;µI , µF , µR)

+
∑

a1a2a3

∑

a4∈QCD

∫

dx1 dx2 dz1 dz2 fH1/a1(x1, µI) fH2/a2(x2, µI)Da3/h(z1, µF )

×D̃a4/γ(z2, µF ) dσ̂a1 a2→a3a4(x1P1, x2P2, P
h/z1, P

γ/z2;µI , µF , µR) , (2.4)

where a4 is a QCD parton. By rewriting Eq. (2.2) in this way, it is possible to separate

two different mechanisms originating photons in the final state3. The first term describes

the direct production of an observed photon in the partonic collision; in the second term

the observed resolved photon is generated from a non-perturbative process initiated by the

parton a4. It is worth appreciating that these contributions are not individually distin-

guishable; however the latter can be suppressed by applying adequate prescriptions. By

realising that the resolved component appears in the context of hadronisation, the photon

being produced together with a bunch of hadrons, one can exploit this signature to en-

hance the direct photon: it is the motivation for introducing isolation prescriptions. By

selecting mainly those events that contain photons isolated from hadronic energy, the total

cross-section can be approximated to

dσH1H2→hγ ≈
∑

a1a2a3

∫

dx1 dx2 dz fH1/a1(x1, µI) fH2/a2(x2, µI)Da3/h(z, µF )

×dσ̂(ISO)
a1 a2→a3γ(x1P1, x2P2, P

h/z, P γ ;µI , µF , µR) , (2.5)

i.e. neglecting the resolved component and summing over all QCD-QED partons. The

partonic cross-section dσ̂
(ISO)
a1 a2→a3γ incorporates the isolation prescription and is described

in greater detail in Sec. 2.1.

We can now move to the discussion of how to include the QED corrections. The next-to-

leading order (NLO) pure QCD corrections for this process were computed in Refs. [23, 29].

Since in this case we are dealing with mixed QCD-QED corrections, we have to consider

3A third mechanism is related to the presence of fracture functions, Ma3,a4/h,γ , which do not completely

separate the non-perturbative interactions in the final state. Since we are interested in the high-energy

limit of this process, such contributions will be suppressed by the same reasons supporting the validity of

the factorization theorem.
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the two couplings involved in the perturbative expansion. From the computational point of

view, we can profit from the Abelianization techniques to directly obtain QED contributions

from the QCD ones [26, 27, 30–32]. Given that the energy scale of the process is roughly

O(10GeV), we have αS ≈ 0.12 and α ≈ 1/129. This means α ≈ α2
S, indicating that the LO

QED corrections have the same weight as the NLO QCD ones. Therefore, the dominant

contribution is given by the partonic channels qq̄ → gγ and qg → qγ at O(αSα), i.e.

dσ̂ISO,(0)
a1 a2→a3 γ =

αS

2π

α

2π

∫

dPS2→2 |M(0)|2(x1P1, x2P2, P
h
3 /z, P

γ)

2ŝ
S2 , (2.6)

with S2 the measure function containing the definition of the kinematical selection cuts for

the 2 → 2 sub-processes. We have then to include O(α2
Sα) and O(αSα

2) contributions,

associated to the partonic channels

qq̄ → gγg , qg → qγg , gg → qγq̄ , qq̄ → QγQ̄ , qQ → qγQ , (2.7)

and

qγ → qγ , qq̄ → γγ , (2.8)

respectively. In this way, the corrections to the partonic cross-section are given by [33]

dσ̂ISO,(1)
a1 a2→a3 γ =

α2

4π2

∫

dPS2→2
|M(0)

QED|2(x1P1, x2P2, P
h/z, P γ)

2ŝ
S2

+
α2
S

4π2

α

2π

∫

dPS2→2 |M(1)|2(x1P1, x2P2, P
h/z, P γ)

2ŝ
S2

+
α2
S

4π2

α

2π

∑

ar

∫

dPS2→3 |M(0)|2(x1P1, x2P2, P
h/z, P γ , kr)

2ŝ
S3 , (2.9)

where ŝ is the partonic center-of-mass energy and r denotes the extra parton associated

to the real radiation correction. |M(0)|2 and |M(1)|2 are the squared matrix-elements for

the tree-level and one-loop corrections, respectively. In these expressions, S3 represents the

measure function that implements the experimental cuts and the isolation prescription for

the 2 → 3 sub-processes.

Since we are dealing with higher-order corrections, singularities will appear in the cal-

culation. The LO QED is given by a (finite) Born level process. However, the NLO QCD

corrections involve both ultraviolet (UV) and infrared (IR) singularities that must be regu-

larized and cancelled to get a physical result. The regularization was done using Dimensional

Regularization (DREG) [34–37]. The virtual corrections were computed starting from the

one-loop QCD amplitude for the process 0 → qq̄gγ, removing the UV poles through the

renormalization in the MS scheme. In order to cancel the IR singularities, we relied on

the subtraction formalism [38–42], splitting the real phase-space in regions containing only

one kind of IR singularity. When combining the real and the virtual corrections, some of

the IR divergences associated to final state radiation (FSR) cancel by virtue of the KLN

theorem [43, 44]. But to achieve a full cancellation, counter-terms were added to remove

the remaining initial-state and final-state contributions absorbed into the PDFs and FFs,
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respectively. In this way, the master formula for the partonic cross-section at NLO QCD +

LO QED accuracy is symbolically given by

dσ̂ISO,(1),finite
a1 a2→a3 γ = dσ̂ISO,(1),ren.

a1 a2→a3 γ −
CUV
a1 a2→a3 γ

ǫ
× dσ̂ISO,(0)

a1 a2→a3 γ

− dσ̂ISO,cnt,(I)
a1 a2→a3 γ − dσ̂ISO,cnt,(F )

a1 a2→a3 γ , (2.10)

where dσ̂
ISO,cnt,(I)
a1 a2→a3 γ and dσ̂

ISO,cnt,(F )
a1 a2→a3 γ are the initial and final-state IR counter-terms, re-

spectively. Here, CUV
a1 a2→a3 γ is the renormalization counter-term for the partonic process

a1 a2 → a3 γ in the MS scheme4.

2.1 Isolation prescription and other assumptions

In order to suppress events with photons originated from the decay of hadrons, it is necessary

to implement an isolation prescription. The idea behind most of the strategies available

in the literature consists in quantifying the amount of hadronic energy surrounding a well-

identified photon, and rejecting events with more hadronic energy than a certain threshold.

Whilst most of the prescriptions work nicely at LO, not all of them are infrared safe. For

instance, it is known that choosing a fixed cone eliminates events that play a crucial role

in the cancellation of IR singularities. Thus, special care is needed in the implementation

of these methods5.

In this work, we rely on the smooth cone prescription introduced in Ref. [49]. Its main

advantage is that it suppresses the resolved component without preventing the emission

of soft/collinear QCD radiation, which makes it IR-safe and fully suitable for higher-order

calculations. In the first place, we fix a reference point in the rapidity-azimuthal plane

(η0, φ0), and define the distance

r(j) =
√

(ηj − η0)2 + (φj − φ0)2 , (2.11)

with (ηj , φj) the angular coordinates of the parton j. Once we identify a photon in the

detector, we trace a cone of radius R around it and look for QCD partons inside. If no QCD

radiation lays inside the cone, the photon is isolated. If not, we identify the QCD partons

inside the cone, {aj}, and measure their distance to the photon following Eq. (2.11). Then,

for a fixed r ≤ R, we calculate the sum of the hadronic transverse energy according to

ET (r) =
∑

rj≤r

ETj . (2.12)

We want to restrict ET by imposing an upper bound, thus limiting the amount of hadronic

energy surrounding the photon. In the fixed cone prescription, this limit is a constant.

However, for the smooth prescription, we introduce an arbitrary smooth function ξ(r)

satisfying ξ(r) → 0 for r → 0, and require ET (r) < ξ(r) for every r < r0. Only if this

condition is fulfilled, the photon is isolated; otherwise, the event is rejected.

4Explicit formulae for all the ingredients in this expression can be found in Refs. [40, 45].
5An extensive study of different methods and their impact on the calculations is available in Refs.

[46–48].
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The experimental implementation of this criterion requires a very high angular res-

olution, something that is usually not achievable in practise. This is one of the reasons

because most of the current experiments still rely (mainly) on the fixed cone prescription.

Fortunately, the difference between both approaches can be neglected for several relevant

observables [46, 47]. In any case, technological improvements in detector science will cer-

tainly reduce the experimental limitations in the near future.

Finally, let us mention one further detail about the implementation. We will neglect

the partonic channel qq̄ → γγ in Eq. (2.5), which would imply the introduction of the

fragmentation Dγ/h. From the point of view of perturbation theory, this fragmentation can

be interpreted as a collinear electromagnetic splitting γ → a+X, with a a QCD-parton that

undergoes hadronization to generate the observed hadron h. Performing a naive counting,

this contribution is O(α3) and turns out to be sub-leading w.r.t. the NLO QCD + LO

QED terms studied in this work6.

3 Phenomenological results

Using the formalism explained in the previous Section, we calculated the unpolarized cross-

section via a code that uses adaptive MC integration. In this program, the different con-

tributions to 2 → 2 and 2 → 3 processes are computed independently, and kinematic cuts

can be imposed. In particular, we reproduced the experimental cuts corresponding to the

PHENIX detector, i.e.

|ηh| ≤ 0.35 , |ηγ | ≤ 0.35 , phT ≥ 2GeV , 5GeV ≤ pγT ≤ 15GeV , (3.1)

with η the rapidity of the particles measured in the hadronic center-of-mass frame. On

top of that, we require |φh − φγ | > 2 to retain those events with the photon and hadron

produced almost back-to-back. We perform the simulations at centre-of-mass (c.m.) energy

(
√
SCM ) 200 GeV for RHIC and at

√
SCM = 13 TeV for LHC Run II, keeping in this case

the same cuts described in Eq. (3.1). Since the pion is the lightest hadron and is produced

more copiously, we restrict our attention to the case h = π+. Additionally, we considered

the scenario for Tevatron at
√
SCM = 1.96 TeV because it involves proton-antiproton (p+p̄)

collisions. In principle, this process might exhibit a different dependence on PDFs and FFs,

compared to p+ p collisions.

Regarding the non-perturbative ingredients of the calculation, we used the LHAPDF

package [50, 51] to have a unified framework for the PDF implementation. We relied on the

NNPDF4.0NLO [12] and NNPDF3.1luxQEDNLO [52–55] parton distributions for the pure QCD

and mixed QCD-QED calculations, respectively. In both cases, we use the set 0, which

corresponds to an average over the different replicas. For the fragmentation functions, we

used the DSS2014 set at NLO accuracy [18, 56]. Also, we evolve the QCD and QED couplings

using the one-loop RGE with the initial conditions αS(mZ) = 0.118 and α(mZ) = 1/128.

6This topic deserves attention, specially because non-perturbative contributions could enhance the pro-

duction rate of hadrons from highly-energetic photons. Unfortunately, we were unable to find in the

literature studies or a proper definition of Dγ/h to be included within our simulations.
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4 Reconstruction of parton kinematics

We now focus on our main goal, which is to determine the partonic variables x1, x2 and z in

terms of the measured momenta of the final state particles. At LO this is fully determined

by energy-momentum conservation, and thus the LO case will serve as control. The real

challenge appears at NLO, where real emissions prevent a straightforward determination of

closed analytic formulae: this is what we will attempt to approximate using ML 7.

In supervised ML, we have an initial set of data (the training set) and we want to map

it into another known set (the target). Each entry in the training set is a vector of dimension

d, with d the number of variables (features) that the target depends upon. We also assume

that there is some underlying function, the so-called target function, that connects the two;

the task of a ML algorithm is to find a good estimation of this function. This estimator,

in turn, depends on a set of parameters that is determined by minimising a function (the

cost function) that measures some distance between the prediction of the estimator and

the actual targets. As a last step, one takes another set of data with corresponding labels

(test set) and compares how well the estimator does over it. To prevent the estimator from

performing well over the training data set but poorly over the test set (overfitting), the cost

function includes also some parameters to control the trade off between a low training cost

and a low test cost. The total number of regularization parameters depend on the specific

method used, and the optimal value/s have to be found by picking the one/s that minimize

the test cost function.

Armed with these basic concepts, we first discuss the generation of our input and target

sets using the outputs of our MC code. After that, we present results obtained through

the application of supervised ML for estimating x ≡ x1 and z at LO QCD and NLO QCD

+ LO QED accuracy. For the purpose of the present analysis, we explore three models: a

Linear Model (LM), a Gaussian Regression (GR) and the Multi-Layer Perceptron (MLP)

algorithm based on neural networks. These models have been implemented in Python using

the scikit-learn library [60].

4.1 Construction of the training data sets

The training and test sets were generated with the MC code used and described in the

previous sections. As was mentioned already, it deals independently with each term of the

computation (LO, NLO real radiation, NLO virtual terms, NLO counter-terms). This poses

two difficulties when generating the training set for feeding the ML algorithms. On the one

hand, only the LO calculations are finite on their own; for the NLO cross-section, we have

to combine all terms (real, virtual and counter-terms) to have a meaningful finite quantity.

On the other hand, by the same nature of the MC integration, no two identical points are

generated in the sampling, which in turn spoils the fully local cancellation of the divergences.

Instead, one has to split the different variables into bins and sum over all contributions

7Doing a formal description of the ML methods that we used is beyond the scope of this work, and

would take much more than a simple article. Moreover much literature is available on the topic (see e.g.

[59]), so we will leave out such a discussion and mention just a few basic concepts needed in the rest of the

section.
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entering each of them. If a sufficient number of points is sampled, the divergences cancel

and we obtain the finite cross-section per bin. This is a common feature of MC integration,

and many codes provide routines that take care of this for one-dimensional binning. In

our case we are interested in a more differential observable, so that we had to generate a

large number of points to meet this condition. Moreover, not all sampled points pass the

selection cuts, e.g. from the 109 points sampled we retain ≈ 30% at LO.

For the LO we can directly use the generated points, but for the NLO case we need

to discretize the differential cross-section w.r.t. the external kinematical variables defined

in Eq. (3.4). For this purpose, we create a five-dimensional grid by binning the variables

in VExp. Explicitly, we define 10 bins for pγT and pπT , 5 bins for ηγ and ηπ, and 6 bins for

cos(φπ − φγ). The set of discretized experimentally-measurable variables is denoted as

V̄Exp = {p̄γT , p̄πT , η̄γ , η̄π, cos(φπ − φγ)} , (4.1)

where ā denotes the mean value of the variable a in a given bin. In total V̄Exp contains

15000 bins. Then, we define the cross-section per bin according to

σj(p̄
γ
T , p̄

π
T , η̄

γ , η̄π, cos(φπ − φγ)) =

∫ (pγT )j,MAX

(pγT )j,MIN

dpγT

∫ (pπT )j,MAX

(pπT )j,MIN

dpπT . . .

×
∫

dx1dx2dz dσ̄ , (4.2)

with xj,MIN (xj,MAX) the minimum (maximum) value of the variable x in the j-th bin, x̄

the corresponding average of x over the j-th bin and

dσ̄ =
dσ

dVExp dx1dx2dz
(4.3)

is the fully-differential hadronic cross-section as a function of the partonic momentum frac-

tions and the experimentally-measurable variables VExp. At LO, σj can be straightforwardly

calculated since we only need to integrate the tree-level scattering amplitude in a 2 → 2

phase-space. However, as we explained in Sec. 2, the NLO corrections include several con-

tributions calculated with different kinematics (virtual, real, counter-terms): all of these

are taken into account in dσ̄ and integrated over their corresponding phase-space to obtain

σj
8.

Once the grid and the discretized cross-section are defined, we use the MC code to

generate three histograms per each bin in the grid. These histograms corresponds to the

distributions dσj/dx1, dσj/dx2 and dσj/dz, respectively. So, given a point in the grid

pj = {p̄γT , p̄πT , η̄γ , η̄π, cos(φπ − φγ)} ∈ V̄Exp , (4.4)

8It is worth appreciating that binning could be avoided using a fully-local framework for computing

higher-order corrections [61, 62]. One of these methods is the Four-Dimensiona Unsubtraction (FDU) [63–

66] based on the Loop-Tree Duality [67–69]. Since FDU leads to a fully-differential and finite representation

of the cross-section, it constitutes a perfectly suited candidate to improve the efficiency of the analysis

presented in this article.
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we can define

(x1)j =
∑

i

(x1)i
dσj
dx1

(pj ; (x1)i) , (4.5)

(x2)j =
∑

i

(x1)i
dσj
dx2

(pj ; (x2)i) , (4.6)

(z)j =
∑

i

zi
dσj
dz

(pj ; zi) , (4.7)

which correspond to the weighted average of the partonic momentum fractions extracted

from the histograms generated with the MC code.

At this stage, we can identify V̄Exp as the training set and {(x1)j , (x2)j , (z)j} as the

target one. Then, we can train the ML algorithms to find the target functions

X1,REC := V̄Exp −→ X̄1,REAL = {(x1)j} , (4.8)

X2,REC := V̄Exp −→ X̄2,REAL = {(x2)j} , (4.9)

ZREC := V̄Exp −→ Z̄REAL = {(z)j} , (4.10)

that will allow us to reconstruct the MC partonic momentum fractions X̄1,REAL, X̄2,REAL

and Z̄REAL.

To conclude this discussion, notice that the definitions given in Eqs. (4.5)-(4.7) are

crucial beyond LO. In fact, for a 2 → 2 process, fixing the bin pj ∈ V̄Exp leads to a unique

value of the partonic-momentum fractions. Explicitly, we have

X1,REC =
pγT exp(ηπ) + pγT exp(ηγ)√

SCM
, (4.11)

X2,REC =
pγT exp(−ηπ) + pγT exp(−ηγ)√

SCM
, (4.12)

ZREC =
pπT
pγT

, (4.13)

as explained in Ref. [23]. Due to the presence of 2 → 3 sub-processes contributing to the

real radiation, the value of {x1, x2, z} for a given pj is not unambiguously defined at NLO

(and beyond). If we pick up an event with a fixed pj from our NLO MC generator, the real

partonic momentum fractions might take all the kinematically-allowed values. However, the

probability of the different outcomes is given by the differential-cross section of the event,

which motivates the definitions introduced in Eqs. (4.5)-(4.7). In the following, we explain

how these data sets are used with the different ML frameworks.

4.2 Linear regression

Linear methods, as the name indicates, provide the estimation of the target function as

a linear combination of the input set. However, the linearity occurs at the level of the

parameters and one can apply prior knowledge to construct new features upon which the

target dependence is simpler. Choosing a good set of features (basis) plays an important

role to achieve an accurate reconstruction.
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With this precedent in mind, we propose here to include additional functional depen-

dencies to have a more flexible reconstruction. We start by defining a primitive set of

functions

K = { pγT√
SCM

,
pπT√
SCM

, exp(ηγ), exp(ηπ), cos(φπ − φγ)} , (4.18)

in such a way that the reconstructed variables take the form

YREC =
9

∑

i=1,i 6=5

(aYi + bYi K5)Ki +
∑

i≤j,{i,j}6=5,j−i 6=5

(cYij + dYij K5)KiKj , (4.19)

with YREC = {X1,REC, X2,REC, ZREC} and Ki = K−1
i−5 for i = {6, 7, 8, 9}. The ansatz

proposed in Eq. (4.19) generalizes the basis BLO and includes products of up to three

kinematical variables, which gives more flexibility to fit the data. In total, there are eighty-

one functions in the basis, that we denominate general basis. However, as we will now

explicitly see, a larger basis does not imply a better reconstruction.

If we take Eq. (4.19), with Y = {x1, z} we obtain the results shown in the upper row

of Fig. 13. In this figure, we indicate the strength of the correlation with the integrated

cross-section per bin at NLO QCD + LO QED accuracy. The coefficients aYi , bYij , c
Y
ij and

dYij are given in App. A. We can appreciate that the reconstruction is good in the low-x

and low-z region. This is expected because the cross-section is larger in that region, so

there are more data-points to perform the fit. However, the reconstruction becomes noisy

and imprecise for higher values of the momentum fractions. The LM is unable to keep the

functional dependencies that better approximate the real momentum fractions in regions

with low number of events.

For this reason, we explore a second approach. We take profit from the findings in Sec.

3.2, and distinguish different basis for Y = x1 and Y = z. It was shown that x1 exhibits

a positive correlation with pγT , so we remove the contributions involving K6 = (pγT )
−1

from Eq. (4.19). Regarding z, the conclusion of Sec. 3.2 was that it is correlated with

K6 = (pγT )
−1, K2 = pπT and that also presents a mild correlation with K5. So, we remove

the contributions that involve the primitive functions K1 and K7. As a result, we propose

a physically-motivated reconstruction by taking Eq. (4.19) and setting

bX1

6 = 0 ,

cX1

6,j = dX1

6,j = cX1

i,6 = dX1

i,6 = 0 {i, j} ∈ {1, . . . , 9} , (4.20)

for x1 and

bZ1 = bZ7 = 0 ,

cZ1,j = dZ1,j = 0 j ∈ {1, . . . , 9} , j 6= {5, 7} ,
cZi,7 = dZi,7 = 0 i ∈ {1, . . . , 9} , i 6= {1, 5} , (4.21)

for z. The coefficients obtained with these assumptions are presented in App. A, whilst

the corresponding correlations with the real MC momentum fractions are shown in the

middle row of Fig. 13. We can appreciate that the correlation is slightly better for z, but
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according to the correlations with physical variables, it turns out that the abundance of

points in a particular region of the parameter space imposes a very tight constraint in the

whole fit. For z, it is not a big problem since it seems to be dominated by the ratio pπT /p
γ
T .

However, the dependence of x w.r.t. the kinematical variables is more complicated, and a

linear fit is not enough to capture it. Thus, reducing the basis does not lead to an improved

reconstruction of the momentum fractions.

To conclude this discussion, let us mention that we tested the LM with another basis

inspired by the LO formulae. Namely, this LO-inspired basis is given by

BX1

NLO = { pγT√
SCM

exp(ηγ),
pγT√
SCM

exp(ηπ),
pπT√
SCM

exp(ηγ),
pπT√
SCM

exp(ηπ),

pγTK5√
SCM

exp(ηγ),
pγTK5√
SCM

exp(ηπ),
pπTK5√
SCM

exp(ηγ),
pπTK5√
SCM

exp(ηπ) } , (4.22)

for x ≡ x1 and

BZ
NLO = {pπT /pγT , K5 p

π
T /p

γ
T , K5 p

π
T /

√

SCM , K5

√

SCM/pγT } , (4.23)

for z. In this case, the reconstruction was even worse, as can be seen in the lower row of Fig.

13. In particular, X1,REC seems to be uncorrelated with X1,REAL. So, we can appreciate

that the approach followed in Ref. [23] was more efficient than the LM. In other words,

forcing a linear combination that describes the LO kinematics and then using the same

formulae for higher-orders, allows to achieve a more precise reconstruction. In the next

subsections, we explore other methods that will lead to a better approximation of the MC

momentum fractions in a more automatized way.

4.3 Gaussian regression

While the LM method provides a good description for the LO case, at NLO the result

strongly depends on the variables used to feed the algorithm. As the larger basis seems to

render a slightly better reconstruction, we could use this as a motivation to further expand

our basis, e.g. by including higher-powers of its elements. However this relies on deciding

i) which appropriate combinations of Ki are needed, and ii) to which power it would be

convenient to go. The first point was addressed in Subsec. 4.2 by constructing several

bases, with different degree of success. Regarding the second point, we could try with

different powers of a given basis, but this would be a cumbersome task. A more general

and computationally efficient approach can be implemented by using the kernel trick (see

e.g. [70, 71]). In this method, the feature vector in the calculation is replaced by writing

everything in terms of a function (kernel) of the dot product of the elements of the training

set. In particular we use the radial basis function (RBF), defined as

k(xi, xj) = exp

(

−d(xi, xj)

2l2

)

, (4.24)

where xi, xj are two elements of the training set, d(xi, xj) is the Euclidean distance between

them, and l is a distance parameter (not necessarily the same for all {i, j}). The RBF has
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better reconstruction of the kinematic variables.

Similarly to the LM, the GR requires a set of input variables. In order to properly

compare the methods, we take the same bases for both. The GR also needs the user to

select the width of each Gaussian function, l, which is by default l = 1. In principle it

could be different for each feature of the input set, but for simplicity we keep it feature-

independent. However we did find better reconstructions when using different l for x and

z. The optimal values of l for each basis can be found in Table 1.

Reconstructed General Physically-motivated LO-inspired

quantity basis basis basis

x 26 1 30

z 21 1.5 25

Table 1. Values of the l-parameter to reconstruct the x and z momentum fractions in three different

basis used within the GR framework.

We find that, when using the most general basis, a better agreement between the

reconstructed and the real data sets requires broad Gaussian functions. In addition, if

we reduce the basis the GR tends to require wider Gaussian functions to achieve a good

description of the data sets. Finally, we find that in the physically-motivated basis, the

GR finds the best agreement by choosing l = 1 for the prediction of x and l = 1.5 for z,

i.e. sharp Gaussian functions are needed meaning that a combination of these variables is

enough to reproduce the full data sets.

These facts can appreciated in Fig. 14 where we present the results obtained at NLO

QCD + LO QED accuracy. As expected, the inclusion of higher-order terms (higher non-

linearity) in the training set brings a significant improvement with respect to the LM, in

particular for the reconstruction of x. In addition, we point out that among the three

basis, in general, the reconstruction of x is harder than the z momentum fraction. The

general basis can extract the information to almost determine completely a function for

the prediction of the momentum fractions but with wide Gaussian functions. In contrast,

the physically-motivated basis makes a good job in the determination of z but is not that

accurate on the extraction of x, although it requires sharp Gaussian functions, meaning

that they are well localized and determined.

To conclude this section, we appreciate that the GR method leads to a more reliable

reconstruction of the MC momentum fractions, compared to the LM. The best results are

obtained with a larger basis, in order to have more flexibility. Moreover, the non-linearity

inherent to the GR allows to overcome the limitation of the overfitting in the low-x and

low-x region that we observed in the LM, leading to a very accurate reconstruction in a

wider range.

4.4 Neural Networks

Before jumping into the results of this section, let us briefly remind the reader of what is a

neural network (NN). The building blocks of a NN are algorithms (called Perceptrons) used

in supervised learning to decide if an input belongs into a class or not (binary classifier).
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They consist of a set of input values X, that will be linearly combined by weights (W )

and independent terms B (biases), after which the sum will be transformed by the (usually

non-linear) activation function f , giving an output Y : Y = f(z) with z = X ∗ W + B.

Each Perceptron mimics a neuron, and a combination of them makes a NN. The standard

nomenclature labels the inputs and outputs as input and output layers, respectively. To

increase the capabilities of the NN (and its complexity) one can add more neurons in

between, organised in hidden layers. The activation functions connecting one layer to the

next do not need to be the same, neither the number of neurons in each hidden layer. The

learning proceeds in two steps. First, the NN computes the output from the inputs (feed-

forward). In a second step (back-propagation), it calculates the cost and then minimizes

it. This can be implemented in different ways, one of the most popular being stochastic

gradient descent9.

XREC (LO) ZREC (LO) XREC (NLO) ZREC (NLO)

# of hidden layers 2 1 5 5

# of neurons/layer 200 100 300 300

activation function ReLU ReLU ReLU ReLU

# iterations 1× 105 200 1× 1012 1× 1012

learning rate 1× 10−3 1× 10−3 1× 10−4 1× 10−4

Table 2. Architecture for the MLP best fit parameters for the reconstruction of the momen-

tum fractions at LO in QCD: XREC(LO) and ZREC(LO) (second and third columns), and for the

momentum fractions at NLO QCD + LO QED: XREC(NLO) and ZREC(NLO) (fourth and fifth

columns).

The choice of the activation function/s and relevant parameters is highly non-trivial,

and trial-and-error was required to find a configuration that could reproduce the momen-

tum fractions. A non-exhaustive comparison of different combinations is presented in App.

B, but here we limit ourselves to present the results corresponding to the parameters sum-

marised in Table 2, which are used within the scikit-learn framework.

The results of the MPL algorithm are presented in Fig.15 for the LO QCD contribution

(upper row) and the NLO QCD + LO QED correction (lower row). In the LO case the

reconstruction is quite good, without reaching the level of accuracy of the LM or GR. This is

a strong evidence that the complexity of the NN machinery greatly exceeds that of the task

to be solved. In the NLO case, on the contrary, the reconstruction is much better than the

one obtained with the LM using any basis, and similar to the GR one with the general basis

(upper row of Fig. 14). The plots show an almost perfect agreement in all bins for both

x and z. The largest discrepancy appears for x, which can be partially due to the higher

complexity of the target function for x than for z, already suggested by the analytic LO

expressions. Indeed, almost all trials performed with different methods and configurations

9This procedure depends on the size of a parameter called the learning rate, that also requires adjustment.

For more details about the implementation of NN in scikit-learn and specifics of the MPL algorithm we

refer the reader to Ref. [60].
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relied on the FKS algorithm to cancel the infrared singularities, and the smooth cone

isolation criteria to select those events with direct photons. This prescription is crucial to

have access to cleaner information from the hard process.

Then, we studied different kinematical distributions with the purpose of identifying

the regions with the largest number of events. After imposing selection cuts similar to

those used by experimental collaborations, dynamical cuts were induced in the x and z

distributions. These restrictions were taken into account when selecting events for analysing

the correlations between experimentally-accessible quantities (pT , η and φ for the photon

and pion) and the partonic momentum fraction. We realized that x strongly depends on pγT
(positive correlation) but not on the other variables, whilst z exhibits a negative correlation

with pγT , a positive one with pπT and a mild dependence with cos(φπ − φγ).

After that, we applied ML algorithms to reconstruct the partonic variables x1, x2
and z. We started by introducing a proper discretization of the multi-differential cross-

section w.r.t. the set of variables {pπT , p
γ
T , η

π, ηγ , cos(φπ − φγ)}, in order to have a reliable

estimation of the higher-order corrections in each bin. For these distributions, we generated

the data sets and explored three different ML reconstruction strategies: linear methods

(LM), Gaussian Regression (GR) and Multi-Layer Perceptron (MLP). For the first two

approaches, we introduced three bases of functions inspired by the results obtained from

the analysis of two-dimensional correlations in Sec. 3.2. In all the cases, the reconstruction

at LO QCD accuracy was very successful, and in agreement with the known analytical

expressions. When dealing with the NLO QCD + LO QED corrections, the flexibility of

the MLP approach leads to a very reliable reconstruction, achieving a better performance

than the LM and comparable to the GR when using a sufficiently large basis. In particular,

the LM results were highly-influenced by the abundance of data in the low-x and low-z

region, leading to an unreliable fit when extrapolated outside these regions.

It is worth appreciating that the number of assumptions related to the setup of the MLP

framework is rather limited, compared to the ones done for linear and Gaussian regression.

In particular, we want to highlight that there was no need to introduce an specific basis

of functions, which makes this approach fully process-independent and suitable for other

analysis.

In conclusion, the application of ML-inspired methods (and Neural Networks in partic-

ular) is suitable to unveil the partonic kinematics at hadron colliders, including also higher-

order corrections. In this way, ML-assisted event reconstruction might allow to achieve

a highly-precise description of the deepest constituents of matter and their interactions,

complementing the current developments in other areas of theoretical particle physics.
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A Coefficients for the Linear Method

For completeness, we present the coefficients associated to the linear regression for each of

the three bases studied in Subsec. 4.2. We restrict our attention to the fit of the data sets

at NLO QCD + LO QED accuracy, since the LO contributions were perfectly in agreement

with the analytical LO formulae. In Tab. 4 we present the coefficients of the most general

basis, Eq. (4.19), that reproduce the plots in the upper row of Fig. 13. The parameters

of the physically-motivated basis, given by Eq. (4.19) with the constraints of Eqs. (4.20)-

(4.21), are in Tabs. 5 and 6 for x and z, respectively. The corresponding correlation with

the real MC variables can be seen in the middle row of Fig. 13. Finally, the coefficients for

the LO-inspired basis, associated to the constraints in Eqs. (4.22)-(4.23), can be found in

Tab. 7. These fall short in the quality of the fit, as we can appreciate from the lower row

of Fig. 13.

B Comparison of different NN architectures

We summarize here some results that were obtained before the optimal architecture de-

scribed in Subsec. 4.4 was found. In Tab. 3 we present the parameters corresponding to

three different tests implemented.

Parameters TEST 1 TEST 2 TEST 3

# hidden layers 2 4 3

# neurons/layer 50 100 100

tolerance 10−2 10−2 10−3

max. number of iterations 108 108 109

# iterations w/o change 14, 000 21, 000 100, 000

Table 3. Architectures for the MLP of three different tests for the reconstruction of the momentum

fractions at NLO in QCD. All parameters are taken to be the same for XREC and ZREC.

In TEST1 (upper row of Fig. 16), we use a lower number of neurons/layer and less

layers than for obtaining the results in Fig. 15. We find a poor agreement between the real

and reconstructed quantities, in particular for low-z bins. An improvement is achieved by

increasing the number of layers and neurons/layer (TEST2), while simultaneously requiring

the NN to see no variation of the cost function (within a given tolerance) through a larger

number of iterations. As seen in Fig. 16 (middle row), this gives a better reconstruction,

thought it is still far from ideal. A third example, TEST3, reinforces the conditions for

convergence and returns a significantly improved result (lower row of Fig. 16). Each step

towards a more complex architecture and more stringent requirements for convergence is
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Coefficient XREC (NLO) ZREC (NLO) Coefficient XREC (NLO) ZREC (NLO)

aY1 −5.7× 101 −1.1× 103 cY68 −5.7× 101 7.3× 10−2

aY2 7.2× 101 3.3× 102 cY69 7.2× 101 6.6× 10−2

aY3 5.4× 100 −5.6× 101 cY77 5.4× 100 −1.9× 10−4

aY4 −2.4× 100 2.7× 100 cY78 −2.4× 100 3.6× 10−2

aY5 −4.9× 100 8.0× 101 cY79 −4.9× 100 5.5× 10−3

aY6 −2.8× 10−2 −1.2× 10−1 cY88 −2.8× 10−2 1.1× 101

aY7 3.8× 10−2 1.6× 10−2 cY89 3.8× 10−2 3.8× 10−2

aY8 5.2× 100 −5.6× 101 cY99 5.2× 100 −2.5× 100

aY9 −2.1× 100 9.4× 10−1 dY11 −2.1× 100 4.4× 103

bY1 −6.8× 101 −1.2× 103 dY12 −6.8× 101 −1.3× 104

bY2 5.8× 101 5.2× 102 dY13 5.8× 101 2.3× 102

bY3 4.9× 100 −5.6× 101 dY14 4.9× 100 3.8× 102

bY4 −2.2× 100 −1.6× 10−1 dY17 −2.2× 100 1.7× 100

bY6 −3.1× 10−2 −9.1× 10−2 dY18 −3.1× 10−2 2.6× 102

bY7 3.5× 10−2 3.2× 10−2 dY19 3.5× 10−2 3.4× 102

bY8 4.7× 100 −5.7× 101 dY22 4.7× 100 −3.2× 103

bY9 −1.9× 100 −2.2× 100 dY23 −1.9× 100 1.4× 102

cY11 −4.9× 102 2.4× 103 dY24 −4.9× 102 1.3× 101

cY12 1.9× 103 −9.8× 103 dY26 1.9× 103 −5.5× 100

cY13 1.7× 100 2.4× 102 dY28 1.7× 100 1.5× 102

cY14 6.2× 100 3.6× 102 dY29 6.2× 100 7.9× 100

cY17 1.8× 10−1 1.6× 100 dY33 1.8× 10−1 1.1× 101

cY18 1.4× 10−1 2.6× 102 dY34 1.4× 10−1 −1.3× 100

cY19 9.9× 100 3.1× 102 dY36 9.9× 100 6.7× 10−2

cY22 −7.2× 102 −3.0× 103 dY37 −7.2× 102 3.4× 10−2

cY23 −3.1× 101 1.5× 102 dY39 −3.1× 101 −3.6× 10−1

cY24 −1.4× 101 2.5× 101 dY44 −1.4× 101 −2.4× 100

cY26 5.3× 10−1 −4.3× 100 dY46 5.3× 10−1 8.1× 10−2

cY28 −2.5× 101 1.5× 102 dY47 −2.5× 101 3.0× 10−3

cY29 −1.1× 101 1.9× 101 dY48 −1.1× 101 −1.3× 100

cY33 −1.2× 100 1.0× 101 dY66 −1.2× 100 −2.1× 10−4

cY34 3.6× 10−1 −7.7× 10−1 dY67 3.6× 10−1 −1.0× 10−3

cY36 −6.6× 10−4 6.9× 10−2 dY68 −6.6× 10−4 7.2× 10−2

cY37 −9.4× 10−3 3.5× 10−2 dY69 −9.4× 10−3 7.0× 10−2

cY39 4.8× 10−1 5.3× 10−2 dY77 4.8× 10−1 −1.3× 10−4

cY44 5.6× 10−1 −3.3× 100 dY78 5.6× 10−1 3.6× 10−2

cY46 2.8× 10−3 7.6× 10−2 dY79 2.8× 10−3 1.2× 10−3

cY47 −6.3× 10−3 7.8× 10−3 dY88 −6.3× 10−3 1.1× 101

cY48 4.4× 10−1 −8.0× 10−1 dY89 4.4× 10−1 −3.8× 10−1

cY66 2.2× 10−5 −2.2× 10−4 dY99 2.2× 10−5 −1.6× 100

cY67 1.4× 10−4 −7.9× 10−4

Table 4. Coefficients for the LM with the general basis expressed in Eq. (4.19) for both x and z

momentum fractions.
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Coefficient XREC (NLO) Coefficient XREC (NLO)

aY1 5.5× 101 cY48 4.2× 10−1

aY2 1.4× 102 cY77 −1.0× 10−4

aY3 5.4× 100 cY78 −8.0× 10−3

aY4 −2.3× 100 cY79 −5.4× 10−3

aY5 −8.4× 100 cY88 −1.3× 100

aY7 5.6× 10−2 cY89 5.3× 10−1

aY8 5.2× 100 cY99 2.5× 10−1

aY9 −1.8× 100 dY11 −4.1× 102

bY1 6.3× 101 dY12 −6.4× 102

bY2 1.4× 102 dY13 3.9× 100

bY3 4.9× 100 dY14 −7.4× 100

bY4 −2.1× 100 dY17 −5.6× 10−1

bY7 5.8× 10−2 dY18 2.5× 100

bY8 4.7× 100 dY19 −8.0× 100

bY9 −1.6× 100 dY22 −6.5× 102

cY11 −3.2× 102 dY23 −3.2× 101

cY12 −6.0× 102 dY24 −1.4× 101

cY13 4.1× 100 dY28 −2.5× 101

cY14 −7.3× 100 dY29 −1.0× 101

cY17 −4.8× 10−1 dY33 −1.1× 100

cY18 2.6× 100 dY34 3.8× 10−1

cY19 −7.8× 100 dY37 −9.6× 10−3

cY22 −6.3× 102 dY39 5.1× 10−1

cY23 −3.1× 101 dY44 5.5× 10−1

cY24 −1.4× 101 dY47 −5.9× 10−3

cY28 −2.5× 101 dY48 4.6× 10−1

cY29 −1.0× 101 dY77 −1.1× 10−4

cY33 −1.2× 100 dY78 −8.1× 10−3

cY34 3.3× 10−1 dY79 −5.3× 10−3

cY37 −9.5× 10−3 dY88 −1.2× 100

cY39 4.6× 10−1 dY89 5.9× 10−1

cY44 6.3× 10−1 dY99 1.7× 10−1

cY47 −6.1× 10−3

Table 5. Coefficients for the LM with the physically-motivated basis expressed in Eq. (4.19) with

the constraints given in Eq. (4.20) and Eq. (4.21) for the x momentum fraction.

– 35 –



Coefficient ZREC (NLO) Coefficient ZREC (NLO)

aY2 5.5× 101 cY67 3.3× 10−1

aY3 1.4× 102 cY68 −9.5× 10−3

aY4 5.4× 100 cY69 4.6× 10−1

aY5 −2.3× 100 cY88 6.3× 10−1

aY6 −8.4× 100 cY89 −6.1× 10−3

aY8 5.6× 10−2 cY99 4.2× 10−1

aY9 5.2× 100 dY11 −1.0× 10−4

bY2 −1.8× 100 dY22 −8.0× 10−3

bY3 6.3× 101 dY23 −5.4× 10−3

bY4 1.4× 102 dY24 −1.3× 100

bY6 4.9× 100 dY26 5.3× 10−1

bY8 −2.1× 100 dY28 2.5× 10−1

bY9 5.8× 10−2 dY29 −4.1× 102

cY11 4.7× 100 dY33 −6.4× 102

cY22 −1.6× 100 dY34 3.9× 100

cY23 −3.2× 102 dY36 −7.4× 100

cY24 −6.0× 102 dY39 −5.6× 10−1

cY26 4.1× 100 dY44 2.5× 100

cY28 −7.3× 100 dY46 −8.0× 100

cY29 −4.8× 10−1 dY48 −6.5× 102

cY33 2.6× 100 dY66 −3.2× 101

cY34 −7.8× 100 dY67 −1.4× 101

cY36 −6.3× 102 dY68 −2.5× 101

cY39 −3.1× 101 dY69 −1.0× 101

cY44 −1.4× 101 dY88 −1.1× 100

cY46 −2.5× 101 dY89 3.8× 10−1

cY48 −1.0× 101 dY99 −9.6× 10−3

cY66 −1.2× 100

Table 6. Same as Tab. 5, now for the z momentum fraction.

Coefficient XREC (NLO) Coefficient ZREC (NLO)

cY13 3.8× 100 cY26 3.8× 100

cY14 4.7× 10−1 dY26 4.7× 10−1

cY23 2.0× 10−1 bY6 2.0× 10−1

cY24 1.6× 100 bY2 1.6× 100

dY13 3.6× 100

dY14 1.7× 10−1

dY23 −5.4× 10−1

dY24 9.1× 10−1

Table 7. Coefficients for the LM with the LO-inspired basis expressed in Eqs. (4.22) and (4.23)

for both x and z momentum fractions.
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