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This work employs the spectral reconstruction approach of Ref. [1] to determine an inclusive rate
in the 1 + 1 dimensional O(3) non-linear σ-model, analogous to the QCD part of e+e− → hadrons.
The Euclidean two-point temporal correlation function of the conserved current j is computed
using Monte Carlo lattice �eld theory simulations for a variety of spacetime volumes and lattice
spacings. The spectral density of this correlator is related to the inclusive rate for j → X in
which all �nal states produced by the external current are summed. The ill-posed inverse problem
of determining the spectral density via the Euclidean correlator is made tractable using smeared
spectral functions in which the underlying target function is convolved with a set of known smearing
kernels of �nite width ε. The smooth energy dependence of the desired spectral function enables a
controlled ε → 0 extrapolation in the inelastic region, yielding the real-time inclusive rate without
reference to individual �nite-volume energies or matrix elements. Systematic uncertainties due cuto�
e�ects, �nite-volume e�ects, and the reconstruction algorithm are estimated and taken into account
in the �nal error budget. After taking the continuum limit, the results are consistent with the known
analytic rate to within the combined statistical and systematic errors. Above energies where 20-
particle states contribute, the statistical precision is su�cient to discern four-particle contributions
to the spectral function.
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I. INTRODUCTION

Markov chain Monte Carlo simulations of lattice QCD continue to provide a quantitative window into the strong
nuclear force. However, the Euclidean metric signature required for the Monte Carlo solution of QCD path integrals
complicates the study of real-time scattering processes. Although the spatial volume dependence of energies and matrix
elements has successfully been used as a probe of few-particle scattering amplitudes [2], this approach is inapplicable
to energies above arbitrary multi-particle thresholds and is restricted to center-of-mass energies corresponding to
�nite-volume spatial momenta. This last disadvantage hampers the continuum limit of amplitudes at �xed energy,
which can only be achieved by maintaining a constant physical volume as the lattice spacing is decreased. The
straightforward determination of inclusive rates is also di�cult using the �nite-volume formalism.
An alternative approach [3] is to use Euclidean correlation functions computed in lattice simulations to determine

spectral densities which are independent of the metric signature. This approach is not subject to the same limitations
as �nite-volume methods and has been fully developed for inclusive amplitudes mediated by an external current [4] as
well as arbitrary scattering processes [5, 6]1. A major obstacle of this program is the solution of an ill-posed inverse
problem to determine continuous spectral densities from correlation functions at a �nite set of time separations with
statistical errors. In Refs. [9, 10] Backus and Gilbert deal with this by instead computing spectral functions smeared
with a kernel that is known a posteriori. An important advancement by Refs. [1, 11] enables the smearing kernel to
be speci�ed a priori.
Although these methods are not new, their application to compute scattering amplitudes from actual Monte Carlo

simulation data, with a detailed analysis of both statistical and systematic errors, has not yet been performed. It is
therefore worthwhile to perform such a test in a controlled setting. This work employs the spectral reconstruction
strategy of Ref. [1] to determine an inclusive rate in the two-dimensional O(3) non-linear σ-model. As in Ref. [12],
comparison is made with exact continuum results. However, our work overcomes the limitations mentioned above:
the inclusive rate is computed above inelastic thresholds and the continuum limit is taken at �xed center-of-mass
energy without the need for a constant physical volume. Large physical simulation volumes are however required to
control �nite-volume e�ects in the smeared spectral functions at �xed smearing width. After ensuring that �nite-size
and cuto� e�ects are under control, the desired spectral function is obtained by extrapolating the smearing width to
zero.
For this �rst application we treat a process akin to e+e− → hadrons, the QCD component of which is given by the

spectral function

ρµν(k) =
1

2π

ˆ
d4x e−ik·x〈Ω|ĵem

µ (x) ĵem
ν (0)|Ω〉 = (gµνk

2 − kµkν) ρ(k2), (1)

where the integral is performed in Minkowski space, ĵem
µ is the quark-level electromagnetic current and the relation

to the physical process is

ρ(s) =
R(s)

12π2
, R(s) =

σ [e+e− → hadrons] (s)

4παem(s)2/(3s)
. (2)

This celebrated `R-ratio' has a number of phenomenological applications including the hadronic vacuum polarization
contribution to the anomalous magnetic moment of the muon. It can be obtained via spectral reconstruction of the
Euclidean correlator in the time-momentum representation

C(t) = −
ˆ
d3x 〈Ω|ĵem

z (x) e−Ĥt ĵem
z (0)|Ω〉 =

ˆ ∞
0

dω ω2ρ(ω2) e−ωt (3)

computed in lattice QCD simulations. Everything discussed here is readily transferrable to the lattice determination
of ρ(s) from C(t) in QCD. While computations of ρ(s) are naturally compared with experimental determinations
of R(s), numerical results for the spectral density computed here are compared with the corresponding analytical
predictions in Fig. 9, which is the main result of this work.
This work is organized as follows. Sec. II de�nes the spectral function of interest in the O(3)-model, outlines the

reconstruction approach, and suggests a strategy for extrapolating the smearing width to zero. Sec. III discusses the
in�uence of the �nite torus on which the simulations are performed while Sec. IV de�nes the lattice regularization
and discusses the continuum limit. Sec. V presents numerical results and Sec. VI concludes.

1 For the application of spectral-density methods to inclusive semi-leptonic B-meson decay rates see Refs. [7, 8].
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II. GENERAL FRAMEWORK IN CONTINUOUS INFINITE VOLUME

This section introduces the two-dimensional O(3) non-linear σ-model and the Euclidean correlator C(t) with spectral
function ρ(ω), which are both de�ned via the conserved vector current. We additionally review the algorithm of Ref. [1]
for systematically determining a smeared version of ρ(ω) from numerical estimates of C(t) and detail an extrapolation
procedure for taking the smearing width to zero. In this section the Euclidean spacetime is assumed to be continuous
and in�nite in both directions. Peculiarities due to the torus are discussed in Sec. III and the lattice discretization in
Sec. IV.
The continuum Euclidean action of the 2-dimensional O(3)-model is de�ned as

S[σ] =
1

2g2

ˆ
d2x ∂µσ(x) · ∂µσ(x) , (4)

where the 3-component real �eld σa(x) has unit length σ(x) · σ(x) = 1. The O(3)-model is asymptotically free, has
a dynamically-generated mass gap m, and is integrable. It also possesses a global O(3) symmetry which rotates the
�eld σ(x). The corresponding Noether current is given by

jcµ(x) =
1

g2
εabcσa(x)∂µσ

b(x) , (5)

where εabc is the Levi-Civita tensor and repeated indices are summed. This current transforms irreducibly under the
I = 1 (fundamental) representation of O(3).
The aim of this work is to reconstruct the spectral function ρ(ω) associated with jcµ from Euclidean correlation

functions determined numerically from lattice Monte Carlo simulations. The spectral function is de�ned implicitly
via the relation

2π 〈Ω|ĵaµ(0) δ2(P̂ − p) ĵbν(0)|Ω〉 =
δab

3

(
δµν −

pµpν
p2

)
ρ
(√

p2
)
, (6)

where P̂ = (Ĥ, P̂ ) is the 2-momentum operator with eigenvalues p = (E,p). We have used covariance under the
O(3) internal symmetry and the Euclidean spacetime SO(2) symmetry as well as current conservation to factorize

the function ρ
(√

p2
)
. By specializing the above relation to µ = ν = 1 and p = (E, 0), and contracting the internal

indices, one obtains the more direct de�nition

ρ(E) = 2π 〈Ω|ĵa1 (0) δ2(P̂ − p) ĵa1 (0)|Ω〉 . (7)

The utility of the 2-dimensional O(3)-model for the present study is that (due to integrability) ρ(E) can be computed
analytically, enabling a comparison between our numerical reconstruction and the exact result. The spectral function
decomposes into sectors de�ned by the number n of asymptotic particles2 propagating between the two currents

ρ(E) =
∑

even n≥2

ρ(n)(E) . (8)

The contribution ρ(n)(E) has support for E > nm, where m is the mass gap. Even though integrability (together
with a number of mild and generally accepted assumptions) �xes ρ(n)(E) for every even value of n, explicit expressions
have been worked out only for n = 2, 4, 6. At the energies considered in this work the sum over the number of particles
is rapidly convergent and the n = 6 contribution is at least a couple of orders of magnitude smaller than the n = 4
contribution. In the following we therefore refer to the spectral function summed over n = 2, 4, 6 as the exact spectral
function. The n = 2 contribution can be written in closed form

ρ(2)(E) =
3π3

8θ2

θ2 + π2

θ2 + 4π2
tanh3 θ

2

∣∣∣∣
θ=2 cosh−1 E

2m

(9)

while the n = 4, 6 contributions are expressed in terms of phase-space integrals that require numerical evaluation as
discussed in App. A.

2 The n-particle states interpolated by the current of course also transform irreducibly under the I = 1 representation of O(3).
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This spectral function is related to the Euclidean-signature current-current correlator at zero spatial momentum
via the Laplace transform

C(t) ≡
ˆ
dx 〈Ω| ĵa1 (0,x) e−Ĥt ĵa1 (0) |Ω〉 =

ˆ ∞
0

dω e−ωt ρ(ω) . (10)

The demonstration of a systematic method to invert this relation, given realistic numerical estimates of C(t) at a
�nite set of time slices with statistical errors, is the central focus of this work.
As described for example in Ref. [13], the inverse Laplace transform is numerically ill-conditioned. A promising way

forward is to recognize that ρ(ω) is not directly extractable from numerical data and that one should instead target
the smeared spectral function

ρε(E) =

ˆ ∞
0

dω δε(E,ω) ρ(ω) , (11)

where δε(E,ω) is any approximation of the Dirac δ-function satisfying limε→0 δε(E,ω) = δ(E−ω) and
´∞
−∞ dω δε(E,ω) =

1. The challenge of recovering ρε(E) from C(t) can then be made arbitrarily mild (or severe) by varying the speci�c
functional form of δε(E,ω) and the values of ε and E.
Following Ref. [1] we consider smearing kernels δε(E,ω) that can be represented exactly as

δε(E,ω) = a
∞∑
τ=1

gtarget
τ bτ (ω) , (12)

where τ is a dimensionless integer variable, a an arbitrary scale with dimensions of inverse energy to be later identi�ed
with the lattice spacing, the bτ (ω) are basis functions, and gtarget

τ ≡ gtarget
τ (ε, E) coordinates that represent the target

smearing function δε(E,ω) in this basis. By using bτ (ω) = e−aωτ the smeared spectral density is given by

ρε(E) = a

∞∑
τ=1

gtarget
τ C(aτ) =

ˆ ∞
0

dω δε(E,ω) ρ(ω) . (13)

The choice bτ (ω) = e−aωτ is based on the non-essential assumption that spacetime is in�nite. In practice, as explained
in Sec. III, we use a basis that takes into account the periodicity of the �nite temporal direction.
An estimator for ρε(E) is obtained by approximating δε(E,ω) with an element of the space spanned by a �nite

number of basis functions. A generic function ∆(ω) in this space is represented as

∆(ω) = a

τmax∑
τ=1

gτ bτ (ω) (14)

and the coe�cients gτ corresponding to the approximation of δε(E,ω) are determined by minimizing the functional3

Wλ[g] = (1− λ)
A[g]

A[0]
+ λB[g] , (15)

where λ ∈ [0, 1] is the `trade-o�' parameter (discussed shortly) and the functionals A[g] and B[g] are given by

A[g] =

ˆ ∞
E0

dω

{
δε(E,ω)− a

τmax∑
τ=1

gτ bτ (ω)

}2

, B[g] =

τmax∑
τ,τ ′=1

gτgτ ′ Cov [aC(aτ), aC(aτ ′)] . (16)

The relative normalization of the A[g] and B[g] functionals in Eq. (15) di�ers from Ref. [1]. The factor 1/(aC(0))2 in
the normalization of B[g] present there is not included here since aC(0) ' 1 while the factor 1/A[0] in the �rst term
of Eq. (15) makes it dimensionless (A[0] ∝ 1/ε).
As discussed in App. B, A[g] and B[g] are both positive quadratic forms in the variables gτ so that the minimum

conditions

∂Wλ[g]

∂gτ

∣∣∣∣
gτ=gλτ

= 0 (17)

3 Possible additional constraints on the minimization are discussed in App. B.
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x wx
k, even k wx

k, odd k wx
1 wx

2 wx
3 wx

4

g
k!

(−2)k/2(k/2)!
0 0 −1 0 3

c0 1 1 1 1 1 1

c1 (1− k) (1− k) 0 −1 −2 −3

c2
1

3
(k − 3)(k − 1)

1

3
(k − 3)(k − 1) 0 −1/3 0 1

TABLE I. Summary of the coe�cients wx
k entering Eq. (22). It should be noted that wc1

3 and wc2
5 are the lowest non-zero

coe�cients with odd k for their respective smearing kernels, which is not re�ected in the general formulae.

are a linear system of equations to be solved for the coe�cients gλτ ≡ gλτ (ε, E, τmax). These coe�cients de�ne the
approximation of δε(E,ω) and the associated estimator for ρε(E) according to

δλε (E,ω) = a

τmax∑
τ=1

gλτ bτ (ω) , ρλε (E) = a

τmax∑
τ=1

gλτC(aτ) =

ˆ ∞
0

dω δλε (E,ω) ρ(ω) . (18)

The functional B[gλ] is simply the statistical variance of ρλε (E) and therefore vanishes in the ideal case of in�nitely
precise input data. On the other hand, A[gλ] measures the distance between the target kernel δε(E,ω) and its
approximation δλε (E,ω) in the range4 E ∈ [E0,∞]. It can only vanish in the limit τmax →∞ when gλτ → gtarget

τ . The
coe�cients gλ that minimize Wλ[g] thus represent a particular balance between statistical and systematic errors, as
dictated by the λ parameter. For small λ the estimator ρλε (E) is close to ρε(E) but with a large statistical uncertainty.
Conversely, for large λ the estimator ρλε (E) has a small statistical error but di�ers signi�cantly from ρε(E).
When evaluated at the minimum, the functional Wλ[g] is a function of λ only, thus de�ning W (λ) ≡ Wλ[gλ] at

gτ = gλτ . The recipe suggested in Ref. [1] to choose the optimal value of the trade-o� parameter determines λ? such
that

∂W (λ)

∂λ

∣∣∣∣
λ=λ?

= 0 . (19)

A straightforward application of Eq. (17) demonstrates that at λ? (the maximum of W (λ) where gλτ = g?τ ) one has
A[g?] = A[0]B[g?]. This can be understood as the condition of `optimal balance' between statistical and systematic
errors. The numerical results discussed in the following have been obtained using this recipe. In the rest of the paper,
unless explicitly stated, we do not distinguish the theoretical quantity ρε(E) from its numerical estimator ρλ?ε (E).
Estimates of the systematic error on ρε(E) induced by the residual di�erence δλ?ε (E,ω) − δε(E,ω) are discussed in
Sec. V).
A de�ning feature of the approach in Ref. [1] is that the smearing function δε(E,ω) and the associated values of ε

and E are inputs of the algorithm, in contrast to the original Backus-Gilbert method [9, 10]. This work exploits this
by employing four functional forms for the smearing kernel, each of which is a function of x = E − ω:

δgε (x) =
1√
2πε

exp

[
− x2

2ε2

]
, δc0ε (x) =

1

π

ε

x2 + ε2
, (20)

δc1ε (x) =
2

π

ε3

(x2 + ε2)2
, δc2ε (x) =

8

3π

ε5

(x2 + ε2)3
. (21)

Here g and c stand for `Gauss' and `Cauchy' respectively, and the number following c gives the order of the Cauchy-like
pole as shown. All kernels are normalized to unit area.
Given estimates of ρε(E) over a range of ε for each of the resolution functions shown above, the �nal step in

determining ρ(E) is to perform an ε→ 0 extrapolation. To this end it is useful to understand the small-ε expansion

4 The parameter E0 can be adjusted by exploiting the fact that ρ(E) has support only for E > 2m, so that ρε(E) in Eq. (11) is insensitive
to the value of δε(E,ω) for ω < 2m. The same holds for ρλε (E) so that the functional form of δλε (E,ω) can be left unconstrained for
ω < 2m. It follows that any E0 ≤ 2m is a viable choice in determining the coe�cients gλτ . Therefore E0 can be chosen to improve the
numerical stability of the minimization procedure.
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at �xed E. We consider these expansions only at energies away from singularities, i.e. away from 2mZ+. At such
points the smeared spectral function satis�es

ρxε(E) ≡
ˆ ∞

0

dω δxε(E − ω) ρ(ω) = ρ(E) +

∞∑
k=1

wx
kak(E)εk , (22)

where the superscript x labels a particular smearing kernel. As indicated in the �nal equality, the O(εk) contribution
to the expansion can be decomposed into a geometric kernel-dependent coe�cient wx

k and a kernel-independent factor
ak(E) which depends on ρ(E). Tab. I summarizes the values of wx

k for the four kernels used in this work. The
ambiguity in separating wx

k and ak(E) is �xed by setting wc0
k = 1 for all k. For this choice, all remaining wx

k are
simple rational numbers and

ak(E) =

{
(−1)k/2

k!

(
d
dE

)k
ρ(E) , k even

limη→0+
(−1)(k−1)/2

2π

´∞
−∞ dω ρ(E+ω)+ρ(E−ω)

(ω+iη)k+1 , k odd
. (23)

III. FINITE-VOLUME ESTIMATOR

The theory is considered here on an L× T volume with periodic boundary conditions in both directions. Finite-L
and �nite-T e�ects on the spectral function are signi�cantly di�erent. On the one hand, �nite-T (or thermal) e�ects
are shown below to be exponentially suppressed and are therefore reliably small. On the other hand, the spectral
function is dramatically di�erent at �nite and in�nite L.
At in�nite L the spectral density ρ(E) de�ned in Eq. (7) is a continuous function which is analytic for all E except

for E = nm where n is a positive even integer. At �nite L the spectrum of the Hamiltonian is discrete and the
spectral function is a sum of Dirac δ-functions. As L increases, the spectrum of the Hamiltonian becomes denser
and denser so that the continuous L = ∞ spectral density is recovered as a weak (or distributional) limit. In no
meaningful way can this limit be considered point-wise and the �nite-L e�ects on ρ(E) treated as small corrections.
Questions such as �Are the �nite-L corrections to ρ(E) exponentially suppressed?� are simply ill-posed. In contrast,
smeared spectral functions converge to their in�nite-L value in a point-wise sense. An immediate consequence of this
discussion is that the L → ∞ and ε → 0+ limits (where ε is the width of the smearing kernel) do not commute and
make sense only in a precise order: the L→∞ limit must be taken before the ε→ 0+ limit.
We know that individual �nite-Lmatrix elements at energies above the two-particle threshold approach their in�nite-

L limit with corrections that vanish as inverse powers of 1/L. When smeared spectral densities are considered, one
may hope that �nite-L corrections vanish faster than any inverse power in 1/L, at least if the smearing function is
`reasonable enough'. This issue is explored in App. C, which considers a �ctitious system where the in�nite-L spectral
density is given entirely by the 2-particle contribution in Eq. (9). The �nite-L spectral density is then determined (up
to exponential corrections) by the Lellouch-Lüscher formalism [14, 15]. One sees explicitly that the smeared spectral
function has �nite-L contributions which are O(e−mL) in the case of the gaussian kernel, despite the power-law
corrections to the individual energies and matrix elements. For the Cauchy kernels the e�ects are also exponentially
suppressed by O(e−µL) where µ ≤ m depends on the values of E, ε and m as
In the derivation of the exponentially-suppressed �nite-L contributions, the analyticity of the smearing kernel plays

a central role, and one can see that smooth but non-analytic kernels produce �nite-L corrections that decay faster
than any inverse power of L but generally not exponentially. We also observe that the asymptotic large-L regime is
reached only after a fairly large intermediate oscillatory region. We do not claim that these �ndings are valid beyond
the simple exercise considered here, but it is clear that the landscape of phenomena related to the L → ∞ limit of
smeared spectral functions is rich.
After this lengthy introduction, we give some explicit formulae. At �nite L and T , the zero-momentum current-

current correlator has the following Hamiltonian representation

CT,L(t) =
1

L

tr {e−(T−t)ĤLÂe−tĤLÂ}
tr e−TĤL

, (24)

where the de�nition

Â =

ˆ L

0

dx ĵ1(x) (25)
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is employed. At �nite L the spectrum of the Hamiltonian is discrete. By introducing an orthonormal basis of energy
eigenstates |n〉L satisfying ĤL|n〉L = En(L)|n〉L, one easily derives the spectral representation of the correlator

CT,L(t) =

ˆ ∞
−∞

dω ρ̃T,L(ω)e−tω , (26)

with the de�nition

ρ̃T,L(ω) =
1

L

∑
n,n′

e−TEn′ (L)∑
n′′ e

−TEn′′ (L)

∣∣∣〈n′|Â|n〉L∣∣∣2 δ(En(L)− En′(L)− ω) . (27)

Notice that ρ̃T,L(ω) is non-vanishing also for negative values of ω. By separating terms with En ≥ En′ and En ≤ En′ ,
and taking care to avoid double counting contributions with En = En′ , one can split ρ̃T,L(ω) into

ρ̃T,L(ω) = ρT,L(ω) + eTωρT,L(−ω) , (28)

where the spectral density

ρT,L(E) =
1

L

∑
En≥En′

e−TEn′ (L)∑
n′′ e

−TEn′′ (L)

(
1−

δEn,En′
2

) ∣∣∣〈n′|Â|n〉L∣∣∣2 δ(En(L)− En′(L)− E) , (29)

vanishes for E < 0. By plugging this information in the correlator, we obtain the spectral representation in the form

CT,L(t) =

ˆ ∞
0−

dE ρT,L(E){e−tE + e−(T−t)E} . (30)

As described in Sec. II, for a target smearing function δε(E − ω), one now seeks an approximation δλε (E,ω) in the
space generated by the function basis

bT,τ (ω) = e−aτω + e−(T−aτ)ω (31)

by minimizing the functional Wλ[g]. Then

ρλT,L,ε(E) = a

τmax∑
τ=1

gλτCT,L(aτ) =

ˆ ∞
0−

dE ρT,L(E)δλε (E,ω) (32)

is an approximation for the smeared spectral density

ρT,L,ε(E) =

ˆ ∞
0−

dE ρT,L(E)δε(E − ω) . (33)

A couple of comments on these formulae are in order. (1) The considered estimator (32) depends on τmax, but (as
demonstrated in Sec. V) our results are rather insensitive to its particular value. (2) The coe�cients gλτ obtained by
solving the minimization problem in Eq. (17) depend on L and T via the covariance matrix appearing in B[g], and
on T via our choice of the basis bT,τ (ω). In the limit of in�nite statistics (with B[g] = 0), the gλτ depend on T but
not on L.
Eq. (29) makes manifest that �nite-temperature e�ects on the spectral density at �xed L are exponentially sup-

pressed, i.e.

ρT,L(E) = ρ∞,L(E) +O(e−Tm(L)) =
1

L

∑
n

∣∣∣〈0|Â|n〉L∣∣∣2 δ(En(L)− E) +O(e−Tm(L)) , (34)

where m(L) is the energy gap in �nite volume. Smearing the spectral function amounts to replacing the Dirac δ-
function in Eq. (29) with the smearing kernel δε. At �xed L the smeared spectral density also has �nite-temperature
e�ects that are exponentially suppressed with O(e−Tm(L)). Even though far from obvious, it is reasonable to assume
that �nite-T e�ects are exponentially suppressed also at L =∞ since the theory has a mass gap.



9

ID (L/a)× (T/a) β am? m?L m?T Nth × 10−6 Nrep Nbin B × 10−6 Nc × 10−10

A1 640× 320 1.63 0.0447989(62) 29 14 1.6 480 5 3.2 3.84
A2 1280× 640 1.72 0.0257695(31) 33 17 12.8 3840 1 20 7.6
A3 1920× 960 1.78 0.0176104(31) 34 17 12.8 7680 1 10 7.6
A4 2880× 1440 1.85 0.0112608(29) 32 16 12.8 30720 1 2.5 7.68

B1 5760× 1440 1.85 0.0112607(73) 65 16 12.8 7680 1 1.5 1.152
B2 2880× 2880 1.85 0.0112462(72) 32 32 12.8 7680 1 1.5 1.152

TABLE II. Details for the ensembles of �eld con�gurations generated for this work. The dimensionful scale m? ' m is de�ned
in Eq. (39). Ensembles A1-A4 enable the continuum limit at approximately �xed physical volume, while B1 and B2 are used to
estimate �nite size e�ects. Each ensemble consists of Nrep independent identical replica, each of which is thermalized for Nth

cluster updates before Nbin measurements are taken by averaging over B subsequent updates. This results in a total number
of measurement cluster updates Nc for ensemble. Only two digits are given for m?L and m?T .

IV. LATTICE-DISCRETIZED MODEL

We calculate the Euclidean current-current correlator in Eq. (30) by numerical simulation of the lattice-discretized
model. The �eld σ(x) is now de�ned on the set of (L/a)× (T/a) equally-spaced points x = (aτ,x) on the two-torus,
denoted by Λ. The standard discretization of the action is employed here

S[σ] =
β

2

∑
x∈Λ

a2
∑
µ

∂̂µσ(x) · ∂̂µσ(x) = β
∑
x∈Λ

∑
µ

[1− σ(x) · σ(x+ aµ̂)] , (35)

where ∂̂µf(x) = 1
a [f(x+ aµ̂)− f(x)] is the forward-di�erence operator de�ned with periodic boundary conditions in

both directions. Expectation values of observables are given by the path integral

〈A〉 =
1

Z

ˆ [∏
x∈Λ

dσ(x)

]
e−S[σ]A[σ] , (36)

where dσ(x) denotes the O(3)-invariant integration measure over the unit sphere. The global O(3) symmetry is
preserved by the lattice discretization, and its associated Noether current is

jaµ(x) = βεabcσb(x)∂̂µσ
c(x) . (37)

Exact O(3) Ward identities imply that this current is renormalized. The discretized version of the zero-momentum
Euclidean current-current correlator is given by

C(aτ) =
∑
x

a〈ja1 (x) ja1 (0)〉 . (38)

The strong dynamics of the O(3) model generate a mass gap m, which is often used to set the scale. In this work
we choose to measure all dimensionful quantities in units of the appropriate power of the mass scale m?, de�ned by
the equation [16]

m−1
? C(m−1

? ) = 0.046615 . (39)

While in principle one can choose any number in the right-hand side, we use a value that gives m? ' m. In fact, by
using the correlator reconstructed from the 2-, 4- and 6-particle contributions to the spectral function we �nd that
the relative di�erence between m and m? is of order 10−5. In practice the correlator C(t) is known only at values of
t = aτ that are integer multiples of the lattice spacing a, and the equation for m? is solved using a piecewise linear
interpolation of log tC(t). The quantity m? is determined with higher statistical precision than m and is also a�ected
by smaller �nite-volume e�ects.
Numerical simulations are performed with the single-cluster algorithm described in App. D. Details concerning the

generated ensembles of �eld con�gurations are summarized in Tab. II. The ensembles A1, A2, A3, A4 have di�erent
values of β and therefore di�erent values of the lattice spacing, but similar m?L ≥ 29 and m?T ≥ 14. The ensembles
B1 and B2 have been generated with the same lattice spacing as A4 but with doubled spatial and temporal extent,
respectively. While the ensembles A1, A2, A3, and A4 are used to perform a continuum extrapolation, B1 and B2
enable estimates of the residual �nite-L and �nite-T e�ects, as explained in Sec. V.
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FIG. 1. Illustration of the continuum limit procedure for tC(t)|m?t=0.5. Three di�erent extrapolation forms are employed
using Eq. (41) with r = 0, 3, 6. Shown is the di�erence between the numerical estimate and the exact result divided by the
exact result, denoted ∆. The horizontal band indicates our estimate for the continuum extrapolated ∆, given by the intercept
from the �t with r = 3. The statistical error on this estimate is similar to the variation across the three values of r, which are
taken as an estimate of the systematic error. This validates the use of the `phenomenological' extrapolation forms in Eq. (41)
for ρε(E) where the statistical errors are larger.

The standard discretization of the 2-dimensional O(3) σ-model employed here is known to approach the continuum
limit rather slowly. Ref. [17] observed that lattice artifacts behave like O(a) over a large range of lattice spacings,
in apparent contradiction with Symanzik's e�ective theory, which predicts an asymptotic O(a2) behavior up to
logarithms. The puzzle was solved in [18, 19]: the asymptotic behavior is correctly described by Symanzik's e�ective
theory, but the logarithmic corrections turn out to be large and must be included in �tting formulae used to extrapolate
to the continuum limit. On-shell quantities, such as the mass gap or energy levels in �nite volume, have the asymptotic
expansion

Q(a) = Q(0) + Ca2β3

[
1 +

∞∑
k=1

ckβ
−k

]
+O(a4) , (40)

where c1 and c2 are universal and calculable in terms of two-loop and three-loop integrals respectively (c1 = −1.1386 . . .
is analytically known and c2 = −0.4881 is estimated numerically in Ref. [19]), while the other constants are non-
perturbative. The leading logarithm β3 is generated by the dimension-four operator with largest one-loop anomalous
dimension appearing in the Symanzik expansion of the action. The current two-point function, and consequently its
spectral function, get extra contributions from dimension-three operators appearing in the Symanzik expansion of the
current. These one-loop anomalous dimensions are unknown, and their calculation is well beyond the scope of this
work. For the continuum extrapolation of the smeared spectral functions we use a �t function of the type

Q(a) = Q(0) + Ca2βr , (41)

where the exponent r is �xed to 0, 3, 6, and Q(0) and C are �t parameters. We take Q(0) at r = 3 as our continuum
extrapolation and the spread generated by the three values of r as an estimate of the systematic error. One may argue
that, since a β3 term exists in the Symanzik expansion, the correct asymptotic formula should have r ≥ 3. However it
is conceivable that the coe�cients of the various logarithms may conspire in such a way that an e�ective power r < 3
is generated in some intermediate regime. We therefore choose to include also r = 0 in our analysis. As is evident in
Fig 1, the variation of r across 0, 3, and 6 has little e�ect on the continuum extrapolation of tC(t) with t = 0.5m−1

?

using our three �nest lattice spacings. These conclusions are supported by additional extrapolations at several values
of t in the range t ∈ [0.5m?, 4m?]. This strategy is thus adopted in Sec. V for continuum extrapolations of ρε(E),
where the fourth lattice spacing is included for stability in the presence of larger statistical errors on ρε(E).

V. NUMERICAL RESULTS

After detailing investigations into the systematic errors, this section presents the numerical veri�cation of the
spectral reconstruction procedure using two di�erent tests. The �rst test (discussed in Sec. VA) compares ρε(E) with
exact results at �xed smearing width ε for each of the four smearing kernels in Eq. (20). As anticipated, ρε(E) is more
di�cult to determine with increasing E and decreasing ε. The second test, which is detailed in Sec. VB, uses ρε(E)
at �nite ε to extrapolate to the ε → 0 limit and obtain the unsmeared spectral function ρ(E). The extrapolation
procedure (as applied here) requires smearing widths that are small compared to the scale at which the unsmeared
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spectral function varies, and is therefore less e�ective in the elastic region where ρ(E) increases rapidly with the onset
of two-particle phase space. Since ρ(E) in the elastic region is accessible to the �nite-volume formalism, the focus is
instead on energies in the inelastic region E > 4m. Due to the absence of any sharp `resonance peaks', ρ(E) varies
increasing slowly with increasing E, suggesting that the smearing width should be scaled ε ∝ (E − 2m), i.e. with the
distance to the rapid variation from the two-particle threshold. Apart from this scaling in the smearing width, the
analysis for these two tests proceeds identically.
All statistical errors on the results presented here are estimated using the bootstrap procedure with Nboot = 800

bootstrap samples, generated independently on each ensemble from the Nrep ×Nbin measurements listed in Tab. II.
For all the reconstructions, the lower bound of the integration range E0 de�ned in Eq. (16) is set using the scale
m? via aE0 = 2 am? to (approximately) coincide with the two-particle threshold. This choice minimizes the range
in energy over which the functional A[g] forces the reconstructed and target kernels to be similar. The values of
am? given in Tab. II are also used to �x the dimensionful parameters ε and E at di�erent lattice spacings. Properly
including the statistical error on am? requires the determination of the coe�cients gλτ on each bootstrap sample,
which signi�cantly increases the computational cost. After con�rming that this has no observable e�ect on a selection
of sample reconstructions, the statistical error on the values of am? in Tab. II is subsequently ignored.

A. Fixed smearing width

Before presenting the main results of this section in Fig. 6, the systematic errors must be estimated. Consider
�rst systematic errors due to the reconstruction procedure. Due to the �nite number of input values C(aτ), the
reconstructed smearing kernel will never be exactly equal to the desired one. This source of systematic error is
quanti�ed by the functional A[gλ]/A[0], de�ned in Eq. (16) as the (squared) two-norm of the di�erence normalized by
the (squared) two-norm of the desired kernel. While this measure does not take into account the role of the unsmeared
spectral function ρ(E) on the systematic error of ρε(E), this error certainly vanishes in the A[gλ] → 0 limit. The
value of A[gλ] is therefore a useful diagnostic for determining the onset of the statistics-limited regime: if λ is lowered
such that A[gλ] changes signi�cantly and no signi�cant change is observed in ρλε (E), then this source of systematic
error is likely smaller than the statistical error. This type of `plateau' analysis is well-known to lattice �eld theory
practitioners and is exempli�ed in Fig. 2. As discussed in Sec. II, we follow here the recipe of Ref. [1] and quote as
the central value for ρε(E) the result obtained at λ = λ?, de�ned in Eq. (19).
Another probe of the systematic error due to the reconstruction is the comparison of ρε(E) determined from

coe�cients subject to various constraints on the minimization, implemented via Lagrange multipliers as explained
in App. B. Fig. 2 shows results for the unconstrained reconstruction, the constraint that the reconstructed smearing
kernel has a signed area equal to the desired one, and the constraint that the reconstructed kernel exactly coincides
with the desired one at the peak ω = E. For large λ, these di�erent reconstructions di�er signi�cantly5 but coincide
well within the statistical error at λ?, lending additional con�dence that λ? is indeed in the statistics-dominated
regime. Put more precisely, reconstructions subject to di�erent constraints result in di�erent reconstructed smearing
kernels. Their consistency when compared at similar values of A[gλ]/A[0] demonstrates that these di�erences are
insigni�cant and suggests that deviations from the exact kernel are as well. Overall, the approach employed for
choosing λ? discussed in Eq. (19) to balance statistical and systematic errors is somewhat conservative. Fig 2 suggests
the less restrictive alternative strategy of demanding consistency between the three di�erent reconstructions. This
could potentially result in smaller statistical errors, but requires further investigation beyond the scope of this work.
In addition to this, the sensitivity to the input correlator data is probed in Fig. 3. The input correlator time

slices {C(aτ)} range over [τmin, τmax] with τmin = 1 �xed. The input time slices are correlated and su�er from an
exponential degradation of the signal-to-noise ratio with increasing τ with a rate phenomenologically similar to m.
As shown in Fig. 3 for a sample reconstruction, ρε(E) is relatively insensitive to τmax, and to a `thinning' of the input
data, so that the time slices are separated by σt = a(τn+1 − τn). These observations can be plausibly explained by
the signal-to-noise degradation and correlation of the input data. The role of B[g] is to penalize coe�cients gλτ which
would result in a large statistical error. This penalty naturally disfavors input data at large τ , e�ectively `turning o�'
these time slices and resulting in an insensitivity to τmax. Similarly, the correlation between the input time slices may
be responsible for the robustness to changing σt. Both of these hypotheses require further study beyond the scope of
the present work.

After demonstrating that the reconstruction procedure on a particular ensemble of �eld con�gurations results in
a statistics-dominated estimator for ρε(E), we turn now to systematic errors associated with the �nite extent of the

5 The equal area constraint is somewhat weaker than demanding δλε (E,ω) = δxε(E − ω) at ω = E, as evidenced by the plots of δλε (E,ω)
in the center and left panels of Fig. 2.
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FIG. 2. For the A1 ensemble detailed in Tab. II, an illustration of the compromise between statistical and systematic errors
which results from choosing λ = λ?. Left: the estimator ρλε (E) for the smeared spectral function at di�erent values of λ,
plotted against the `resolution' functional A[gλ]/A[0] de�ned in Eq. (16). The horizontal band indicates the result at λ? (where
A[g?] = A[0]B[g?]) without any constraints on the determination of the optimal coe�cients. This choice is consistent with the
one obtained by imposing the equal area constraint (denoted `equal area') as well as with the one demanding that reconstructed
smearing kernel take the correct value at the peak, denoted `equal peak value'. Center: the reconstructed smearing kernel
δλε (E,ω) for the di�erent constraints together with the target kernel δgε(E − ω) shown as a solid line. The value of λ for each
of the three reconstructions results in A[gλ/A[0] ≈ 0.1. Right: same as the center panel but with λ = λ?.

FIG. 3. Left: test of the sensitivity of the reconstruction procedure to the range of time slices [τmin, τmax] by varying
τmax, plotted using tmaxm? = τmax(am?) with �xed τmin = 1. Right: test of the sensitivity to the spacing between time slices
included in the reconstruction σt. Both tests are performed on the A1 ensemble detailed in Tab. II. Evidently the reconstruction
procedure is relatively stable under the variation of σt and τmax.

lattice. Along the (approximate) line of constant physics de�ned by the ensembles A1-A4, these errors are crudely
estimated by considering separately the di�erences between B1 and A4, and B2 and A4. These di�erences

∆L(ε, E) = ρL,Tε (E)− ρ2L,T
ε (E) and ∆T(ε, E) = ρL,Tε (E)− ρL,2Tε (E) (42)

are taken as estimators for the systematic errors due to the �nite L and T and are added (in absolute value) indepen-
dently for each ε, E, and smearing kernel. A selection of these deviations are shown in Fig. 4, illustrating that they are
at most marginally signi�cant. Nonetheless, this systematic error is subsequently taken into account and represents
the largest of the systematic error estimates. Although Eq. (34) ensures that �nite-T e�ects are `reliably' O(e−mT ),
we conservatively account for both �nite L and T with additional systematic errors. An increase of statistics on the
B1 and B2 ensembles would more accurately estimate these systematic errors and provide a more stringent test of
the error estimates due to the reconstruction, but is left for future work.
In addition to �nite size e�ects, systematic errors due to the lattice spacing must be estimated as outlined in Sec. IV.

The continuum limit is taken with four lattice spacings using the ensembles A1-A4, but (as detailed in Sec. IV) the
asymptotic a2 behavior is a�ected by large logarithmic corrections and the `phenomenological' extrapolation form of
Eq. (41) is employed with r = 0,3, and 6. The value at r = 3 is taken as the best estimate and the largest deviation
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FIG. 4. The di�erences ∆L = ρ2L,Tε − ρL,Tε and ∆T = ρL,2Tε − ρL,Tε from Eq. (42). The vertical axis is normalized by the error
on the estimated di�erence and can be interpreted as the statistical signi�cance of each of the �nite size e�ects. The sum of
the mean values |∆L|+ |∆T| is taken as an estimate of the systematic error due to �nite size e�ects independently for each E,
ε, and smearing kernel.

between any two as an estimate of the systematic error. A selection of the extrapolations for the three di�erent values
of r is shown in Fig. 5. Evidently, the di�erence in the extrapolated value varies little across these three extrapolation
forms.
After estimating systematic errors due to the reconstruction, �nite lattice size, and �nite lattice spacing, the

results for ρε(E) are at last confronted with the exact values. While no further systematic error is assigned to the
reconstruction procedure, estimates of the remaining three sources of systematic error (�nite L, �nite T , continuum
limit) are added naively. The total systematic error is then combined in quadrature with the statistical error on
the continuum limit estimator. The �nite-L and T errors are typically the dominant source of systematic error, and
are typically similar in magnitude to the statistical error. A selection of these continuum extrapolated values are
shown in Figs. 6. In the left two panels all four kernels are compared at a large �xed ε = 2m? to accentuate the
di�erence between them. However, all of these results are consistent with the exact values (including 2-, 4-, and
6-particle contributions) within the combined statistical and systematic errors. The right two panels show various ε
for the gaussian kernel are similarly consistent with the exact numbers. The increasing di�culty of the reconstruction
problem with increasing E and decreasing ε is apparent.

B. Extrapolation to zero smearing width

The continuum extrapolated results for ρε(E) displayed in Fig. 6 demonstrate that the spectral reconstruction
procedure yields quantitatively accurate results within the quoted statistical and systematic errors. However, the
di�culty in reconstructing ρε(E) at large E and small ε naively suggests that the approach is of little use in the
inelastic region, precisely where the �nite-volume formalism is not yet developed. However, the increasing smoothness
of ρ(E) with increasing E can be exploited by scaling ε ∝ (E − 2m?) in order to probe larger energies. The scaled
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FIG. 5. Illustration of the continuum extrapolation procedure from Eq. (41) with r = 0, 3, and 6 at E = 3m?, ε = m?, and
the gaussian smearing kernel. The three panels show the r = 0 ansatz (left), the r = 3 (center), and the r = 6 (right). The
black points are the continuum extrapolated value and horizontal band is the extrapolated value from β3a2, which is taken as
the best estimate. As in Fig. 1, there is evidently little variation across the di�erent extrapolation forms.

FIG. 6. Summary of the continuum extrapolated values with statistical and systematic errors combined in quadrature as
described in the text. Top left: all four smearing kernels are plotted for a large smearing radius ε = 2m? together with the
exact results including 2-, 4-, and 6-particle contributions shown as solid lines. Bottom left: the `pull' between the numerical
and exact results for the same data. The variation of the points indicates that the numerical and exact results are consistent
at the 2-σ level. Top and bottom right: same type of plots but for a variety of smearing widths with the gaussian smearing
kernel.
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FIG. 7. The same as Fig. 5 for E = 40m?, ε = 1.2(E − 2m?), and the gaussian smearing kernel.

values of ρε(E) are used to extrapolate ε → 0 and determine the unsmeared spectral function ρ(E) using the small-
ε expansion discussed in Sec. II. The rapid variation of ρ(E) in the elastic region inhibits the application of this
approach there, so we focus on E ≥ 4m?

6. The elastic region is also accessible to �nite-volume methods, while no
�nite formalism currently exists to directly determine n ≥ 4 particle contributions.
A natural concern is the growth of cuto� e�ects with increasing E and ε, since ρε(E) has increasingly signi�cant

contributions from more energetic states. Fig. 7 shows the continuum extrapolations of ρε(E) at the largest energy
considered here, which is E = 40m, and ε = 1.2(E − 2m?), which is the largest ε used in the ε → 0 extrapolation.
Although the continuum limit is somewhat steeper than those in Fig. 5, there is still little variation across the di�erent
values of r. However, it appears that the statistical error on the estimator ρλε (E) decreases more rapidly with am? in
Fig. 7 than in Fig. 5. This phenomenon requires further study, but could be in�uenced by our choice of basis vectors,
namely the inclusion of all τ ∈ [1, 160] at each lattice spacing. The edge of the Brillouin zone may also play a role
since 1/am? ∼ E/m? when E & 20m? − 90m?.
The small-ε behavior of ρε(E) depends on the smearing kernel7. As discussed in Sec. II, for the four smearing

kernels considered here this dependence is encoded in the coe�cients wx
k, which are known analytically and given

in Tab. I. The coe�cients ak(E) in Eq. (22) however depend on ρ(E) only and are therefore identical across the
di�erent smearing kernels. This means that an extrapolation ansatz which includes terms up to O(εn) contains n+ 1
�t parameters for each of the ak, which are constrained by data from all the smearing kernels. In this work we target
a0(E) = ρ(E) only: no additional information from the other ak(E) is used to further constrain ρ(E).
The clear sources of systematic error in this approach are the extrapolation form and the extrapolation range

[εmin, εmax]. Due to the di�culty in reconstructing small ε, the statistical errors increase with decreasing ε so that in
practice varying εmin has little e�ect on the extrapolated value. We therefore �x εmin = 0.3(E− 2m?) for all smearing
kernels and extrapolations. The e�ect of varying εmax must be monitored more closely, however. In order to fairly
include data from di�erent smearing kernels, εmax for each kernel is re-scaled εmax → εmax/αx with

´ αx

−αx
dx δxε=1(x) =

erf(2−1/2) ≈ 0.68269 chosen to approximately coincide with the gaussian. This treats the data from di�erent smearing
kernels on equal footing: all smearing widths are included up to those with the same amount of `leakage' down to
the two-particle threshold, where ρ(E) varies rapidly. For the c0 kernel the large value αc0 ≈ 1.84 together with the
leading O(ε) behavior e�ectively renders it useless in the extrapolations. For the gaussian kernel αg = 1 by de�nition,
while αc1 = 0.7 and αc2 = 0.855 increase the �t range for these two kernels relative to the gaussian. The extrapolations
are therefore performed with the three kernels g, c1, and c2. An example of such an extrapolation is shown in the
left panel of Fig. 8.
The systematic error estimate due to the ε → 0 extrapolation proceeds by employing extrapolation forms up to

and including O(εp) with p = 2, 3, and 4 and varying εmax keeping below εmax < 1.3(E − 2m?). For each value
of p, the largest εmax resulting in a (correlated) χ2/d.o.f. < 1 is identi�ed, with the p = 4 value taken as the best
estimate for ρ(E). The spread of these three values is then added in quadrature as a systematic error. An example
plot showing the consistency between di�erent extrapolation forms and extrapolation ranges is shown in the right
panel of Fig. 8. This procedure is performed for all energies for which E/m? takes integral values from 4 to 40. A
summary of the extrapolated results is shown in Fig. 9, which are consistent with the exact results including 2, 4,
and 6 particle contributions. Interestingly, the data exhibits some sensitivity to ρ(4)(E) for E & 20m. Four-particle

6 The opening of subsequent 2n-particle thresholds introduces non-analyticities in ρ(E), but for the range of energies considered here ρ(E)
is dominated by fewer-particle contributions and therefore approximately smooth.

7 For a fair comparison of the e�ectiveness of the four kernels in Eq. (20), ε for the c2 is enlarged by the rescaling ε→
√
3ε so that wc2

2 = 1
in Tab. I. This rescaling is not employed for the c2 data in Sec. VA
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FIG. 8. Left: a sample constrained extrapolation of the g, c1, and c2 kernels at E = 14m? with the (constrained) extrapolation
form including terms up to O(ε4). Right: summary of the extrapolated values for di�erent extrapolations forms and di�erent
extrapolation ranges [εmin, εmax] with εmin = 0.3(E − 2m?) �xed and varying εmax. For each εmax, the extrapolated result
is plotted with the correlated χ2/d.o.f. as the horizontal coordinate. The horizontal band shows the �nal estimate for the
extrapolated values, with statistical and systematic errors combined in quadrature. The systematic errors are estimated as
discussed in the text.

FIG. 9. A summary of the ε→ 0 extrapolated results, together with the exact values two-particle contribution (light solid line)
and the two-, four-, and six-particle contributions (dark solid line).

scattering amplitudes are currently beyond the reach of the �nite-volume formalism.

VI. CONCLUSIONS

The aim of the preceeding sections is to verify the procedure for numerically computing smeared spectral functions
(with an a priori speci�ed smearing kernel) from lattice �eld theory correlation functions. In this regard the two-
dimensional O(3) model usefully provides exact results against which the estimates can be checked. These checks,
which are presented in Figs. 6 and 9, are satis�ed and compare both ρε(E) at �nite ε and the results from extrapolations
ε → 0 to determine ρ(E) deep into the inelastic region where �nite-volume methods have not yet been developed.
The highest energy considered here is E = 40m?, at which ρ(E) is determined with a relative accuracy of 5% and
di�ers signi�cantly from the exact two-particle contribution ρ(2)(E) given in Eq. (9).
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Apart from the `usual' sources of systematic error due to the �nite lattice spacing and extents, we must also
consider the imperfect reconstruction of the smearing kernel due to the �nite number of input time slices and thier
associated statistical errors. All sources of systematic error have been estimated and included in Figs. 6 and 9 where
the statistical and systematic errors are added in quadrature. Generally the errors due to the �nite lattice extent are
largest, and are typically less than or comparable to the statistical errors.
The determination of ρε(E) becomes increasingly di�cult for smaller smearing widths ε at �xed energy E, and

increasing E with �xed ε. As evident from the right two panels of Fig. 6, it's di�cult to achieve precise results outside
of the elastic region for ε . m/2 with the gaussian smearing kernel. Better is to exploit the smoothness of ρ(E) and
scale ε ∝ (E − 2m), so that an equal proportion of the smearing kernel `leaks' down to the two particle threshold at
each energy.
This enables the determination of ρ(E) in Fig. 9, which is the main result of this work.
The analysis performed here is (in principle) directly applicable to the vector-vector correlator in QCD to compute

the R-ratio, provided a few key points are addressed. First, the presence of narrow resonances in QCD seemingly
invalidates our approach to the ε→ 0 extrapolation by scaling ε ∝ (E − 2m). Nonetheless, the �nite smearing width
may be used to probe the onset of the perturbative regime [20]. Furthermore, although the density of states is higher in
three spatial dimensions compared to one, the spatial extent achieved here of mL = 30 is currently beyond the current
state of the art for simulations at physical quark masses. In this respect, the master�eld simulation paradigm [21, 22]
may enable larger volumes in the near future [23].
Apart from this, the di�culty in the reconstruction problem faced here may in fact be similar to QCD. Although

the use of τmax = 160 may seem daunting, Fig. 3 indicates that reducing the range and density of input correlator
time slices likely as little e�ect.Although the input correlator data for this work is generated using the two-cluster
algorithm, it still possesses an exponentially degrading signal-to-noise ratio which decays at a rate empirically similar
to m, as expected for the vector-vector correlator in QCD. Also, as is typical with scalar �eld theory, the statistical
errors achieved at C(m−1

π ) are roughly comparable with state-of-the-art determinations of the vector-vector correlator
in QCD.
Finally, the validation of the spectral reconstruction procedure presented here is intended as a stepping stone to

other applications. Among them is the determination of exclusive scattering amplitudes by exploiting an asymptotic
formalism as in Refs. [5, 6]. There are several additional challenges there compared to this work, including the
computation and spectral reconstruction of at least three-point temporal correlation functions with two associated
time separations. Nonetheless, this may provide an alternative to the �nite-volume formalism for determining few-
body scattering amplitudes where applicable, and extend the reach of such computations by enabling (in principle)
arbitrary center-of-mass energies.
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Appendix A: Analytic expressions for the spectral density

Thanks to the integrability of the O(3)-model, the matrix elements of the Noether current jµ between the vac-
uum and a generic n-particle state (form factors) are completely determined by a known set of recursive functional
equations, derived by Karowski and Weisz [24]. These functional equations are written in terms of the S-matrix
of the system, which has been analytically derived by Zamolodchikov and Zamolodchikov [25] on the basis of the
integrability of the model and some fairly weak assumptions. The n-particle contribution to the spectral function of
the Noether current can be reconstructed from the form factors. This program has indeed been carried out by Balog
and Niedermaier [26] for n = 2, 4, 6. Interestingly, the original motivation for this calculation was the calculation of
the Euclidean two-point function of the O(3)-model, and the comparison with lattice simulations and perturbative
calculations [27].
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For the reader's convenience, we summarize here the most important formulae taken from [26]. First we need to
notice that we use a di�erent normalization for spectral density with respect to Balog and Niedermaier (BN), i.e.

ρ(µ) =
3µ

2
ρBN(µ) =

3µ

2

∑
n=2,4,...

ρ
(n)
BN(µ) . (A1)

With our normalization, the large-µ behaviour of the spectral density is given by ρ(µ) = 1/(2π) +O(g2(µ)).
The form factors are usually written in terms of the rapidity θi=1,...,n variables. The (spatial) momentum and

energy of the i-th particle are given by

pi = m sinh θi , Ei = E(pi) = m cosh θi . (A2)

The invariant mass of a system of n particles is given by

M (n) =


(

n∑
i=1

Ei

)2

−

(
n∑
i=1

pi

)2


1/2

= m

n+ 2
∑

1≤i<j≤n

cosh(θi − θj)


1/2

, (A3)

where trivial hyperbolic function relations have been used to obtain the �nal expression. Notably the invariant mass
depends only on the rapidity di�erences. It turns out that it is convenient to de�ne the new variables

ui=1,...,n−1 = θi − θi+1 . (A4)

The kinematic of the n-particle system is completely speci�ed by the set of variables θi=1,...,n, or equivalently by θn
and ui=1,...,n−1. In terms of the new variables, we obtain in particular

θi − θj =

j−1∑
k=i

uk , for 1 ≤ i < j ≤ n . (A5)

Once the phase-space integral appearing in the de�nition of the n-particle contribution to the spectral function has
been written in terms of the new variables, one can use the delta function over the spatial momentum to eliminate
the integral over θn. One is left with the integral over the variables ui=1,...,n−1 of a known functions times the delta
function over the invariant mass:

ρ
(n)
BN(µ) =

ˆ ∞
0

du1 · · · dun−1

(4π)n−1
F (n)(u)δ

(
µ−M (n)(u)

)
. (A6)

The form factor is parametrized as follows

F (n)(u) =
π3n−2

4
G(n)(u)

∏
1≤i<j≤n

∣∣∣∣ θij − iπ
θij(2πi− θij)

tanh2 θij
2

∣∣∣∣
θij=θi−θj

, (A7)

where the r.h.s. can be written as a function of u by means of eq. (A5), and the functions G(n)(u) are polynomials in
u which are explicitly written in [26] for n = 2, 4, 6. We report here only

G(2)(u) = 2 , (A8)

G(4)(u) = −4[6τ3
2 + 9τ2

3 + 40τ2τ4] + 8π2[25τ2
2 + 44τ4]− 448π2τ2 + 272π6 , (A9)

where, for the n = 4 case, the following auxiliary variables have been introduced

τk=1,2,3,4 =
∑

1≤i1<···<ik≤4

k∏
`=1

θi` − 1

4

4∑
j=1

θj

 . (A10)

The corresponding expressions for n = 6 are much longer, but present no logical complication. In order to calculate
the integral (A6) numerically we have solved the equation M (n)(u) = µ > 0 for e.g. un−1. The only positive solution
ūn−1(u1, . . . , un−2) can be written explicitly by means of standard algebraic manipulations. The integral over un−1

is then explicitly calculated, yielding

ρ
(n)
BN(µ) =

ˆ
M(n)(u1,...,un−2,0)<µ

du1 · · · dun−2

(4π)n−1

{[
∂M (n)

∂un−1
(u)

]−1

F (n)(u)

}
un−1=ūn−1(u1,...,un−2)

. (A11)
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Notice that for n = 2 there is no remaining integral, and one obtains the closed expression

ρ
(2)
BN(µ) = θ(µ− 2m)

8π3m5

µ6

(
µ2

4m2
− 1

)5/2 [
ū2

1 + π2

ū2
1(4π2 + ū2

1)

]
ū1=2 cosh−1 µ

2m

. (A12)

For n = 4, 6, the integral in (A11) has been equivalently replaced by

ˆ
M(n)(u1,...,un−2,0)<µ

du1 · · · dun−2

(4π)n−1
−→

ˆ cosh−1 µ2−nm
2

0

du1 · · · dun−2

(4π)n−1
θ
(
µ−M (n)(u1, . . . , un−2, 0)

)
, (A13)

and it has been calculated numerically for m = 1 (the m dependence can be trivially reintroduced by dimensional
analysis) and a selection of values of µ, by means of the GNU Scienti�c Library implementation of Press and Farrar's
MISER Monte Carlo algorithm [28]. In the region µ ≤ 40m, the 6-particle contribution to the spectral function is
always smaller than the 0.2% of the sum of the 2- and 4-particle contributions.

Appendix B: Spectral reconstruction implementation

Explicit expressions and numerical implementation details of the spectral reconstruction algorithm are provided
here for completeness. The presentation follows Ref. [1] with a slightly di�erent notation. Additional information
concerning the constraints used in this work is also provided.
By using a matrix-vector notation, the functionals of Eq. (16) can be expressed as

A[g] = a
{
gT ·A · g − 2gT · f

}
+A[0] , B[g] = gT ·B · g , (B1)

where gT = (g1, · · · , gτmax
) is the vector collecting the coe�cients gτ , f the vector with entries

fτ =

ˆ ∞
E0

dω δε(E,ω) bτ (ω) , (B2)

and A and B matrices with elements

Aττ ′ = a

ˆ ∞
E0

dω bτ (ω) bτ ′(ω) , Bττ ′ = Cov [aC(aτ), aC(aτ ′)] . (B3)

Here C(aτ) is the correlator at time τ in lattice units and

A[0] =

ˆ ∞
E0

dω {δε(E,ω)}2 . (B4)

With these de�nitions the vector gλ that solves the minimum conditions of Eq. (17) is given by

gλ = (1− λ)W−1
λ · f , Wλ = (1− λ)A + λ

A[0]

a
B , (B5)

In Fig. 2 the minimization problem is subject to two di�erent constraints on the reconstructed kernel. The �rst is
detailed in Ref. [1] and forces the reconstructed and target kernels to have the same area

ˆ ∞
E0

dω a

τmax∑
τ=1

gτ bτ (ω) =

ˆ ∞
E0

dω δε(E,ω) . (B6)

The second constraint enforces the reconstructed and target kernels to have the same peak value

a

τmax∑
τ=1

gτ bτ (E) = δε(E,E) . (B7)

Both constraints are represented in vector notation as

RT · g = r , (B8)
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where for the constraint in Eq. (B6) the entries of the vector R and the constant r are given by

Rτ = a

ˆ ∞
E0

dω bτ (ω) , r =

ˆ ∞
E0

dω δε(E,ω) , (B9)

while for the constraint in Eq. (B7) they are given by

Rτ = bτ (E) , r =
δε(E,E)

a
. (B10)

The solution of the minimization problem subject to Eq. (B8) is

gλ = (1− λ)W−1
λ · f + W−1

λ ·R
r − (1− λ)RT ·W−1

λ · f
RT ·W−1

λ ·R
. (B11)

For the basis function actually used in this work, namely

bT,τ (E) = e−aEτ + e−E(T−aτ) , (B12)

the explicit expressions for the entries of the matrix A are

Aττ ′ =
e−E0(aτ+aτ ′)

τ + τ ′
+
e−E0(T−aτ+aτ ′)

T/a− τ + τ ′
+
e−E0(T−aτ ′+aτ)

T/a− τ ′ + τ
+
e−E0(2T−aτ−aτ ′)

2T/a− τ − τ ′
. (B13)

When τmax is large this matrix is very poorly conditioned. Consequently, when λ is small and/or the error on the
correlator is small, the coe�cients gλτ are large in magnitude and oscillate in sign at di�erent values of τ . In these
situations, the signal on the reconstructed spectral density, given in vector notation by

ρλε (E) = cT · gλ , cτ = aC(aτ) , (B14)

results from large numerical cancellations. For this reason (as in Ref. [1]), an implementation using extended-precision
arithmetic is advocated. This is relatively straightforward for the kernels considered in this work using the libraries of
Refs. [29, 30] because the integrals appearing in Eqs. (B2), (B4), and (B9) can be expressed in terms of standard special
functions already implemented in these packages8. In the case of more generic kernels a numerical integration routine
implemented in extended-precision arithmetic might be needed. An implementation based on the double-exponential
quadrature algorithm [31] is available upon request.

Appendix C: Finite-volume e�ects in the smeared spectral function

In this appendix we present results concerning �nite-volume e�ects in the two-particle spectral function, ρ(2)(E).
We begin by introducing ρ∞,L,ε as the full spectral function at �nite L and in�nite T , smeared with a resolution
function. This can be written as

ρ∞,L,ε(E) =
∑
n

cn(L)δε(E − En(L)) , (C1)

where En(L) is the nth excited state |n,L〉 of the �nite-volume hamiltonian with zero spatial momentum, δε(x) is a
generic smearing kernel and

cn(L) = L
∑
a

∣∣〈0|ĵa1 (0)|n,L〉
∣∣2 . (C2)

For En(L) < 4m, one intuitively expects both the energy and the corresponding matrix element de�ning cn(L)
to be dominated by two-particle interactions. This is made rigorous by the Lüscher quantization condition and the
Lellouch-Lüscher relation which, in the present case, are given by

En(L) = Q−1(πn) +O(e−mL) , (C3)

cn(L) = π

(
∂Q(E)

∂E

)−1

ρ(2)(E)

∣∣∣∣
E=En(L)

+O(e−mL) , (C4)

8 See for example the publicly available code at https://github.com/mrlhansen/rmsd

https://github.com/mrlhansen/rmsd
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for

Q(E) ≡ δI=1(E) +
L
√
E2/4−m2

2
. (C5)

This means that the values of both the energy and the overlap are dictated, up to corrections exponentially
suppressed in the box length, by kinematic factors and the two-particle scattering phase shift δI=1(E). Here we
include the I = 1 label to stress that the scattering phase corresponds to two-particle states transforming irreducibly
under the fundamental representation of O(3). This label helps to distinguish the phase shift from the resolution
function δε(x) as well as the Dirac delta function, to be used below. The quantity δI=1 can be written explicitly via
the analytically known S-matrix, denoted S(k):

δI=1(E) ≡ 1

2i
log[S(k)]

∣∣∣∣
k=
√
E2/4−m2

, (C6)

S(k) =
θ + 2iπ

θ − 2iπ

θ − iπ
θ + iπ

∣∣∣∣
θ=2 sinh−1 k

m

, (C7)

where the log is de�ned such that 0 < δI=1(E) < π. Note that the θ used here matches that of Eq. (9), since

E2

4m2
= 1 +

k2

m2
=⇒ sinh−1 k

m
= cosh−1 E

2m
. (C8)

This leads us to de�ne the two-particle, �nite-volume, smeared spectral function as

ρ
(2)
L,ε(E) ≡

∑
n

π

(
∂Q(ω)

∂ω

)−1

δε(E − ω)ρ(2)(ω)

∣∣∣∣
ω=Q−1(πn)

, (C9)

where we have dropped the T =∞ label. If δε(x) has compact support and ε and E are chosen so that only En(L) < 4m
states contribute, then this corresponds to the smeared �nite-volume spectral function de�ned in Eq. (C1). By

contrast, for non-compact smearing or for E > 4m, ρ
(2)
L,ε represents an approximation of the full, smeared �nite-

volume spectral function in which the role of in�nite-volume states with more than two-particles is ignored.

In the remainder of this appendix, we study ρ
(2)
L,ε(E) as de�ned and show that terms scaling as 1/L cancel in this

quantity, provided that δε(x) is di�erentiable and falls o� fast enough as x→∞. The precise condition is given after

Eq. (C19) below. We additionally show a stronger result, that ρ
(2)
L,ε(E) has exponentially suppressed volume e�ects,

provided δε(x) is analytic in some �nite-width strip about the real axis. Before investigating the nature of the scaling
at asymptotically large L, we warm up by formally evaluating the L→∞ limit of Eq. (C9)

ρ(2)
∞,ε(E) ≡ lim

L→∞
ρ

(2)
L,ε(E) , (C10)

= lim
L→∞

1

L

∑
n

π

(
1

2

∂
√
ω2/4−m2

∂ω
+

1

L

∂δI=1(ω)

∂ω

)−1

δε(E − ω)ρ(2)(ω)

∣∣∣∣
ω=Q−1(πn)

, (C11)

=

ˆ ∞
0

dk

2π
π

(
1

2

∂
√
ω2/4−m2

∂ω

)−1

δε(E − ω)ρ(2)(ω)

∣∣∣∣
ω=2
√
m2+k2

, (C12)

where in the �nal line we have dropped contributions to the �nite-volume energy and the Lellouch-Lüscher factor
that are 1/L suppressed, replaced the sum over n with an integral and performed the change of variables k = 2πn/L.
These results hold for any smearing function δε(x) for which the integral converges. Finally, changing integration
variables to ω, we deduce

ρ(2)
∞,ε(E) =

ˆ ∞
2m

dω δε(E − ω)ρ(2)(ω) , (C13)

as expected.

1. 1/L cancellation

We are ready to show that the 1/L contributions appearing within the �nite-volume energies and Lellouch-Lüscher

factors cancel in the de�nition of ρ
(2)
L,ε(E). First write

ρ
(2)
L,ε(E) = ρ(2)

∞,ε(E) +
c(1)(E)

L
+O(1/L2) , (C14)
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implying

c(1)(E) ≡ lim
L→∞

L
[
ρ

(2)
L,ε(E)− ρ(2)

∞,ε(E)
]
. (C15)

Contributions to this coe�cient arise from the leading-order shift to both the matrix element and the energy. The
former can be written as (

∂Q(ω)

∂ω

)−1

=
1

L

8k

ω

[
1− 1

L

8k

ω

∂δI=1(ω)

∂ω

]
+O(1/L3) , (C16)

where we have substituted ∂k/∂ω = ω/(4k) for k =
√
ω2/4−m2. The corresponding result for the energy can be

found by expanding Eq. (C3)

En(L) = 2
√
m2 + k2 − 1

L

8k

ω
δI=1(ω) +O(1/L2) , (C17)

where here k = 2πn/L.
Putting everything together, we reach

c(1)(E) = − lim
L→∞

1

L

∑
n

π
8k

ω

(
δI=1(ω)

∂

∂ω
+
∂δI=1(ω)

∂ω

)
8k

ω
δε(E − ω)ρ(2)(ω)

∣∣∣∣
ω=2
√
m2+k2

, (C18)

where the �rst term in parenthesis arises from the energy shift and the second from the matrix element. Evaluating
the limit, we deduce

c(1)(E) = −
ˆ ∞

2m

dω
d

dω

[
δI=1(ω)

8
√
ω2/4−m2

ω
δε(E − ω)ρ(2)(ω)

]
. (C19)

Thus, the precise condition on δε(x) is that the integral above should vanish. This holds as long as the full integrand
is Riemann integrable and the quantity in square brackets vanishes at ω = 2m and as ω → ∞. All the smearing
functions considered in this work satisfy this condition as do much more aggressive choices, e.g. taking δε(x) as a a
function with compact support in the region [x− ε, x+ ε] that vanishes on both sides of the indicated window.

2. Exponentially suppressed volume e�ects

We now demonstrate that, for a more restrictive class of smearing functions, the volume e�ects are in fact expo-
nentially suppressed in the box length. This result also holds for all of the smearing functions used in this work. The
argument is based on an elegant identity that is closely related to the derivation of the Lellouch-Lüscher formalism.
One can combine the appearance of (∂Q(ω)/∂ω) with the de�nition of the �nite-volume energies to re-write Eq. (C9)
as

ρ
(2)
L,ε(E) ≡ 2π

ˆ ∞
2m

dω δε(E − ω)

∞∑
n=0

δ
(
2Q(ω)− 2πn

)
ρ(2)(ω) , (C20)

where the delta without the ε subscript is the standard Dirac delta function. The relation δ
(
f(x)

)
= |f ′(x)|−1δ(x)

can be used to show that this expression is equivalent to Eq. (C9).
Next we use that Q(E) is non-negative9 to extend the sum over n to include all integers. Then applying the Poisson

summation formula

∞∑
n=−∞

δ(x− 2πn) =
1

2π

∞∑
n=−∞

einx , (C21)

9 This holds for the positive I = 1 phase shift for all L values, whereas for systems with negative scattering phase shift Q(E) > 0 is only
guaranteed above some su�ciently large value of L.
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we deduce

ρ
(2)
L,ε(E) =

∞∑
n=−∞

ˆ ∞
2m

dω δε(E − ω) ei2nQ(ω)ρ(2)(ω) , (C22)

=

∞∑
n=−∞

ˆ ∞
2m

dω δε(E − ω) einLk[S(k)]nρ(2)(ω) , (C23)

where in the second line we have substituted the de�nition of Q(E), Eq. (C5). Now taking the expressions for the
spectral function and S-matrix, Eqs. (9) and (C7) respectively, we reach

ρ
(2)
L,ε(E) =

3π3

4

∞∑
n=−∞

ˆ ∞
0

dk δε(E − ω) einLk In(θ) , (C24)

In(θ) ≡
[
θ + 2iπ

θ − 2iπ

θ − iπ
θ + iπ

]n
1

θ2

θ2 + π2

θ2 + 4π2
tanh4 θ

2
, (C25)

where, as above, θ = 2 sinh−1(k/m) and ω = 2
√
k2 +m2. Note that the integrand here has an additional factor of

tanh(θ/2), arising from the Jacobian in the change of integration variable: ∂ω/∂k = 2k/
√
k2 +m2 = 2 tanh(θ/2).

This explicit form of the integral is useful for two reasons: First, it makes manifest that the integrand is invariant
under the simultaneous replacements n→ −n and k → −k (θ → −θ). Second, it exhibits the analytic structure of the
integrand as a function of k. In particular, if δε(x) is an analytic function of its argument, then the integrand is an
analytic function of k, in a strip of width 2m centered on and running along the real k axis. The non-analyticity arises
from ω = 2

√
k2 +m2 within δε(E − ω) as well as the S-matrix (in square brackets) and tanh(θ/2). The latter factors

have poles when θ = ±iπ corresponding to k = ±im. Note also that the tanh4(θ/2) factor cancels the apparent 1/θ2

singularity.
From these two observations, it follows that one can extend the range of integration in k along the entire real axis

and then shift the integration contour to R + iµ, where µ is either the mass m or (if it is less than m) the imaginary
part of the nearest singularity in k resulting from δε(E −ω). Concerning the kernels used in this work, µ = m always

holds for the Gaussian kernel g but for the Cauchy kernels, c0, c1 and c2, the singularity at (E− 2
√
m2 + k2)2 = −ε2

can be a distance less than m from the real axis. In this case one has

µ = Im

√
E2 − 4m2 − ε2

4
+
iEε

2
=
ε

2

[
1 +

2m2

E2
+

2m2(3m2 − ε2)

E4
+O(1/E6)

]
, (C26)

where the large E expansion gives an indicator of the values that might be realized. We have also explicitly checked
that the contributions from the vertical segments ±∞ to ±∞+ iµ vanish for any smearing function that vanishes as
k →∞.
Extending the integration range and shifting the contour in Eq. (C24) as described, we �nd that the di�erence

between �nite- and in�nite-volume smeared spectral functions can be written as

∆ρ
(2)
L,ε(E) ≡ ρ(2)

L,ε(E)− ρ(2)
∞,ε(E) =

∞∑
n=1

Cn(E,L, µ)e−nµL , (C27)

The coe�cient Cn is oscillatory with an envelope that is either constant or falling with a power of L and is de�ned via

Cn(E,L, µ) ≡ 3π3

8
lim
η→µ−

Re

ˆ ∞
−∞

dx δε(E − ωη(x)) einLx In(θη(x)) , (C28)

with θη(x) = 2 sinh−1[(x+ iη)/m] and ωη(x) = 2
√

(x+ iη)2 +m2.
We have also studied these results numerically and con�rmed that the straightforward expression based on a sum

over �nite-volume states, Eq. (C9), matches the sum over Poisson modes, evaluated both with the original contour
(Eq. (C24)) and the shifted contour that makes the e−µL scaling manifest (Eq. (C27)). In Fig. 10 we show the results

for the Gaussian kernel, plotted as a function of E at �xed ε and L. In Fig. 11 we plot ∆ρ
(2)
L,ε(E) at �xed E and ε

versus L for both the Gaussian and Cauchy kernels. We see that the volume e�ects are oscillatory functions of L with
an envelope decaying according to the predicted exponential.
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FIG. 10. Left: Plot of theoretically predicted two-particle spectral functions vs. E, including the unsmeared and smeared
in�nite-volume results, as well as the �nite-volume smeared spectral function de�ned in Eq. (C9). The points arise from
numerically evaluating the n = 1 term of Eq. (C27) and combining with ρ∞,ε(E). Right: Direct evaluation of the n = 1
contribution to the residue, Eq. (C27). We have con�rmed that the e�ect of the e−2mL term is highly suppressed and cannot
be resolved on these plots. Plots to be beauti�ed and legend to be included. Star to be discarded.
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FIG. 11. Plots of the �nite-volume residue vs. L for the Gaussian kernel (g, left) and Cauchy kernel (c0, right). The orange
curves give the predicted e−µL scaling for each; µ = m for the Gaussian and µ = 0.265m for the Cauchy, slightly exceeding ε/2
as given by Eq. (C26). Plots to be beauti�ed and legend to be included.

Appendix D: Simulation algorithm

We employ the single-cluster algorithm and associated cluster estimators from Ref. [12] which are brie�y summarized
here. A cluster update proceeds as follows. First, a random vector r ∈ R3, |r| = 1 is drawn uniformly from the unit
sphere. Then a `seed' site is chosen uniformly as the �rst member of the cluster. For each new site x added to the
cluster, consider all non-cluster sites among the four nearest neighbors of x. A neighbor y is added to the cluster with
probability

padd = 1− exp [min{−2βσr(x)σr(y), 0}] (D1)

where σr(x) = σ(x) · r. After all cluster neighbors have been considered for addition, all cluster sites are updated
according to

σa(x)→ σa(x)− 2σr(x)ra. (D2)

In order to employ a cluster estimator for C(aτ), which contains four fundamential �elds, a second orthogonal cluster
update is required. This proceeds by choosing a second random vector u from the unit sphere with the constraint
that r · u = 0. This second cluster update then proceeds in the same manner. The combination of a single r-update
followed by a u-update is henceforth referred to as a `cluster update', the number of which are tabulated in Tab. II
for each ensemble.
The cluster estimator for C(aτ) is built from

σ̃r,u(x) =

√
|Λ|
Nr,u

θr,u(x)σr,u(x) (D3)

where Nr,u/|Λ| is the cluster fraction and θr,u(x) the characteristic function. Expectation values 〈. . . 〉1C denote
integration over all possible pairs of orthogonal single-cluster con�gurations as well as the usual integration over the
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�eld variables. Straightforward application of Eq. (37) gives

〈jaµ(x)jaµ(y)〉 = 2β2 P (ab|cd) 〈σa(x)σb(x+ aµ̂)σc(y)σd(y + aµ̂)〉 = 12β2 〈σ̃[r(x)σ̃u](x+ aµ̂) σ̃[r(y)σu](y + aµ̂)〉1C (D4)

where P (ab|cd) = 1
2 (δacδbd − δadδbc) and σ̃[r(x)σ̃u](y) = 1

2{σ̃r(x)σ̃u(y)− σ̃u(x)σ̃r(y)}. The correlator is then given by

C(aτ) =
12β2

L/a
〈Φru(aτ) Φru(0)〉1C, Φru(aτ) =

∑
x

σ̃[r(aτ,x)σ̃u](aτ,x + a1̂) , (D5)

where (although not denoted explicitly) time translation invariance is employed to average over all equivalent time
separations on the periodic torus.
The estimator for C(aτ) in Eq. (D5) is not positive de�nite, in contrast to the cluster estimator for the two-point

function of the fundamental �elds, which requires only a single cluster. The computational cost of Φru(aτ) for a single
update scales only weakly with the lattice size at �xed β, since only pairs of sites which are neighbors in the spatial
direction and belong to di�erent clusters contribute. However this overlap becomes increasingly unlikely, resulting
in an increasing statistical error for a �xed number of cluster updates. Despite this `cluster cuto�', the variance of
the estimator in Eq. (D5) decays exponentially with increasing τ , while the one for standard estimator (given by the
middle expression in Eq. (D4)) approaches a constant. The cluster estimator thus results in a signi�cant improvement
in the signal-to-noise ratio, which empirically decays with a rate roughly similar to m.
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