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ABSTRACT

Synchrotron radiation is applied to study visible and UV luminescence spectra and their excitation spectra of undoped as well as
In and Sb doped cadmium iodide crystals at 10 K. The origin of principal luminescence bands and the role of impurities in the
formation of emission centers are discussed. The luminescence properties have been explained based on the electronic structure of
CdI2 crystals.
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INTRODUCTION

Cadmium compounds such as cadmium zinc telluride
(CdZnTe) and cadmium telluride (CdTe) showing good detection
efficiency and high energy resolution, demonstrate themselves as
attractive detection materials in many applications for detecting
x-ray and gamma radiation at room temperature, such as medical
and industrial images, industrial measurements and non-destructive
testing, safety and monitoring, nuclear safeguards and non-
proliferation, as well as astrophysics.1–4 Cadmium iodide (CdI2) crys-
tals are long known for their descent scintillating properties which
have been extensively studied by spectroscopic techniques.5–12

Comparing it with other scintillators and phosphors13–21 it shows
comparable detector characteristics in some parameters, and there-
fore it is still of interest, especially when considering its improvement
by doping.22–24

Among existing and potential application areas of CdI2, one
can mention detectors, photolithography, and optical recording.
In the solid electrolyte system CdI2-AgI addition of cadmium
iodide effectively lowers the superionic transition temperature from
146 °C (in pure silver iodide) to about 110 °C.25–29 It has been
identified that at helium temperatures there exist yellow (Y), green
(G), and UV emission bands.30–32 This luminescence is generally

ascribed to excitons composed of p-states of iodine and s-states of
cadmium.33,34 Donors and acceptors come into play as the temper-
ature increases as confirmed by thermoluminescence studies.35 The
layered structure of crystals makes it likely for the impurities to
enter different crystallographic positions therefore possibly serving
as centers for recombination.5–7,36 From this point of view, it is
interesting to see how luminescence properties change upon
doping under high-density excitation.

The aim of the present work is to shine a light on the elec-
tronic processes in nominally pure as well as in doped with In and
Sb cadmium iodide crystals exploiting high energy synchrotron
radiation as a source of excitation.

EXPERIMENTAL

Cadmium iodide crystals were grown from melt by means of
the Bridgman technique.37 The impurities doping was done by
adding 0.1 mol % of the In or Sn metals into the initial melt. After
the completion of the growth process, samples were cut along
cleavage planes taking into account that the adjacent layers of the
crystal are held together by relatively weak forces. The final speci-
mens had a thickness of approximately 50 mm.
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Luminescence excitation spectra and emission spectra of pure
and doped cadmium iodide crystals were studied at the temperature
of 10 K using the SUPERLUMI setup of line I of DORIS III storage
ring at the DESY synchrotron facility.38,39 This experimental set-up
was a unique tool for investigations of different types of wide
bandgap bulk and nanomaterials.40–45

The mathematical treatment of collected data and the decon-
volution of the experimental spectra into individual Gaussian
components were performed by means of the OriginLab Origin
software package.

RESULTS AND DISCUSSION

The luminescence spectrum of the nominally pure cadmium
iodide at 10 K under 13.77 eV excitation is shown in Fig. 1. The
shape of the spectrum does not depend on the excitation energy in
VUV spectral range. The de-convolution of the luminesce spec-
trum to the Gauss components allows us to identify three principle
emission bands denoted hereafter as Y, G, and UV and emphasized
on the graph with respective energies shown above the peaks.

The fitting procedure based on the data shown in Fig. 1 could
refine peak positions, which are 2.03 eV for Y-band, 2.44 eV for
G-band and 3.37 eV for UV-band. These values are fairly close to
those, observed earlier (2.16, 2.50 and 3.35 eV, respectively).36–38 It
was suggested that the origin of these emission bands to is con-
nected with the radiative recombination of the self-trapped exciton
in [Cd2+1�6 ]

4− a molecular complex that possesses octahedral sym-
metry D3d.

For doped crystals, three above mentioned bands can still be
resolved at 10 K (see Fig. 2), however the luminescence bands Y
and UV are significantly suppressed. Slight variations of the exact
peak positions in Figs. 1 and 2 most likely related to the accuracy
of the fitting procedure approximations.

The differences between the luminescence spectra observed in
undoped and doped cadmium iodide crystals can be explained
assuming the following model. Dopant ions and intrinsic lattice
defects, such as vacancies or interstitial atoms, are forming nano-
sized clusters. Driving forces that facilitate the formation of clusters
originate from elastic, Coulomb or chemical interactions between
cluster components. Nanosized clusters exhibit discrete energy
spectra. Some of energy levels that fall within the bandgap of the
crystal can serve as centers for radiative or non-radiative recombi-
nation effectively responsible for additional absorption, photocon-
ductivity, and other features.46–48 It is assumed that at least three
types of nanocluster-like formations can be created and impurity
atoms may selectively “amplify” some of them.

Figure 3 shows the photoluminescence excitation spectrum
(1, red curve) of CdI2 for G-band which is the most prominent one
in both pure and doped crystals. On the same energy scale, the
reflectivity spectrum of cadmium iodide crystal is presented
(2, blue curve).

As one can see from Fig. 3, in the range 5.7–6.2 eV there is an
anticorrelation in the structures of luminescence excitation and
reflectivity spectra. The peak at 5.9 eV in the luminescence

FIG. 1. Photoluminescence spectrum of pristine cadmium iodide under synchro-
tron radiation excitation (13.77 eV) at 10 K. The spectrum is de-convoluted to
the Gauss components, which are shown as solid and dashed lines.

FIG. 2. Photoluminescence spectra of cadmium iodide doped by In (a) or Sb
(b) ions at 10 K. The excitation en-ergy is 13.77 eV.
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excitation spectrum coincides with the minimum in the reflectivity
spectrum. At the same time, exciton peaks denoted as X1 and X2 in
the reflectivity spectrum correspond to the minima in the lumines-
cence excitation spectrum (It should be noted that three additional
anomalies A, B, C were also found in the spectra.). This type of
anticorrelation is known for the luminescence excitation spectra of
self-trapped excitons50 and luminescence excitation spectra of core-
valence luminescence.51 Such behavior is explained by lumines-
cence damping on surface defects and losses due to reflection. At
the energies of the reflection peak light penetration depth is small
and the majority of electronic excitations are formed in the near-
surface layer. High concentration of defects in this layer facilitates
non-radiative recombination of such excitations, consequently
decreasing the emission intensity in the intrinsic absorption range.

Note that CdI2 crystals are very different from alkali and alka-
line earth metal halides, where the F centers, self-trapping of holes
(Vk center), and exciton defect formation are well known and thor-
oughly studied.52–54

CONCLUSIONS

Low-temperature photoluminescence from layered cadmium
iodide crystals was studied using synchrotron radiation as an excita-
tion source. Main emission lines characteristic for CdI2 scintillator
crystal were identified and refined with Gaussian decomposition.
Spectral features of pristine CdI2 luminescence were compared to
those of cadmium iodide doped by indium and antimony ions. The
model suggesting the formation of nanoclusters that alter the distri-
bution of luminescence intensities of principal yellow, green, and
ultraviolet bands is discussed.

Luminescence excitation spectrum of cadmium iodide is ana-
lyzed with respect to its reflectivity spectrum. Anticorrelated
extremal points in these spectra may be due to high probability of
non-radiative recombination processes in the near-surface area of
the crystals.
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