

1 Revision-1

2 **Synthesis, structure refinement and single-crystal elasticity of Al- 3 bearing superhydrous phase B**

4 **Xinyang Li^{1,2}, Sergio Speziale², Konstantin Glazyrin¹, Franziska D. H. Wilke²,
5 Hanns-Peter Liermann¹, Monika Koch-Müller²**

6¹ Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany

7² GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam,
8 Germany

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Abstract

25 Dense hydrous magnesium silicates (DHMSs) with large water content and wide
26 stability fields are a potential H₂O reservoir in the deep Earth. Al-bearing
27 superhydrous phase B (shy-B) with a wider stability field than the Al-free counterpart
28 can play an important role in understanding H₂O transport in the Earth's transition
29 zone and topmost lower mantle. In this study, a nominally Al-free and two different
30 Al-bearing shy-B with 0.47(2) and 1.35(4) Al atoms per formula unit (pfu), were
31 synthesized using a rotating multi-anvil press. The single-crystal structures were
32 investigated by X-ray diffraction (XRD) complemented by Raman spectroscopy, and
33 Fourier-transform infrared spectroscopy (FTIR). Single-crystal XRD shows that the
34 cell parameters decrease with increasing Al-content. By combining X-ray diffraction
35 and spectroscopy results, we conclude that the Al-poor shy-B crystallizes in the *Pnn2*
36 space group with hydrogen in two different general positions. Based on the results of
37 the single crystal X-ray diffraction refinements combined with FTIR spectroscopy,
38 three substitutions mechanisms are proposed: $2 \text{Al}^{3+} = \text{Mg}^{2+} + \text{Si}^{4+}$; $\square^{\text{Mg}^{2+}} = 2\text{H}^+$; $\text{Si}^{4+} =$
39 $\text{Al}^{3+} + \text{H}^+$. Thus, in addition to the two general H positions, hydrogen is incorporated
40 into the hydrous mineral via point defects. The elastic stiffness coefficients were
41 measured for the Al-shy-B with 1.35 pfu Al by Brillouin scattering (BS). Al-bearing
42 shy-B shows lower C_{11} , higher C_{22} and similar C_{33} when compared to Al-free shy-B.
43 The elastic anisotropy of Al-bearing shy-B is also higher than that of the Al-free
44 composition. Such different elastic properties are due to the effect of lattice
45 contraction as a whole and the specific chemical substitution mechanism that affect
46 bonds strength. Al-bearing shy-B with lower velocity, higher anisotropy and wider
47 thermodynamic stability can help to understand the low velocity zone and high
48 anisotropy region in the subducted slab located in Tonga.

49

50 **Keywords:** Al-bearing superhydrous phase B, crystal structure, elasticity, Brillouin

51 scattering, X-ray diffraction

52

53 1. Introduction

54 Several studies show the presence of hydrous minerals such as hydrous ringwoodite,
55 brucite and ice-VII, as inclusion in diamonds from the deep earth interior (Pearson et
56 al. 2014; Palot et al. 2016; Tschauner et al. 2018). This proves that the Earth's mantle
57 is, at least locally, hydrated. H₂O can be introduced into the deep Earth by subducted
58 slabs via hydrous minerals (Schmidt and Ulmer 2004; Ohtani 2005) or originally
59 stored in the deep Earth from the protosolar nebula material (Hallis et al. 2015; Peslier
60 2020). H₂O could be incorporated in some nominally anhydrous minerals such as
61 olivine, wadsleyite and ringwoodite. However, the H₂O-storage capacity of these
62 minerals is limited and lower than ~3 wt.% (e.g. Mao and Li 2016). Dense hydrous
63 magnesium silicates (DHMSs), such as Phase A, Phase E, superhydrous phase B (shy-
64 B), phase D and phase H with large H₂O content and wide phase stability are thus
65 potential H₂O carriers in cold or warm subducted slabs (Ohtani 2005; Nishi et al.
66 2014).

67 Mg-endmember shy-B ($Mg_{10}Si_3H_4O_{18}$) with 5.8 wt.% water, has been proposed to
68 form in the hydrated pyrolite system at the Earth's transition zone and topmost lower
69 mantle at pressure and temperature (P - T) conditions of subducted slabs (Pacalo and
70 Parise 1992; Frost 1999). The Mg-endmember of shy-B coexists with ringwoodite at
71 transition zone in the hydrous peridotite layer in subducted slab (e.g., Schmidt and
72 Ulmer 2004; Ohtani 2005). At the depth of topmost lower mantle, shy-B will coexist
73 with bridgmanite, phase D, CaSiO₃-perovskite to 30 GPa and then decompose to MgO
74 and bridgmanite (e.g., Schmidt and Ulmer 2004; Ohtani 2005). Al₂O₃, as an important

75component in the peridotite and basalt layer of subducted slab, could be incorporated
76into the structure of DHMSs and bridgmanite (Pamato et al. 2015; Liu et al. 2016,
772017; Kakizawa et al. 2018). Phase D and shy-B could incorporate 50 wt.% and 31.9
78wt.% Al_2O_3 in their structures (Boffa Ballaran et al. 2010; Pamato et al. 2015;
79Kakizawa et al. 2018). The solubility of Al_2O_3 in bridgmanite is up to 21.8 mol% at
8027 GPa and 2500 K (Liu et al. 2017). The partition coefficient of Al between shy-B
81and bridgmanite is considered to be 1.5-2.8 and increases with pressures and
82temperatures (Litasov and Ohtani 2003; Kakizawa et al. 2018). However, the
83partitioning of Al among coexisting shy-B, phase D and bridgmanite is still
84experimentally unconstrained.

85The Mg-Si end-member of shy-B can be synthesized at high P-T in the range of 16-22
86GPa and 1000-1550 °C (e.g. Pacalo and Parise 1992; Hazen et al. 1997; Koch-Müller
87et al. 2005). The structure of shy-B was first determined to be orthorhombic (space
88group *Pnnm*) by Pacalo and Parise (1992). The crystal structure consists of Si-O
89tetrahedra and octahedra with 2:1 ratio as well as Mg-O octahedra (Pacalo and Parise
901992). Koch-Müller et al. (2005) proposed that shy-B displays two different
91polymorphic modifications, a high-temperature form with space group *Pnnm* and a
92low-temperature form with space group *Pnn2*. Kakizawa et al. (2021) confirmed these
93findings. Different experimental techniques, including FTIR spectroscopy, nuclear
94magnetic resonance (NMR), single-crystal X-ray diffraction (XRD) and neutron
95diffraction all reveal the presence of 2 distinct hydrogen positions in the structure of
96shy-B which makes the structure to be compatible with *Pnn2* space group (Koch-
97Müller et al. 2005; Xue et al. 2008; Trots et al. 2013; Koch-Müller et al. 2014).

98The incorporation of F^- , Ti^{4+} , Fe^{2+} and Al^{3+} in the structure of shy-B affects the
99physical properties of this phase. The incorporation of F^- could increase the

100incompressibility, density and bulk velocity of shy-B (Li et al. 2020). Matrosova et al.
101(2019) have shown that Ti-bearing shy-B with a *Pnnm* space group has a wider
102stability field than the Mg-Si end-member. Fe-bearing shy-B has much higher bulk
103modulus than the Fe-free end-member (Shieh et al. 2000; Li et al. 2016). The
104thermodynamic stability of Al-bearing shy-B expands to higher temperature with
105increasing Al content, such that shy-B with 31.9 wt% Al₂O₃ is stable up to 24 GPa and
1062000 °C (Kakizawa et al. 2018). Based on the Al content and different substitution
107mechanisms in shy-B, two different types of shy-B were proposed by Kakizawa et al
108(2018). In a recent study, Kakizawa et al (2021) investigated an Al-bearing shy B
109sample with 1.9 Al pfu by FTIR spectroscopy, difference Fourier maps and bond-
110distance considerations. The sample contained more than the ideal hydrogen amount
111and they propose as additional H incorporation mechanism the complex substitution
112 $Mg^{2+} + Si^{4+} = 2 Al^{3+} + 2 H^+ + \square^{Mg^{2+}}$ ($\square^{Mg^{2+}}$ means vacancy in Mg site). This needs
113further proof.

114Knowing the elastic properties of shy-B is also very important for interpreting seismic
115anomalies in the deep transition zone and the shallow lower mantle, such as the low
116velocity zone, the 720 km discontinuity and high anisotropy zones (Rosa et al. 2015;
117Li et al. 2016; Yang et al. 2017). Thus, some experimental and *ab initio*
118computational studies investigated the elasticity on the Mg end-member of shy-B with
119different water contents at high P-T, and the results were used to explain seismic
120anomalies in the topmost lower mantle (Pacalo and Weidner 1996; Mookherjee and
121Tsuchiya 2015; Rosa et al. 2015; Li et al. 2016; Yang et al. 2017). However, Al-
122bearing shy-B showing a much wider P-T stability should be considered as an even
123more important candidate for H₂O transport and storage in the transition zone and
124topmost part of the lower mantle. One way to assess the hypothesis of Al-bearing shy-

125B phase being present in deeply subducted slabs is comparing mineralogical models
126with geophysical observations such as those from seismology. Here we provide
127information on the elasticity of shy-B as a function of the Al content.

128In this study we used rotating multi-anvil apparatus to synthesize a nominally Al-free
129shy-B with 0.04(1) Al atoms pfu (based on 18 O atoms pfu) and two Al-bearing shy-B
130with 0.47(2) and 1.35(4) Al atoms pfu. The syntheses products were analyzed with an
131electron microprobe (EMP), FTIR- and Raman-spectroscopy. The crystal structures of
132the three compositions were determined by single-crystal X-ray diffraction (XRD).
133Finally, the elasticity of Al-rich shy-B (with 1.35 Al atoms pfu) was investigated by
134Brillouin scattering (BS) at ambient conditions.

135

136**2. Experimental and analytical methods**

137Syntheses: Multi-Anvil apparatus

138Shy-B with three different compositions were synthesized in a rotating multi-anvil
139press at the GFZ, Potsdam (Deon et al. 2011). This device, featuring a Walker type
140high pressure module (Walker et al. 1990), is designed to allow continuous 360°
141rotation of the entire press at a maximum speed of 5° per second for the duration of
142the synthesis. Continuous rotation enhances a homogeneous distribution of fluid and
143solid within the sample capsule (see Schmidt and Ulmer 2004; Deon et al. 2011). We
144used a 10/5 assembly (lengths of the octahedral edges and the truncations of the WC
145cubes, respectively) with a MgO-based octahedron serving as pressure transmitting
146medium, a stepped graphite heater to avoid or minimize temperature gradients, and
147pyrophyllite gaskets. We monitored the sample temperature by using type C
148thermocouples (W5%Re-W26%Re). Details of the experimental setup are given in
149Mrosko et al. (2015). The starting materials were loaded in Pt capsules (length 2.25

150mm, outer diameter 1.4 mm), which were cold sealed. Experimental conditions, run
151number and the starting materials are summarized in Table 1.

152

153Electron microprobe analysis (EMPA)

154Several single crystals of the synthesized shy-B were handpicked, embedded in
155epoxy, polished and carbon coated in order to perform chemical EMPA. The analyses
156were performed using a JEOL Superprobe JXA-8230 (GFZ, Potsdam) in wavelength-
157dispersive X-ray diffraction (WDS) mode with the following crystal-analyzers: TAP
158for Si and Al, LIFL for Fe and TAPH for Mg. Although the samples do not contain
159Fe, Fe was required in the calibration and quality control process as the high-pressure
160ringwoodite standard contained iron. The microprobe was operated at 15 kV, 10 nA.
161The size of the measuring spot was 5 μm to prevent mineral destruction. Counting
162times on the peaks for Si, Al and Mg were 10 s and 20 s for Fe. Background counting
163times were 5 s for Si, Al and Mg and 10 s for Fe. The standard for Mg and Si was well
164characterized synthetic ringwoodite (MA-313, Mrosko et al. 2013), corundum for Al
165and hematite for Fe.

166

167FTIR spectroscopy

168FTIR spectra were measured using a VERTEX 80v FTIR spectrometer (Bruker
169optics) with an attached Hyperion II microscope at the IR-spectroscopy laboratory of
170the GFZ in Potsdam. A tungsten light source, InSb detector and a CaF_2 beamsplitter
171were used to measure the OH stretching range (2500 - 4000 cm^{-1}). Due to the high
172water content (the stoichiometric Mg-endmember has 5.8 wt.% H_2O) a very thin film
173of the sample material was required which was prepared from very small amounts of
174the fine grained portion of the syntheses product by pressing the material in a

175diamond anvil cell (DAC) equipped with type II diamonds and without a gasket (thin-
176film preparation). The spectra were collected with the thin-films attached to one of the
177diamonds anvils and with 2 cm^{-1} resolution and averaged over 256 scans. The
178reference spectra were taken through the diamonds. The thickness of the first sample
179(MA-575) flattened in a DAC was determined by reflecting a broadband optical probe
180in the collected signal scaled by the refractive index of the sample. The refractive
181index was estimated to be $n = 1.686$ which is the average value along the three
182crystallographic axes (Pacalo and Weidner 1996). The thickness of MA-575 is 1.0 (1)
183 μm . By optical observation we estimated the thickness of the thin films of MA-399
184and MA-576 to be 1.0 and 1.3 μm , respectively. In the absence of a mineral-specific
185absorption coefficient, ε , we used the wavenumber-dependent method proposed by
186Libowitzky and Rossman (1997) to calculate molar absorption coefficients ε 's for the
187bands of each sample. The spectra were deconvoluted with the software PeakFit by
188Jandel Scientific. We applied a Gaussian plus Lorenzian peak shape to all component
189bands. The integral absorbance (A_{int}) of each peak was summed up and multiplied by
1903 to get the total integral absorbance $A_{\text{int,tot}}$. Density was derived from our single
191crystal X-ray refinements, which are 3.227(3), 3.179(3) and 3.166(4) g/cm^3 for MA-
192399, 575 and 576, respectively. We used the Beer-Lambert law to calculate the water
193content which can be found in Libowitzky and Rossman (1997).

194Temperature-dependent thin-film spectra of samples MA-575 and MA-576 were also
195measured in the OH stretching region using the spectrometer and components
196described above in a Linkam FTIR600 cooling/heating stage adjusted to the
197microscope. Spectra were collected with a spectral resolution of 2 cm^{-1} and averaged
198over 1024 scans. Shy- B thin-films were investigated from ambient conditions down
199to -180 °C. To reach the low temperature the stage was cooled with liquid nitrogen.

200The low-T spectra of sample MA-575 exhibited an additional peak at around 3180
201cm⁻¹ at -180 °C, which we attributed to the formation of ice crystals, visible to our
202eyes. In experiment MA-576 we avoided the formation of ice by annealing the sample
203in the Linkam sample chamber for 1 h at 100 °C while purging with nitrogen gas
204before the cooling experiment started.

205To verify the presence of weak bands hidden in the background of the thin-film
206spectra also spectra of large crystals (about 100 x 50 μm²) with thicknesses varying
207between 30 to 60 μm were measured in the OH stretching region using the
208spectrometer and components described above. The crystals were placed on KBr
209sample holders and spectra were averaged over 128 scans.

210FTIR spectra in the lattice vibrational range (400-2000 cm⁻¹) were measured using the
211spectrometer described above but with a Globar light source, MCT detector and a KBr
212beamsplitter. The samples were prepared as thin films (see above) and placed on KBr
213sample holders. The spectra were collected with 4 cm⁻¹ resolution and averaged over
2141024 scans.

215

216Raman-spectroscopy

217Raman spectra were measured with a HORIBA Jobin Yvon LabRAM HR800 VIS
218spectrometer (GFZ, Potsdam) equipped with a green 514 nm wavelength diode-
219pumped solid-state laser. The spectra were collected from the microprobe mounts
220after removal of the carbon coating.

221Spectra in the range of 100–1000 cm⁻¹ were measured for phase identification and the
222data acquisition time was 30 s for MA-399 and MA-575 and 50 s for MA-576. We
223measured several different single crystals for MA-576 - all gave much weaker signals
224than the crystals of the other two samples. The spectra were deconvoluted with the

225software PeakFit by Jandel Scientific.

226Spectra in the OH stretching region were measured in the range of 3200 – 3600 cm⁻¹
227with the same configuration. These measurements were extremely difficult as the
228samples were very sensitive to the laser light decomposition and showed high
229fluorescence. The Al-bearing samples were measured with 50 % laser power. Spectra
230of MA-575 were collected for 10 sec with 3 accumulations while spectra of MA-576
231were measured for 20 sec with 3 accumulations.

232

233Single-crystal X-ray diffraction

234Single-crystal XRD data were collected at the Extreme Conditions Beamline (ECB,
235P02.2) at PETRA III, DESY (Hamburg, Germany). In order to improve data quality
236and for the purpose of absorption correction, we pre-selected samples of a shape
237similar to a sphere. Samples were glued on the top of a tungsten needle (2 μ m tip),
238which acted as holder for the XRD measurements, enabling data collection during
239rotation (-90° - +45°) around the vertical axis. The energy of the beam was tuned to
24042.7 keV, while the beam was focused to 3 x 8 μ m² (H x V, full width at half
241maximum). Sample to detector distance (SDD) and tilt of the detector were initially
242determined from the powder X-ray diffraction image of a CeO₂ standard from NIST
243(674b) using DIOPTAS (Prescher and Prakapenka 2015) and further refined in
244CrysAlisPro© from Rigaku. The single-crystal data are calibrated by an enstatite
245crystal. Crystal structures were solved using OLEX2 with a SHELX backend
246(Dolomanov et al. 2009; Sheldrick 2015). Additional data analysis was conducted
247with JANA2006 (Petříček et al. 2014). The structural models displayed below were
248drawn using the software VESTA (Momma and Izumi 2011).

249

250Brillouin Scattering

251We collected single-crystal Brillouin scattering spectra from grains selected from
 252sample MA-576, our Al-bearing shy-B sample that contained the highest amount of
 253Al (1.35 atoms pfu). Four crystal platelets were double side polished to 20-25 μm
 254final thickness, and their orientations were determined by single crystal XRD at the
 255ECB (see above). The orientations of the four platelets were (-0.5 , 0 , 0.87),
 256(0.83 , -0.56 , -0.08), (-0.78 , -0.38 , 0.49) and (-0.81 , -0.59 , 0.09). Brillouin
 257scattering experiments at ambient condition were performed at the laser lab of the
 258Extreme Conditions Science Infrastructure (ECSI) of PETRA III, DESY, Hamburg,
 259established by the GFZ Potsdam. The signal was excited by a Nd:YVO₄ laser with a
 260wavelength of 532 nm and an output power of 100 mW. The Brillouin spectra were
 261recorded by a six-pass Sandercock tandem Fabry-Perot interferometer. The external
 262scattering angle (i.e. the angle between incident and scattered light directions outside
 263the sample) was 50°, and the mirror spacing was 6 mm during the measurements. The
 264acoustic velocities of the sample were calculated from the measured Brillouin
 265frequency shift, Δv_B , as:

$$266 \quad v = \frac{\Delta v_B \lambda_0}{2 \sin(\textcolor{red}{\theta}/2)} \quad (1)$$

267where v is the acoustic velocity, λ_0 is the laser wavelength of 532 nm, and θ is the
 268external scattering angle. The dataset of individual acoustic velocities, and
 269corresponding wave vector orientations and polarizations was used to determine the 9
 270independent nonzero elastic coefficients of the Al-shy-B sample. The elastic constants
 271were determined by inverting a set of Christoffel's equations:

$$272 \quad |C_{ijkl} n_j n_l - \rho v^2 \delta_{ik}| = 0 \quad (2)$$

273where C_{ijkl} is the elastic constants, n_j and n_l are the direction cosines of the acoustic

274wave propagation direction. ρ is the density, v is the acoustic velocity derived from
275Brillouin frequency shift, and δ_{ik} is the Kronecker delta. Based on the volume derived
276from X-ray diffraction data and the composition $Mg_{8.04}Si_{2.17}Al_{1.35}O_{18}H_{7.18}$, the density
277of MA-576 was calculated to be $3.166(4)$ g/cm³, the number in parentheses is 1σ
278standard deviation on the last digit.

279

2803. Results

281Table 2 shows the EMPA results and chemical composition for the three different
282syntheses. Sample MA-399 contains $0.35(3)$ wt.% Al_2O_3 , which corresponds to 0.04
283atoms per formula unit in shy-B. This amount has negligible structural effects, and we
284will consider this sample as Al-free in our discussion. The two samples MA-575, MA-
285576 contain $4.05(18)$ and $11.72(21)$ wt.% Al_2O_3 , respectively (Table 2). The H_2O
286contents of the 3 samples were determined by FTIR absorption, and are equal to $8(1)$,
287 $10(1)$, $11(1)$ wt.%, respectively. To calculate the chemical formula, we preferred to
288take the IR-determined water contents, rather than the difference of the EMP sum to
289100 %. The complete chemical formulas for each synthesis are reported in Table 2.
290Our results show that water content increases with Al content, which is consistent
291with the result for shy-B with moderate Al content ($0.85 < Al < 1.91$ pfu) in Kakizawa et
292al (2018). There are minor amounts of ringwoodite coexisting with shy-B in MA-399
293and pyrope coexisting with Al-bearing shy-B in MA-575 and MA-576, which means
294that pyrope will coexist with Al-bearing shy-B in Al-rich systems.

295In our syntheses, we did not observe complex phase assemblages as reported by
296Kakizawa et al (2018). In particular, we did not observe a coexistence of two shy-B
297phases with different Al content in the same synthesis run. We contribute this due to
298the rotating multi-anvil press setup, used in our experiments. The rotation of our

299multi-anvil press during the duration of the experiments ensures homogeneous
300distribution of the liquid phase in the capsule. Consequently, all the chemical
301compositions of different grains of our sample are nearly identical within the
302uncertainty of our measurements. We did not observe other coexisting high
303temperature phases such as δ -AlOOH (Kakizawa et al. 2018) as the temperature of our
304syntheses is 200-400 °C lower than those of Kakizawa et al. (2018).

305Figure 1 shows the FTIR spectra in the OH stretching region of the samples prepared
306as thin-films. In the spectrum of the nominally Al-free shy-B sample (MA-399) we
307can distinguish two main OH bands (ν_1 and ν_2), which we assign to the vibrations of
308two different hydroxyl groups according to space group symmetry $Pnn2$ that are
309consistent with Koch-Müller et al. (2005, 2014) and Trots et al. (2015). With
310increasing Al-content the frequencies of the OH bands do not change. However, the
311bands visibly broaden, while at least a third OH band ν_3 is visible at lower
312wavenumbers. The intensity of ν_3 increases with increasing Al-content (Figs.1, S1). In
313the FTIR spectrum of the sample with the highest Al-content (MA-576) only two very
314broad OH bands can be distinguished (merging $\nu_1 + \nu_2$ and additional ν_3). In all spectra
315(Fig. S1) a fourth very weak OH band can be identified at higher wavenumbers, e.g. at
3163554 cm⁻¹ (MA-576). The peak positions, the integral absorbances normalized to 1 cm
317and the band widths (FWHM) determined for the thin-film spectra are listed in Table
318S1. The calculated water contents are listed in Table 2. All samples contain more OH
319than the ideal value pointing to two hydrogen positions. As also indicated by the FTIR
320spectra there must be additional hydrogens incorporated in the crystal structure. Low
321temperature spectra of sample MA-575 and MA-576 were collected in the hope to
322reduce the FWHM of the OH bands for a better band assignment. But as shown in
323Fig. S2 there is nearly no change in the spectra with decreasing temperature.

324 To finally verify the presence of ν_3 and ν_4 in all three samples we collected spectra of
325 individual crystals in the OH stretching region. The spectra are shown in Fig. S1. The
326 spectra are oversaturated in the range of 3450 to 3300 cm⁻¹ but the presence of the ν_3
327 band at lower wavenumbers can clearly be seen also in MA-399. In all three spectra
328 the very weak band ν_4 at higher wavenumber is clearly present.

329 FTIR spectra in the range of the lattice vibrations are shown in Fig. 2 and their
330 frequencies are reported in Table S2. Based on the results of Hofmeister (1999), we
331 assign specific vibrations to the peaks; some peaks remain unassigned (Table S3). The
332 spectra of the three samples are very similar - they are dominated by vibrations of
333 tetrahedrally and octahedrally coordinated Si. The main difference between the Al-
334 free sample MA-399 and the Al-bearing sample MA-576 is in the region around 600 –
335 700 cm⁻¹ and we tentatively assigned the two most prominent bands in the spectrum of
336 the sample MA-576 to vibrations of octahedrally coordinated Al.

337 Raman spectra in the range of the lattice vibrations are shown in Fig. 3. Nine Raman
338 peaks for each Shy-B were fitted, and their frequencies are reported in Table S2.
339 Based on the results of Hofmeister et al. (1999), we assign specific vibrations to the
340 peaks; some peaks remain unassigned (Table S2). The Raman spectra show that the
341 intensity of the peaks becomes weaker with increasing Al-content (Fig. 3). Similar
342 behavior has been reported that Al-rich phase D shows broader and weaker Raman
343 peaks when compared with Al-free one (Pamato et al. 2015; Xu and Inoue 2019). The
344 values of FWHM show that most peaks broaden with increasing Al content (Table 2),
345 potentially indicating presence of cationic disorder. Most of the peak positions move
346 to larger wavenumbers as a function of increasing Al content. This observation
347 indicates that the incorporation of the Al increases the vibrational frequencies, and is
348 compatible with the observed decrease of the unit cell volume (see below). Raman

349spectra in the OH stretching region also show increasing peak broadening with
350increasing Al incorporation (Fig. S3).

351In order to examine the structure of shy-B crystals with different Al content, we
352performed single-crystal X-ray diffraction refinements at ambient condition. The
353details can be found in the cif files in supplementary materials. The unit cell
354parameters are also listed in Table S3. Although our FTIR results clearly indicate two
355different hydrogen sites suggesting the space group *Pnn2* for nominally Al-free shy-B
356(MA-399), we use both *Pnnm* and *Pnn2* during the refinement to examine all the
357possibilities for the other two compositions (MA-575 and MA-576). The main
358difference between *Pnnm* and *Pnn2* structural models for shy-B is the description of H
359atom positions. *Pnnm* has just one general H position (multiplicity 8) while *Pnn2* has
360two general H positions (multiplicity 4). Considering similarity of both space groups
361and lattice parameters, we can compare them for shy-B with different Al contents
362(Fig.4). Our single-crystal refinement shows that the *Pnnm* and *Pnn2* offer the same
363cell parameters. Figure 4 shows that the incorporation of 1 Al pfu will reduce *a*, *b*, *c*
364unit cell parameters and the volume (*V*) of Al-bearing shy-B by 0.69%, 0.24%, 0.16%
365and 0.29%, respectively.

366Apart from the lattice parameters, the incorporation of Al affects various structural
367features, including the volumes of MgO₆, SiO₄ and SiO₆ polyhedra. Based on the
368results of our analysis, we can also compare the volume of the different MgO₆
369octahedra as a function of Al content (Fig. 5; Fig. S4). In order to simplify the
370discussion, it seems justified to continue using *Pnnm* as a reference. Indeed, the
371octahedral sites of Mg5, Mg6, Mg7 in *Pnn2* are structurally related to those of Mg3,
372Mg4, Mg1 in *Pnnm*. In fact, the solutions for the both space groups are very close in
373terms of atomic positions and interatomic distances. This is not surprising, given that

374the difference between the space groups arises from the symmetry break due to
 375position of H, the atom with the lowest Z, which weakly contribute to X-ray
 376diffraction.

377As the Al content in shy-B increases, the volume of the Mg1 and Mg2 octahedra are
 378reduced, in contrast to a slightly increased volume of Mg4 octahedron. The changes of
 379Mg3 octahedron volume are insignificant (Fig.5). The sites containing Si behave
 380differently as Al content changes, i.e. the volume is increased with increasing Al
 381content for SiO_6 octahedra but remains unchanged for SiO_4 tetrahedra (Fig.5)
 382indicating low probability of Al substitution at the latter site.

383In order to put strong constraints on elasticity, we collected Brillouin scattering
 384spectra and determined acoustic velocities from four crystal platelets, even though
 385two platelets have similar orientations (Fig.6). Due to the extensive dataset, the
 386inversion to determine the full elastic tensor yielded unambiguous results. The fitting
 387results are shown in Figure 6 and the elastic stiffness coefficients are listed in Table 3.
 388Al-bearing shy-B shows lower C_{11} , C_{44} , C_{55} , C_{13} , C_{66} but higher C_{22} , C_{12} than Al-free
 389end member and similar C_{33} , C_{23} . The adiabatic bulk modulus (K_S) and the shear
 390modulus (G) were estimated to be 140.7(7) GPa and 88.2(4) GPa, respectively, which
 391are also lower than the Al-free composition. The azimuthal V_p anisotropy and
 392maximum V_s^{PO} splitting are calculated using the following equations

393

$$394 A_p = \frac{V_{p_{\text{max}}} - V_{p_{\text{min}}}}{V_{p_{\text{avg}}}} \times 100 \text{ } \%$$

$$395 A_s^{\text{PO}} = \frac{\text{Max}(V_{s2} - V_{s1})}{V_{s_{\text{avg}}}} \times 100 \text{ } \%$$

396where $V_{p_{\text{max}}}$, $V_{p_{\text{min}}}$, $V_{p_{\text{avg}}}$, are maximum, minimum and average V_p in the crystal
 397structure. Max ($V_{s2} - V_{s1}$), describes the maximum difference between V_{s2} and V_{s1} in

398the same propagation direction; V_{Savg} computes the average of all the V_{S} . The values of
399 A_P and A_S^{PO} are 20.1% and 15.9%, respectively.

400

4014. Discussion

4024.1 Incorporation of H and Al in the structure of shy-B

403Based on our single-crystal X-ray refinements of shy-B with different Al contents, we
404can infer the mechanisms of Al incorporation in the shy-B structure based on the
405volume of MgO_6 and SiO_6 octahedra. In the structure of Al_2O_3 (corundum structure),
406 MgO (periclase structure) and SiO_2 (rutile structure), used as simple reference, the
407volume of AlO_6 octahedra is larger than that of the SiO_6 octahedra, but smaller than
408the MgO_6 octahedra (Fig. S5). Based on this simple comparison we expect as a first
409order approximation that the incorporation of Al by substitution of Si in octahedral
410sites will increase the volume of the octahedra, while it will lower the volume of the
411octahedra when it substitutes Mg. We observe that with increasing Al content in shy-
412B, the volume of the SiO_4 tetrahedral site remains unchanged and that of the SiO_6
413octahedron becomes larger (Fig. 5) indicating that Al^{3+} substitutes for the octahedral
414 Si^{4+} which is consistent with the Al substitution in stishovite (Bromiley et al. 2006;
415Litasov et al. 2007a). The volumes of Mg1 and Mg2 octahedral sites are decreasing
416with increasing Al content, indicating a preferred Al substitution for Mg in Mg1 and
417Mg2 (if we refer to the $Pnnm$ space group). The volume of the Mg3 octahedron
418remains unaffected by the change in Al content suggesting that the substitution of Al
419in Mg3 octahedra site is negligible. In contrast, the volume of the Mg4 octahedral site
420slightly increases with increasing Al content, indicating a presence of Al in Mg4
421octahedral site to should be limited. The increase of Mg4 octahedron might be caused
422by vacancies in this site.

423The hydrogen positions and OH dipole directions of the stoichiometrically
424incorporated hydrogens are well known from neutron diffractions data and polarized
425FTIR spectra on oriented crystals (Trots et al. 2013, Koch-Müller et al. 2014); the two
426main OH bands in MA-399 are assigned to these two OH dipoles, and their vibrations
427are labelled as ν_1 and ν_2 . In the thin-film spectra there may be hints for two additional
428OH bands ν_3 and ν_4 . To have a better insight into the defect H we collected low
429temperature spectra and spectra on relatively thick crystals (Figs. S1, S2). There is
430nearly no change in the OH bands with decreasing temperatures. The bands remain
431broad, indicating that the FWHM is caused by cationic disorder rather than disorder of
432by thermal broadening. According to Trots et al. (2013) both non-defect hydrogens
433are coordinated by Mg1, Mg2 and Mg3 sites. We suggest that Al-substituting Mg in
434Mg1 and Mg2, as shown in this study, leads to variable environments of the hydrogen
435and thus to the observed higher band widths. Fig. 1 and S1 clearly shows that defect
436hydrogen is present in all three samples. The intensity of the band ν_3 at 3261 cm^{-1}
437(MA-399) increases with increasing vacancies of the Mg sites for the samples MA-
438575 and MA-576 and thus we assigned the band to this defect. The band ν_4 is also
439present in all three sample, however, only with a constant and minor intensity. We
440will discuss its possible origin later on.

441Due to the very limited Al content in MA-399 whose composition is $(\text{Mg}_{9.39}\square_{0.61})$
442 $(\text{Si}_{2.93}\text{Al}_{0.04}\square_{0.03})\text{H}_{5.37}\text{O}_{18}$, we considered it as Al-free shy-B in this discussion. The
443extra 1.37 H pfu goes to the tetrahedral silicon site as hydrogarnet substitution (0.12 H
444pfu), vacancies in the Mg site (1.22 H pfu) and neglectable 0.04 H pfu goes to Si
445octahedral site by the mechanism of $\text{Si}^{4+}=\text{Al}^{3+} + \text{H}^+$.

446Based on our single-crystal structural models and electron microprobe analyses of the
447Al-bearing samples MA-575 and MA-576, we propose the following coupled

448substitutions for Al-bearing shy-B: (1) $\text{Si}^{4+} = \text{Al}^{3+} + \text{H}^+$; (2) $2 \text{ Al}^{3+} = \text{Mg}^{2+} + \text{Si}^{4+}$; (3)
449 $\square^{\text{Mg}^{2+}} = 2\text{H}^+$. As the ionic size of ${}^{\text{VI}}\text{Al}^{3+}$ and ${}^{\text{VI}}\text{Si}^{4+}$ are quite similar (Shannon, 1976),
450we propose that Al^{3+} first occupies all the Si octahedral sites and then the other sites.
451We rule out the possibility of large contributions from the hydrogarnet substitution as
452the X-ray refinement indicate fully occupied (Si + Al) tetrahedral and octahedral Si
453sites. However, a limited amount as observed in MA-399 may be possible.

454Sample MA-575 contains 0.47 Al pfu in total ($\text{Mg}_{8.75}\text{Al}_{0.47}\text{Si}_{2.62}\text{H}_{6.60}\text{O}_{18}$). 0.38 Al pfu is
455needed to occupy all the Si octahedral sites, and the remaining 0.09 Al pfu goes to the
456Mg site. We thus assign 0.29 Al to the octahedral Si-site via mechanism (1); 0.09 Al
457pfu (in total) goes to Mg1 and Mg2 sites and 0.09 pfu Al^{3+} to the octahedral Si site by
458mechanism (2). Therefore, the residual charge in the Si site should be balanced via
459mechanism (1) by 0.29 H pfu. Vacancies in the Mg sites are charge balanced by
460mechanism (3) resulting in 2.32 H pfu. The crystal-chemical formula for MA-575 can
461thus be stated as $(\text{Mg}_{8.75}\text{Al}_{0.09}\square_{1.16})(\text{Si}_{2.62}\text{Al}_{0.38})\text{H}_{6.60}\text{O}_{18}$.

462Following the substitution mechanisms as described for MA-575, the crystal-chemical
463formula of MA-576 will be $(\text{Mg}_{8.04}\text{Al}_{0.52}\square_{1.44})(\text{Si}_{2.17}\text{Al}_{0.83})\text{H}_{7.18}\text{O}_{18}$: 0.31 Al pfu are
464assigned to the octahedral Si site via mechanism (1) results in 0.31 H^+ pfu; 0.52 Al
465pfu (in total) is in the Mg1 and Mg2 sites and 0.52 Al pfu in the octahedral Si site via
466mechanism (2); vacancies in the Mg sites are charge balanced by mechanism (3)
467resulting in 2.88 additional H pfu.

468In summary, with increasing Al-incorporation in shy B the Mg vacancy content and
469Al incorporation into the octahedral Si site increase, and both lead to an increasing H
470content.

471The assignment is consistent with the FTIR spectra: the increasing absorbance of the
472band ν_3 with increasing Al- content is due to increasing Mg vacancies content (0.6,

4731.16 and 1.44 pfu, in MA-399, MA-575 and MA-576 respectively), and charge
474balance via mechanism (2) resulting in 1.4, 2.32 and 2.88 H⁺ pfu. In the nominally Al-
475free sample MA-399 the absorption band ν_3 is weak but still clearly visible (Fig. S1;
476see also Table S1). There should be additional weak OH bands due to mechanism (1)
477in the FTIR spectra of MA-575 (0.29 H) and MA-576 (0.31 H) but nearly none (0.04
478H pfu) in the spectra of MA-399. These additional OH bands should have frequencies
479close to 3100 cm⁻¹ based on available data for H-bearing Al-stishovite (Bromiley et al.
4802006; Litasov et al. 2007a) and they may be hidden in the background. However, we
481do observe a weak OH band, ν_4 , in all three samples and we tentatively assign it to the
482hydrogarnet substitution. At least for sample MA-399 the chemical composition
483analyses indicate 0.03 pfu vacancies in the Si site which would result in 0.12 H pfu.
484Due to the complex Al incorporation into the structure and variable vacancies we
485cannot rule out that the same holds for MA-575 and MA-576. The hydrogarnet
486substitution would result in four OH bands with a strong band in the frequency range
487of ν_4 – the others may be hidden by the high intrinsic OH described above.
488Our interpretation of the data is partly consistent with the results of Kakizawa et al.
489(2021). They investigated one Al-shy B sample with nearly the same composition as
490MA-576. The FTIR spectra are quite similar to the spectra of MA-576 shown in Fig. 1
491and S1. In agreement with our conclusions the broad band at 3400 cm⁻¹ (our merged
492 ν_1 , ν_2) is assigned to the stoichiometrically incorporated hydrogen for *Pnn2*. The band
493at 3260 cm⁻¹ (our band ν_3) and at 3540 cm⁻¹ (our band ν_4) are according to Kakizawa et
494al. (2021) assigned to the substitution mechanism (1) (Si⁴⁺ = Al³⁺ + H⁺) and to a new
495and complex substitution mechanism (4): 2 Mg²⁺ = Al³⁺ + H⁺ + □^{Mg2+}, respectively.
496This assignment is not supported by our data. We studied three samples with different
497Al-contents, the band in question (ν_3) is present in all three spectra (Fig. S1) but only

498two of the samples show the substitution of Si^{4+} by Al^{3+} (Table 2). In addition, in our
499study the band at 3450 cm^{-1} (ν_4) shows a constant and weak absorption in the spectra
500of all three samples (Fig. S1), which is not consistent with the substitution mechanism
501in which Mg vacancies are involved as the amount of vacancies increases with Al
502content.

503Al incorporation into the Mg-site (mechanism 2) causes a broadening of the OH
504absorption bands, which leads to the merging of OH bands ν_1 and ν_2 . As observed in
505other solid solutions systems such as Al-bearing phase D, the partial substitution of
506Mg by Al at the Mg site results in variable Mg-Al environments for the H sites and
507causes band broadening (Xu et al.,2019). We can rule out that the band broadening is
508due to dynamic disordering of H atom around the normal H position as we see no
509sharpening of the bands with decreasing temperature (fig s2). In conclusion, Al-free
510shy-B with 2 distinct H atomic position crystallizes in $Pnn2$ space group and the
511incorporation of Al into the hydrogen coordinating Mg sites M1 and M2 leads to
512cationic disorder and seems to result in overlapping unresolved OH bands leaving the
513question of the ultimate structure type ($Pnn2$ or $Pnnm$) for Al-rich shy-B unsolved. To
514gain further structural information, Al-rich shy-B needs to be examined by NMR or
515neutron diffraction in future.

516

5174.2 Elasticity of Al-bearing shy-B

518The elasticity of Al-free shy-B with different hydrogen contents has been investigated
519at ambient or high P-T conditions using Brillouin scattering in 3 studies (Pacalo and
520Weidner 1996; Rosa et al. 2015; Li et al. 2016). We list the sets of 9 independent
521elastic constants (at ambient conditions) for the different chemical compositions in
522Table 3 and we plot them in Fig.7 where the valency of the cations is considered (i.e.

523for MA-576 (Al+H)/(H+Al+Mg+Si) and equates to $(3*1.35 + 7.18)/36$. We also
524recalculated the results of Rosa et al (2015) using the correct composition (and
525density) of that sample material following the suggestion by Li et al (2016). The
526elastic stiffness coefficients of Al-free shy-B show a general decrease with increasing
527H content, and only C_{44} and C_{12} are insensitive to the H content within uncertainty; the
528effect of Al incorporation modifies these trends, especially in the case of C_{11} , C_{22} and
529 C_{23} (Fig.7). The incorporation of H in shy-B will significantly reduce the mass per
530formula unit leading to a sensible decrease of density of shy-B. To better identify and
531discuss the effects of H and Al incorporation on the elasticity and acoustic velocity of
532shy-B, we try to exclude the effect of density (mostly due to H incorporation) by
533normalizing the individual coefficients and expressing them as the ratio $C_{ij}/\text{density}$.
534Using the value of $C_{ij}/\text{density}$ from Pacalo and Weidner (1996) as a reference ideal
535Mg- end member of shy-B, we calculated the differences of the individual C_{ij} for each
536composition of shy-B (Fig.8). When the effect of density (i.e. of hydrogen
537incorporation) is removed, the value of most $C_{ij}/\text{density}$ for Al-free shy-B with
538different water contents remains equal within uncertainties (Fig. 8). The differences of
539 C_{12} , C_{13} and C_{23} are larger, as the off-diagonal elastic coefficients are more difficult to
540constrain (they cannot be determined independently by individual Brillouin scattering
541or sound velocity measurements). When we consider the Al-free system in previous
542studies, the values of $C_{ij}/\text{density}$ for all the other coefficients are effectively
543insensitive to the H content indicating that the incorporation of H in excess compared
544to the ideal Mg- end member composition will not affect the sound velocity of shy-B,
545because it equally reduces both the elastic coefficients and the density. When we
546consider Al-bearing shy-B (MA-576), the elastic coefficients C_{11} , C_{44} , C_{55} , C_{66} and C_{13}
547are lower, C_{22} , C_{12} , C_{23} are higher and C_{33} and C_{66} are equal to Al-free shy-B. The

548large difference observed for several density-normalized C_{ij} of Al-bearing shy-B
549indicates that the substitution of Al in the structure has a much larger impact on sound
550velocity of this phase.

551In order to understand the relationship between Al incorporation and elasticity, we
552need to consider the crystal structure of Al-free shy-B. The structure of shy-B is
553characterized by an alternation of layers containing octahedra (Mg) and tetrahedra (Si)
554and layers containing octahedra (Mg) and octahedra (Si) stacked along the *b*-
555crystallographic axis (Fig.9). All the available experimental studies of the elastic
556properties of Al-free shy-B (with variable H content) and also density functional
557theory (DFT) studies consistently show that *b* is the stiffest axial direction with C_{22}
558~10% larger than C_{11} and ~7% larger than C_{33} (Pacalo and Weidner 1996;
559Mookherjee and Tsuchiya 2015; Rosa et al. 2015; Li et al. 2016; Yang et al. 2017).
560The stiffness along the *b*- direction is enhanced by the presence of two different
561alignments or columns of polyhedral units running along this direction, and it is
562controlled by the stiffest unit in these alignments. Based on the available data the
563stiffness of Si-O tetrahedra is much higher than that of Mg-O and Si-O octahedra
564(Hazen and Finger 1982). In both columns aligned along *b*, one of the stiff Si-O
565tetrahedral bonds is systematically aligned parallel to the *b*-axis (Fig. 9). In each
566column, both Si-tetrahedra and softer Si-octahedra are present with a ratio of 1:1.
567However, due to a shift along *b*-axis between the two columns, the resulting sequence
568of layers stacked along *b* have a ratio of tetrahedra-bearing vs. fully octahedral layers
569of 2:1. The distance between Si atoms aligned along the *b*-columns is a sequence of
570~3.5 Å and ~5.2 Å.

571Looking for structural features parallel to the *a*- and *c*-axes, we find that 2 types of
572column-like units have either only Si-octahedra or Si-tetrahedra alternating with Mg-

573octahedra. The distance between Si atoms along the columns running parallel to a is
574equal to the unit-cell parameter a (~ 5 Å). No stiff bond is aligned along the a -
575direction, and the arrangement of the stiff tetrahedra gives the option for rigid
576rotations to accommodate compression. Column-like structures along the c -axis offer
577a more direct alignment of cations, involving either only Si-octahedra or Si-tetrahedra,
578at distances equal to the c - unit-cell parameter (~ 8.5 Å). However, the packing of
579polyhedra is denser than along the a -axis, with average distances between Si and Mg
580or Mg and Mg averaging at ~ 2.7 Å.

581The mechanisms through which Al incorporation affects the elastic tensor of shy-B is
582complicated by the coexisting effects of vacancies and hydrogen incorporation.
583Below, we interpret the effects on the compressional coefficients C_{11} , C_{22} , and C_{33}
584based on our complete set of structural and spectroscopic observations.

585We identify major mechanisms: (1) Al incorporation causes a decrease of the unit cell
586parameters a , b , c and potentially stiffening all the C_{ii} ($i=1,2,3$); (2) Al substitution at
587the octahedral Si site softens Si-O octahedra; (3) Al substitution at Mg sites stiffens
588Mg-O octahedra; (4) vacancies on Mg octahedra make them softer. In the case of C_{11}
589(the uniaxial stiffness along the a - direction) the mechanisms (1), (2) and (3) are all
590active. However, as the distance between Si polyhedra is very large (~ 5 Å), the
591shrinking of a - axis has a limited effect on C_{11} . In addition, in MA-576 a large amount
592of Si is substituted by Al and mechanism (2) is dominant over (1) and (3).
593Consequently, C_{11} softens with respect to Al-free shy-B. In the case of C_{22} , as the
594stiffest Si-O tetrahedral aligned with b -axis, mechanisms (1) will dominate and make
595 C_{22} stiffer. In the case of C_{33} the four different mechanisms balance each other, and the
596value of the constant is only marginally affected by Al incorporation.

597

598 5. Implications

599 Shy-B is potentially a major hydrous phase in cold slabs subducted to the depth of the
600 transition zone and the topmost part of the lower mantle (Schmidt and Ulmer 2004;
601 Ohtani 2005). The presence and decomposition of Al-free shy-B might be related to
602 the low velocity zone or 720-800 km discontinuity in the shallow lower mantle (Li et
603 al. 2016; Yang et al. 2017). The study by Kakizawa et al. (2018) showed that Al-
604 bearing shy-B has a much wider stability field compared to the Al-free counterpart.
605 Pyrope-rich garnet can be the main Al carrier in the subducted slabs in the deep
606 transition zone and the top of the lower mantle. Our syntheses results show that Al-
607 free shy-B coexists with ringwoodite, while Al-bearing shy-B coexists with pyrope at
608 the conditions of our synthesis runs (Table 2). In the peridotite layer of subducted
609 slabs, Al-free shy-B could be favored compared to Al-bearing shy-B because the
610 amount of available Al is low. On the other hand, in the basaltic layer, where pyrope
611 is the most abundant phase, Al-bearing shy-B would be present coexisting with
612 pyrope-rich garnet if the subducted slab is H₂O rich. The Al-free shy-B decomposes
613 around 30 GPa and 900 K indicating that it cannot represent a water carrier even at
614 the conditions of a very cold subduction slab (Ohtani et al. 2003). Having a wider
615 stability, Al-bearing shy-B with 31.9 wt.% Al₂O₃ could be stable at 25 GPa and 2300
616 K and could be a potential water carrier in the topmost lower mantle (Kakizawa et
617 al. 2018). The elastic properties of Al-bearing shy-B are important for our
618 understanding of the low seismic velocity anomalies and anisotropy anomalies
619 observed in the transition zone and topmost part of the lower mantle. Our study
620 demonstrates that while the incorporation of additional H₂O in shy-B mainly affects
621 the density and has only a slight effect on sound velocity (Fig. 8 and Table 3), on the
622 opposite the incorporation of Al has a more complex effect on density and elasticity

623 resulting in a relevant effect on sound velocity and anisotropy. Comparing V_p and V_s
624 with that of standard Al-free shy-B, Al-bearing shy-B has 1.8% and 2.6 % lower V_p
625 and V_s , respectively (Fig. 10). A previous study of sound velocity of H₂O-rich Al-free
626 shy-B at high P-T has shown that the presence of shy-B could help to explain the low
627 velocity zone at the topmost lower mantle but cannot help to understanding high
628 anisotropy regions (Li et al., 2016). Our Al-bearing shy-B displays densities that are
629 comparable to those of the H₂O-rich Al-free shy-B investigated by Li et al (2016),
630 which has similar H₂O content (Table 3.). At ambient conditions, Al-bearing shy-B
631 has the lowest acoustic velocities among all the previously investigated shy-B
632 compositions (Fig.10). More importantly, the V_p anisotropy and V_s^{PO} splitting of Al-
633 bearing shy-B are 13.2% and 6.1% higher than those of Al-free one (Fig.10). The
634 volume fraction of shy-B in the hydrated pyrolite system can reach 25% at pressures
635 of the topmost lower mantle (Ohtani et al.2005). Assuming a similar pressure and
636 temperature dependence of the elastic tensor as Al-free shy-B (Li et al., 2016), the
637 presence of 25 vol.% of Al-bearing shy-B in deep subducted slabs may produce
638 observable lower seismic velocity at topmost lower mantle. More interestingly, Al-
639 bearing has higher elastic anisotropy than Al-free shy-B, we thus conclude that if 25
640 vol.% of Al-bearing shy-B with strong lattice preferred orientation (LPO) might cause
641~2% anisotropy for V_s and help to understand the anomalous seismic features
642 observed inside and in proximity of Tonga deep subducted slab (Chen and Brudzinski
643 2003). However, our studies only focus on the elasticity at ambient condition, and a
644 high P-T study investigating the elasticity of Al-bearing shy-B is necessary in the
645 future.

646

647 Acknowledgements

648 We acknowledge the scientific exchange and support of the Center for Molecular
649 Water Science (CMWS) as part of the early science program (DESY) and GFZ.
650 Andreas Ebert and Reiner Schulz for the support during the multi-anvil syntheses. We
651 also acknowledge DESY (Hamburg, Germany), a member of the Helmholtz
652 Association HGF, for the provision of experimental facilities. Parts of this research
653 were carried out at beamline P02.2 and the Extreme Condition Science Infrastructure
654 (ECSI) of PETRAIII.

655

656

657

658

659

660

661

662

663

664

665 References

666 Ballaran, T.B., Frost, D.J., Miyajima, N., and Heidelbach, F. (2010) The structure of a super-
667 aluminous version of the dense hydrous-magnesium silicate phase D. *American
668 Mineralogist*, 95, 1113–1116.

669 Bromiley, G.D., Bromiley, F.A., and Bromiley, D.W. (2006) On the mechanisms for H and Al
670 incorporation in stishovite. *Physics and Chemistry of Minerals*, 33, 613–621.

671 Chen, W.-P., and Brudzinski, M.R. (2003) Seismic anisotropy in the mantle transition zone
672 beneath Fiji-Tonga: SEISMIC ANISOTROPY IN THE MANTLE TRANSITION ZONE.
673 *Geophysical Research Letters*, 30.

674 Crichton, W.A., Ross, N.L., and Gasparik, T. (1999) Equations of state of magnesium silicates
675 anhydrous B and superhydrous B. *Physics and Chemistry of Minerals*, 26, 570–575.

676 Deon, F., Koch-Müller, M., Rhede, D., and Wirth, R. (2011) Water and Iron effect on the P-T-x
677 coordinates of the 410-km discontinuity in the Earth upper mantle. *Contributions to
678 Mineralogy and Petrology*, 161, 653–666.

679 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H. (2009) it
680 OLEX2: a complete structure solution, refinement and analysis program. *Journal of
681 Applied Crystallography*, 42, 339–341.

682 Frost, D. (1999) The stability of dense hydrous magnesium silicates in Earth's transition zone and
683 lower mantle. *Mantle Petrology, Special Publication No.6*, 14.

684 Hallis, L.J., Huss, G.R., Nagashima, K., Taylor, G.J., Halldórsson, S.A., Hilton, D.R., Mottl, M.J.,
685 and Meech, K.J. (2015) Evidence for primordial water in Earth's deep mantle. *Science*,
686 350, 795–797.

687 Hazen, R. M. & Finger, L. (1982). Comparative Crystal Chemistry. New York: John Wiley &
688 Sons.

689

690 Hazen, R.M., Yang, H., Prewitt, C.T., and Gasparik, T. (1997) Crystal chemistry of superfluorous
691 phase B (Mg10 Si3 O14 F4); implications for the role of fluorine in the mantle. *American
692 Mineralogist*, 82, 647–650.

693 Hofmeister, A.M. (1999) Mantle Values of Thermal Conductivity and the Geotherm from Phonon
694 Lifetimes. *Science*, 283, 1699–1706.

695 Inoue, T., Ueda, T., Higo, Y., Yamada, A., Irifune, T., and Funakoshi, K.-I. (2013) High-Pressure
696 and High-Temperature Stability and Equation of State of Superhydrous Phase B. In S.D.
697 Jacobsen and S. Van Der Lee, Eds., *Geophysical Monograph Series* pp. 147–157.
698 American Geophysical Union, Washington, D. C.

699 Kakizawa, S., Inoue, T., Nakano, H., Kuroda, M., Sakamoto, N., and Yurimoto, H. (2018)
700 Stability of Al-bearing superhydrous phase B at the mantle transition zone and the
701 uppermost lower mantle. *American Mineralogist*, 103, 1221–1227.

702 Kakizawa S, Inoue T and Kuribayashi T.(2021) Single-crystal X-ray structure refinement of Al-
703 bearing superhydrous phase B. *Physics and Chemistry of Minerals*, 2021, 48(8): 1-11.

704

705 Koch-Müller, M., Dera, P., Fei, Y., Hellwig, H., Liu, Z., Orman, J.V., and Wirth, R. (2005)
706 Polymorphic phase transition in Superhydrous Phase B. *Physics and Chemistry of
707 Minerals*, 32, 349–361.

708 Li, X., Mao, Z., Sun, N., Liao, Y., Zhai, S., Wang, Y., Ni, H., Wang, J., Tkachev, S.N., and Lin,
709 J.-F. (2016) Elasticity of single-crystal superhydrous phase B at simultaneous high
710 pressure-temperature conditions: Elasticity of Shy-B. *Geophysical Research Letters*, 43,
711 8458–8465.

712 Li, X., Liu, Y., Wang, R., Yoshino, T., Xu, J., Zhang, D., Grützner, T., Zhang, J., and Wu, X.
713 (2020) Thermal equation of state of F-bearing superhydrous phase B
714 (Mg10Si3O14(OH,F)4): Implications for the transportation of fluorine and water into
715 Earth's lower mantle. preprint, *Geophysics*.

716 Libowitzky, E., and Rossman, G.R. (1997) An IR absorption calibration for water in minerals.
717 *American Mineralogist*, 82, 1111–1115.

718 Litasov, K., and Ohtani, E. (2003) Stability of various hydrous phases in CMAS pyrolite-H 2 O
719 system up to 25 GPa. *Physics and Chemistry of Minerals*, 30, 147–156.

720 Litasov, K.D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D.L., Bass, J.D., and Ito, E. (2007a)
721 High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle.
722 *Earth and Planetary Science Letters*, 262, 620–634.

723 Litasov, K.D., Ohtani, E., Ghosh, S., Nishihara, Y., Suzuki, A., and Funakoshi, K. (2007b)
724 Thermal equation of state of superhydrous phase B to 27GPa and 1373K. *Physics of the
725 Earth and Planetary Interiors*, 164, 142–160.

726 Liu, Z., Irifune, T., Nishi, M., Tange, Y., Arimoto, T., and Shinmei, T. (2016) Phase relations in
727 the system MgSiO₃ –Al₂O₃ up to 52 GPa and 2000 K. *Physics of the Earth and
728 Planetary Interiors*, 257, 18–27.

729 Liu, Z., Nishi, M., Ishii, T., Fei, H., Miyajima, N., Ballaran, T.B., Ohfuji, H., Sakai, T., Wang, L.,
730 Shcheka, S., and others (2017) Phase Relations in the System MgSiO_3 - Al_2O_3 up to
731 2300 K at Lower Mantle Pressures: Phase Relations and Al in Bridgmanite. *Journal of*
732 *Geophysical Research: Solid Earth*, 122, 7775–7788.

733 Lobanov, S.S., Schifferle, L., and Schulz, R. (2020) Gated detection of supercontinuum pulses
734 enables optical probing of solid and molten silicates at extreme pressure-temperature
735 conditions. *Review of Scientific Instruments*, 91, 053103.

736 Mao, Z., and Li, X. (2016) Effect of hydration on the elasticity of mantle minerals and its
737 geophysical implications. *Science China Earth Sciences*, 59, 873–888.

738 Matrosova, E.A., Welch, M.D., Bobrov, A.V., Bindi, L., Pushcharovsky, D.Y., and Irifune, T.
739 (2019) Incorporation of Ti into the crystal structures of the high-pressure dense silicates
740 anhydrous phase B and superhydrous phase B. *Physics and Chemistry of Minerals*, 46,
741 909–920.

742 Momma, K., and Izumi, F. (2011) *VESTA 3* for three-dimensional visualization of crystal,
743 volumetric and morphology data. *Journal of Applied Crystallography*, 44, 1272–1276.

744 Mookherjee, M., and Tsuchiya, J. (2015) Elasticity of superhydrous phase, B,
745 $\text{Mg}_{10}\text{Si}_3\text{O}_{14}(\text{OH})_4$. *Physics of the Earth and Planetary Interiors*, 238, 42–50.

746 Mrosko, M., Koch-Müller, M., McCammon, C., Rhede, D., Smyth, J.R., and Wirth, R. (2015)
747 Water, iron, redox environment: effects on the wadsleyite–ringwoodite phase transition.
748 *Contributions to Mineralogy and Petrology*, 170.

749 Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., and Higo, Y. (2014)
750 Stability of hydrous silicate at high pressures and water transport to the deep lower
751 mantle. *Nature Geoscience*, 7, 224–227.

752 Ohtani, E. (2005) Water in the Mantle. *Elements*, 1, 25–30.

753 Ohtani, E., Toma, M., Kubo, T., Kondo, T., and Kikegawa, T. (2003) In situ X-ray observation of
754 decomposition of superhydrous phase B at high pressure and temperature: IN SITU X-
755 RAY OBSERVATION OF DECOMPOSITION OF SUPERHYDROUS PHASE B.
756 *Geophysical Research Letters*, 30.

757 Pacalo, R.E.G., and Parise, J.B. (1992) Crystal structure of superhydrous B, a hydrous magnesium
758 silicate synthesized at 1400 °C and 20 GPa. *American Mineralogist*, 77, 681–684.

759 Pacalo, R.G., and Weidner, D. (1996) Elasticity of superhydrous B. *Physics and Chemistry of*
760 *Minerals*, 23.

761 Palot, M., Jacobsen, S.D., Townsend, J.P., Nestola, F., Marquardt, K., Miyajima, N., Harris, J.W.,
762 Stachel, T., McCammon, C.A., and Pearson, D.G. (2016) Evidence for H_2O -bearing
763 fluids in the lower mantle from diamond inclusion. *Lithos*, 265, 237–243.

764 Pamato, M.G., Myhill, R., Boffa Ballaran, T., Frost, D.J., Heidelbach, F., and Miyajima, N. (2015)
765 Lower-mantle water reservoir implied by the extreme stability of a hydrous
766 aluminosilicate. *Nature Geoscience*, 8, 75–79.

767 Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S.,
768 Mather, K., Silversmit, G., Schmitz, S., and others (2014) Hydrous mantle transition zone
769 indicated by ringwoodite included within diamond. *Nature*, 507, 221–224.

770 Peslier, A.H. (2020) The origins of water. *Science*, 369, 1058–1058.

771 Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System JANA2006:
772 General features. *Zeitschrift für Kristallographie - Crystalline Materials*, 229.

773 Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-
774 dimensional X-ray diffraction data and data exploration. *High Pressure Research*, 35,
775 223–230.

776 Rosa, A.D., Sanchez-Valle, C., Wang, J., and Saikia, A. (2015) Elasticity of superhydrous phase
777 B, seismic anomalies in cold slabs and implications for deep water transport. *Physics of
778 the Earth and Planetary Interiors*, 243, 30–43.

779 Schmidt, M.W., and Ulmer, P. (2004) A rocking multianvil: elimination of chemical segregation
780 in fluid-saturated high-pressure experiments. *Geochimica et Cosmochimica Acta*, 68,
781 1889–1899.

782 Sheldrick, G.M. (2015) Crystal structure refinement with *SHELXL*. *Acta Crystallographica
783 Section C Structural Chemistry*, 71, 3–8.

784 Shieh, S.R., Mao, H., Hemley, R.J., and Ming, L.C. (2000) In situ X-ray diffraction studies of
785 dense hydrous magnesium silicates at mantle conditions. *Earth and Planetary Science
786 Letters*, 177, 69–80.

787 Trots, D.M., Kurnosov, A., Manthilake, M.A.G.M., Ovsyannikov, S.V., Akselrud, L.G., Hansen,
788 T., Smyth, J.R., and Frost, D.J. (2013) The determination of hydrogen positions in
789 superhydrous phase B. *American Mineralogist*, 98, 1688–1692.

790 Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V.B., Ma, C., Rossman, G.R., Shen, A.H.,
791 Zhang, D., Newville, M., Lanzirotti, A., and others (2018) Ice-VII inclusions in
792 diamonds: Evidence for aqueous fluid in Earth's deep mantle. *Science*, 359, 1136–1139.

793 Walker, D., Carpenter, M.A., and Hitch, C.M. (1990) Some simplifications to multianvil devices
794 for high pressure experiments. *American Mineralogist*, 75, 1020–1028.

795 Xu, C., and Inoue, T. (2019) Melting of Al-Rich Phase D up to the Uppermost Lower Mantle and
796 Transportation of H₂O to the Deep Earth. *Geochemistry, Geophysics, Geosystems*, 20,
797 4382–4389.

798 Xue, X., Kanzaki, M., and Shatskiy, A. (2008) Dense hydrous magnesium silicates, phase D, and
799 superhydrous B: New structural constraints from one- and two-dimensional ²⁹Si and ¹H
800 NMR. *American Mineralogist*, 93, 1099–1111.

801 Yang, D., Wang, W., and Wu, Z. (2017) Elasticity of superhydrous phase B at the mantle
802 temperatures and pressures: Implications for 800 km discontinuity and water flow into the
803 lower mantle: High PT Elasticity of Superhydrous Phase. *Journal of Geophysical
804 Research: Solid Earth*, 122, 5026–5037.

805

806

807 **Figure Captions**

808 **Figure 1.** Infrared absorption spectra of shy-B with different Al content in the
809 frequency range of the OH stretching vibration.

810

811**Figure 2.** Infrared absorption spectra of shy-B with different Al content in the
812frequency range of the lattice vibrations.

813

814**Figure 3.** Raman spectra of shy-B with different Al content at the frequency range of
815 100-1000 cm⁻¹.

816

817**Figure 4.** Unit cell parameters and unit cell volume of shy-B with different Al
818contents. Error bars are smaller than the symbols.

819

820**Figure 5.** Polyhedral volumes of various Mg and Si sites for shy-B with different Al
821contents in *Pnnm* space group. (a) Dependence of the volumes of MgO₆ octahedra on
822the Al content. Squares, circles, triangles and diamonds represent the octahedral
823volume for the site of Mg1, Mg2, Mg3 and Mg4, respectively. (b) Dependence of the
824volumes of SiO₆ octahedron and SiO₄ tetrahedron on the Al content; triangles and
825circles represent the octahedron and tetrahedron of SiO₆ and SiO₄, respectively. Error
826bars are smaller than the symbols in both the panels.

827

828**Figure 6.** Acoustic velocities of Shy-B with 1.35 Al pfu (sample MA-576) measured on
829four platelets with different orientations. Circles: quasi-longitudinal acoustic velocity;
830squares: fast quasi-shear acoustic velocity; triangles: slow quasi-shear acoustic
831velocity; curves: fitting results; black, red, green and blue colors represent the
832orientations of (-0.5, 0, 0.87), (0.83, -0.56, -0.08), (-0.78, -0.38, 0.49) and (-
8330.81, -0.59, 0.09), respectively.

834

835 **Figure 7.** Relationship between elastic stiffness coefficients and the amount of H, Al
836 and Fe incorporated in shy-B. The valency of the cations is considered (i.e. for MA-
837 576 the $(Al+H)/(H+Al+Mg+Si)$ is equal to $(3*1.35 + 7.18)/36$). The solid circles
838 represent this study for Al-bearing shy-B. The open circles represent the Al-free shy-
839 B with different water contents from previous studies (Pacalo and Weidner, 1996;
840 Rosa et al. 2015; Li et al. 2016); the open red diamonds in panel (d) represent the
841 isothermal bulk modulus (K_{T0}) fitted to X-ray diffraction for Al-free shy-B with
842 different water contents (Litasov et al. 2007b; Inoue et al. 2013); the open red star
843 represents the K_{T0} of Fe-bearing shy-B (Crichton et al. 1999). Error bars smaller than
844 the symbols are not shown in the figures.

845

846 **Figure 8.** Effect of H and Al incorporation on the individual elastic stiffness
847 coefficients of shy-B. The change is expressed as $100*[(C_{ij}/\text{density})_a - (C_{ij}/\text{density})_{\text{ref}}]$,
848 where the subscript a indicates Al-bearing or H-enriched shy-B and the subscript ref
849 indicates ideal Mg- end member shy-B (Pacalo and Weidner, 1996). Solid circles
850 MA-576; open blue circles from Li et al. (2016); open green circles from Rosa et al.
851 (2016)

852

853 **Figure 9.** Crystal structure of Al-bearing shy-B(MA-576): $b-c$ plane (panel (a)) and $a-$
854 c plane (panel (b)).

855

856 **Figure 10.** Average aggregate sound velocity and acoustic anisotropy of Al-bearing
857 and Al-free shy-B at ambient condition. Solid circles: this study; open circles: Pacalo
858 and Weidner (1996); Rosa et al. (2015); Li et al. (2016). (a) sound velocity of Al-
859 bearing and Al-free shy-B. (b) V_p anisotropy and V_s^{PO} splitting of Al-bearing and Al-

860free shy-B.