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Abstract A search is presented for a heavy vector reso-
nance decaying into a Z boson and the standard model Higgs
boson, where the Z boson is identified through its leptonic
decays to electrons, muons, or neutrinos, and the Higgs boson
is identified through its hadronic decays. The search is per-
formed in a Lorentz-boosted regime and is based on data col-
lected from 2016 to 2018 at the CERN LHC, corresponding to
anintegrated luminosity of 137 fb~!. Upper limits are derived
on the production of a narrow heavy resonance Z’, and a mass
below 3.5 and 3.7 TeV is excluded at 95% confidence level
in models where the heavy vector boson couples predomi-
nantly to fermions and to bosons, respectively. These are the
most stringent limits placed on the Heavy Vector Triplet Z’
model to date. If the heavy vector boson couples exclusively
to standard model bosons, upper limits on the product of the
cross section and branching fraction are set between 23 and
0.3 fb for a Z’ mass between 0.8 and 4.6 TeV, respectively.
This is the first limit set on a heavy vector boson coupling
exclusively to standard model bosons in its production and
decay.

1 Introduction

The discovery of a Higgs boson (H) [1-3] by the ATLAS
and CMS Collaborations at the CERN LHC, with properties
consistent with expectations from the standard model (SM)
of particle physics, has emphasized the hierarchy problem of
the SM. In the SM, the measured H mass of 125 GeV [4,5],
given its fundamental scalar nature [6,7], requires extreme
fine tuning of quantum corrections, suggesting that the SM
may be incomplete. Many different exotic models, such as
the little Higgs [8—10] and composite Higgs [11-13] models,
predict the existence of new resonances decaying to a vector
boson (V = W, Z) and a Higgs boson [14-18].

Heavy vector triplet (HVT) models [19] introduce new
heavy vector bosons (W', Z') that couple to the Higgs and
SM gauge bosons with the parameters cy and gy, and to
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the fermions via the combination (g2 /8v)cE, where cF is the
fermion coupling and g is the SM SU(2)1, gauge coupling.
The HVT couplings are expected to be of order unity in most
models. Three benchmark models, denoted as models A, B,
and C are considered in this paper.

In model A, the coupling strengths to fermions and gauge
bosons are comparable and the heavy resonances decay pre-
dominantly to fermions, as is the case in some extensions
of the SM gauge group [20]. In model B, the fermionic
couplings are suppressed, as in composite Higgs models.
In model C, the fermionic couplings are set to zero, so the
resonances are produced only through vector boson fusion
(VBF) and decay exclusively to a pair of SM bosons. The
parameters used for model A are gy = 1, cyg = —0.556,
and cp = —1.316; for model B, gy = 3, cy = —0.976, and
cp = 1.024; and for model C, gy = 1, cy = 1, cp = 0.

Previous searches for a heavy resonance decaying to a
Higgs boson and a vector boson have been carried out at
/s = 13TeV in the semileptonic final state [14,15,21] and
in the fully hadronic final state [22-24] by the CMS and
ATLAS Collaborations. The most stringent lower limit on
the Z' mass at 95% confidence level using the semileptonic
(fully hadronic) final state is 2.65 (2.2) TeV in HVT model
A and 2.83 (2.65) TeV in HVT model B [15,24].

This paper describes a search for a heavy resonance
(denoted as X for the reconstructed quantity and Z’ for the
particle predicted by the theory) decaying to a Z boson and a
Higgs boson. The Z boson is identified via a pair of electrons
or muons, or a large amount of missing transverse momen-
tum ( ﬁ}“iss) measured in the detector due to the presence of
at least two neutrinos. The Higgs boson is identified via its
hadronic decays, either directly to a pair of heavy quarks, or
via cascade decays dominated by WW and ZZ. We explore
the regime where the Higgs boson has a large Lorentz boost
and is reconstructed as a single, large-radius jet, referred to
as jyg, with characteristic substructure and identified via its
mass and possible presence of b quark subjets. If a heavy
resonance couples exclusively to the SM bosons, it can be
produced dominantly through VBF. Dedicated categories are
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Fig. 1 The leading order Feynman diagrams of the heavy resonance
Z' production through qq annihilation (upper) and vector boson fusion
(lower), decaying to a Z boson (Z) and a Higgs boson (H)

q >

defined in order to enhance the sensitivity to this production
mode, exploiting the presence of two jets with large trans-
verse momenta (pr) in the forward region of the detector,
which are remnants of the initial-state quarks participating
in the VBF interaction. The Feynman diagrams for the signal
processes are depicted in Fig. 1.

The search is performed by examining the distribution of
the reconstructed mass (mx ) or transverse mass (m)T() of the
heavy resonance for a localized excess of events. The main
background normalization is determined from data in side-
band regions (SBs) of the jy mass distribution, and extrap-
olated to the signal region (SR) through analytical functions
derived from simulation.

2 The CMS detector

The CMS detector features a silicon pixel and strip tracker, a
lead tungstate crystal electromagnetic calorimeter (ECAL),
and a brass and scintillator hadron calorimeter, each com-
posed of a barrel and two endcap sections. These detectors
reside within a superconducting solenoid, which provides
a magnetic field of 3.8 T. Forward calorimeters extend the
pseudorapidity n coverage up to || < 5.2. Muons are mea-
sured in gas-ionization detectors embedded in the steel flux-
return yoke outside the solenoid. A detailed description of
the CMS detector, together with a definition of the coordi-
nate system and the kinematic variables, can be found in
Ref. [25].
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Events of interest are selected using a two-tiered trigger
system [26]. The first level, composed of custom hardware
processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a
fixed time interval of about 4 us. The second level, known as
the high-level trigger (HLT), consists of a farm of processors
running a version of the full event reconstruction software
optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage.

3 Data and simulated samples

The data samples used in this search were collected during
the period 20162018, with the CMS detector at the LHC
in proton—proton (pp) collisions at a center-of-mass energy
of 13 TeV, resulting in a combined integrated luminosity of
137fb~ 1.

The signal samples are generated at leading order (LO)
through qq annihilation, taking the cross sections from HVT
models A and B [19], or through VBF with the cross sec-
tion from HVT model C, using the MADGRAPHS5_aMC @NLO
2.4.2 [27] generator and the MLM matching scheme [28].
Different hypotheses for the heavy resonance mass in the
range of 800-5000GeV are considered, with the natural
width of the resonance being negligible compared to the 4%
detector resolution (the narrow-width approximation). The
heavy resonance is forced to decay to a Z boson and a Higgs
boson, with the former decaying into a pair of charged lep-
tons (¢ = e or w) or neutrinos, including cascade decays
involving tau leptons. There is no restriction on the decay
channels for the Higgs boson and its decay particles, which
decay according to the SM branching fractions.

The SM background for this search is dominated by
V+jets production, with the V boson decaying as Z — vv,
Z — ee, L, 1T, or W — ev, pv, tv. The V+jets back-
ground sample is produced with the MADGRAPHS_aMC @NLO
generator at LO. The sample is further normalized to account
for next-to-LO (NLO) in electroweak (EW) and next-to-NLO
(NNLO) in quantum chromodynamics (QCD) corrections to
the cross section from Ref. [29]. The top quark pair (tt) and
single top quark 7-channel and tW production are generated
at NLO in QCD with the POWHEG 2.0 generator [30-35].
The tt samples are normalized to the cross section computed
with TopP++ 2.0 [36] at NNLO in QCD with next-to-next-to-
leading logarithmic soft gluon resummation accuracy. The
single top quark s-channel, VV, and VH samples are sim-
ulated at NLO in QCD with the MADGRAPHS5_aMC @NLO
generator.

The NNPDF 3.0 [37] set of parton distribution functions
(PDF) is used to simulate the hard process in all simulated
samples for the 2016 data and the NNPDF 3.1 [38] set is
used for 2017 and 2018. Parton showering and hadroniza-
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tion processes are performed with PYTHIA 8.226 [39] with
the CUETP8M1 [40,41] underlying event tune for 2016,
and PYTHIA 8.230 with the CP5 [42] event tune for 2017
and 2018. The CUETP8M2 underlying event tune [43] is
used to simulate tt production for 2016 samples. The CMS
detector response simulation is performed with GEANT4 [44].
Simulated samples are reconstructed with the same software
as used for collision data. The data samples contain addi-
tional pp interactions in the same or nearby bunch crossings
(pileup). The simulated pileup description is reweighted to
match the distribution of the pileup multiplicity measured in
data.

4 Event reconstruction

Events in the CMS detector are reconstructed using the
particle-flow (PF) algorithm [45], which combines infor-
mation from all subdetectors in order to reconstruct stable
particles (muons, electrons, photons, neutral and charged
hadrons). Jets are reconstructed from PF candidates clus-
tered with the anti-kt algorithm [46], with a distance param-
eter of 0.4 (AK4 jets) or 0.8 (AKS8 jets), using the FAST-
JET 3.0 package [47,48]. Several vertices are reconstructed
per bunch crossing. The candidate vertex with the largest
value of summed physics-object p% is taken to be the pri-
mary pp interaction vertex. Here the physics objects are the
AK4 jets, clustered using the jet finding algorithms with the
tracks assigned to candidate vertices as inputs, and the asso-
ciated ﬁ}“iss taken as the negative vector pt sum of those
jets. Two different methods to remove contributions from
pileup are used: for the AK4 jets, pileup is accounted for via
the charged-hadron subtraction algorithm [49] in conjunc-
tion with the jet area method [50], while for the AKS jets the
pileup-per-particle identification algorithm [51] is employed.
The jet energy resolution, after the application of corrections
to the jet energy, is 4% at 1 TeV [52]. For the AK4 jets,
pt > 30GeV and || < 2.4 are required, and jets within a
coneof AR(j, 0) = «/An(j, 0% + Ap(j, £)* > 0.4 around
isolated leptons are removed, where ¢ is the azimuthal angle.
The AKS jets must satisfy pt > 200 GeV and || < 2.4. The
vector ﬁ%“iss is computed as the negative vector pt sum of
all the PF candidates in an event. The ﬁ}niss is corrected for
adjustments to the energy scale of the reconstructed AK4
jets in the event, and its magnitude is denoted as p%liss [53].
The observable H%“iss is defined as the magnitude of the
vector pt sum of all AK4 jets with pr > 30GeV and
In| < 3.0.

For each AKS8 jet a groomed jet mass (m;) is calcu-
lated, after applying a modified mass-drop algorithm [54,55].
The mass-drop algorithm used here is known as the soft-
drop algorithm [56], with parameters 8 = 0, zeww =
0.1, and Ry = 0.8. Subjets are obtained by revert-

ing the last step of the jet clustering and selecting the
two with the highest pr. The groomed jet mass is cali-
brated in a tt sample enriched in hadronically decaying W
bosons [57].

The identification of jets that originate from b quarks
is performed with the DeepCSV algorithm [58], which is
based on a deep neural network with information on tracks
and secondary vertices associated with the jet as inputs. The
DeepCSV algorithm is applied to AK4 jets and the two high-
est pr AKS8 subjets. A jet is considered as b tagged if the
output discriminator value is larger than a defined threshold,
corresponding to a 75% b tagging efficiency with a prob-
ability for mistagging jets originating from the hadroniza-
tion of gluons or u/d/s quarks of about 3%. The simu-
lated samples are reweighted to account for small differ-
ences in the b tagging efficiency from values obtained in
data.

Electrons are reconstructed from ECAL energy deposits in
the range |n| < 2.5 that are matched to tracks reconstructed
in the silicon tracker. The electrons are identified taking into
account the distribution of energy deposited along the elec-
tron trajectory, the direction and momentum of the track,
and its compatibility with the primary vertex [59]. Electrons
are required to pass an isolation requirement. The isolation
is defined as the pt sum of all particles within a cone of
AR = 0.3 around the electron track, after the contributions
from the electron itself, other nearby electrons, and pileup
are removed. The electron reconstruction efficiency is larger
than 88%.

Muons are reconstructed within the acceptance of |n| <
2.4 by matching tracks in the silicon tracker and charge
deposits (hits) in the muon spectrometer. Muon candidates
are identified via selection criteria based on the compat-
ibility of tracks reconstructed from only silicon tracker
information with tracks reconstructed from a combina-
tion of the hits in both the tracker and muon detector.
Additional requirements are based on the compatibility of
the trajectory with the primary vertex, and on the num-
ber of hits observed in the tracker and muon systems.
Muons are required to be isolated by imposing a limit on
the pr sum of all the reconstructed tracks within a cone
AR = 0.4 around the muon direction, excluding the tracks
attributed to muons, divided by the muon prt. The effi-
ciency to reconstruct and identify muons is larger than
96% [60].

Hadronically decaying t leptons (ty) are reconstructed
by combining one or three charged particles with up to two
neutral pion candidates. The selection criteria for the 1, can-
didates, which are used to veto various backgrounds, are
pr > 18GeV, |n| < 2.3, and AR > 0.4, where AR is a
candidate’s separation from isolated electrons and muons in
the event [61].
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Table 1 List of the 12 event categories used in the analysis

0¢, 2b tag, non-VBF
2e, 2b tag, non-VBF
2, 2b tag, non-VBF
0¢, <1b tag, non-VBF
2e, <1b tag, non-VBF
2w, <1b tag, non-VBF

0¢, 2b tag, VBF
2e, 2b tag, VBF
2, 2b tag, VBF
0¢, <1b tag, VBF
2e, <1b tag, VBF
2w, <1b tag, VBF

5 Event selection

Events are divided into categories depending on the num-
ber and flavor of the reconstructed leptons, the number of
b-tagged subjets of the Higgs candidate jet (jy ), and the pres-
ence of forward jets consistent with originating from VBF
processes. In total, 12 categories are defined and listed in
Table 1.

The highest pr AKS8 jet in the event is assigned to jy, and

is required to have a transverse momentum p? > 200 GeV
and |n| < 2.4. This is the correct jet choice in 96% of the
simulated signal events. The minimal separation between jy
and isolated leptons from the Z boson decay is required to
satisfy AR(ju, £) > 0.8. The mass of the jy jet is required
to be compatible with the H mass (105 < m j; < 135GeV).
It can have O, 1, or 2 subjets that pass the b tagging selection.
If both subjets are b tagged, the event belongs to the 2b tag
category, otherwise it is assigned to the <1b tag category.
The 0¢ categories require p‘T“iSS > 250 GeV, originating
from the Lorentz-boosted Z boson decaying to two neutrinos,
which leave the detector unobserved. Data are collected using
trigger selections that require p™*® > 110 GeV, calculated
with or without considering muons, or H{Piss > 110GeV.
The minimal azimuthal angular separation between all AK4
jets and the pMs vector has to satisfy A¢(j, pis) > 0.5
in order to suppress multijet production. The azimuthal
angular separation between jy and ﬁ}“iss must satisfy
Ad(Ju, ﬁ{niss) > 2. Events arising from detector noise
are removed by requiring that the fractional contribution of
charged hadron candidates to the H momentum be larger than
0.1, and the ratio p%liss / p? be larger than 0.6. Events with
isolated leptons with pt > 10 GeV or hadronically decaying
T leptons with pt > 18 GeV are removed in order to reduce
the contribution from other SM processes. The tt contribution
is reduced by removing events with an additional b-tagged
AK4 jet not overlapping with jg such that AR(j, jg) > 1.2
is satisfied. Since the resonance mass cannot be reconstructed
because of the presence of undetected decay products, the

Jjg momentum and the ﬁ%“i“ are used to compute the trans-

verse mass m)T( = \/2p¥1issp¥(l — cos A¢(ﬁ}mss, ﬁ?)). In
the VBF category, the condition |, | < 1.1is applied on the
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ju to reduce the contribution of events where the measured
m)T( is significantly below mz.

For the 2e categories, data are collected using an elec-
tron trigger that requires either an isolated electron with
pt > 35GeV or a nonisolated electron with pt > 115 GeV.
In the 2 categories, a muon trigger that requires a non-
isolated muon with pt > 50GeV is used to collect data.
For both the 2e and 21 categories, the two selected leptons
must have opposite charge, pr > 55 and 20 GeV, respec-
tively, and should be isolated from other activity in the event,
except for each other. The Z boson candidates are required
to have a dilepton invariant mass in the range 70-110 GeV,
and pt > 200GeV. The Z boson mass window is large
compared with the dilepton mass resolution, which is 3 (4)%
for an electron (muon) pair. A more stringent selection would
decrease both the signal and the Z+jets background selection
efficiency by the same amount, thus reducing the signal sen-
sitivity. The separation between the Z boson candidate and
Jju is required to be AR(jy, Z) > 2 for all categories, and
|[An(jug, Z)| < 1.7 additionally for the non-VBF categories,
to further reduce the Z+jets background.

Candidate VBF events are selected in both the 0¢ and
2¢ categories by requiring two additional AK4 jets (j) with
[nj| < 5 that satisfy AR(j, ju) > 1.2 in order to avoid
overlap with the jy, have n; values of opposite sign, a dijet
mass m j; > 500 GeV, and that satisfy a separation An;; >
4. The two AK4 jets with the highest dijet mass are selected.

A further requirement is to have either mx or m)T( larger
than 1200 GeV for the <1b tag, non-VBF categories, and
larger than 750 GeV for the other categories to ensure the
smoothness of the background model. The product of the
signal geometrical acceptance and the selection efficiency,
reported in Fig. 2, is calculated for the 0¢ category with the
denominator being the Z decay to neutrinos, and for the 2¢
categories with the denominator being the Z decay to elec-
trons, muons and tau leptons.

6 Background estimation and signal modeling

The most important SM background is vector boson produc-
tion in association with b-tagged jets (V+jets). The V+jets
background is estimated using control samples in data to
reduce the dependence on simulation. Minor SM back-
grounds are tt and single top quark processes, SM diboson
production (VV), and SM H production in association with a
vector boson (VH), all of which are estimated based on simu-
lation. The SM ZH production is considered as a background
in this analysis. However, this process can be distinguished
from the signal because of the non-resonant distribution in
the ZH invariant mass and by the softer pr spectra of the
H and Z bosons. The jet mass distribution is split into a
signal-enriched region (SR) with 105 < mj, < 135GeV,
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Fig. 2 The product of signal acceptance and efficiency in the 0¢ (left column) and 2¢ (right column) categories for the signal produced via qq annihilation (upper row) and vector boson fusion
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Table 2 Scale factors derived for the normalization of the tt and single
top quark backgrounds for different event categories. Uncertainties due
to the limited size of the event samples (stat.) and systematic effects
(syst.) are reported as well. The scale factors of the 2e and 21 categories
are derived using the le 1 top quark control region as described in the
text

Non-VBF category tt, single top quark SF = stat. & syst.

2b tag 0¢ 1.012 +£0.116 £ 0.008
2e 1.098 4 0.084 £ 0.067
21 1.098 £ 0.084 £ 0.075
<Ib tag 0¢ 1.028 £ 0.048 £ 0.009
2e 1.003 £ 0.021 £ 0.089
21 1.003 £ 0.021 + 0.095
VBEF category tt, single top quark SF = stat. + syst.
+ VBF norm.
2b tag 0¢ 0.676 £+ 0.221 +0.007 £ 0.330
2e 0.676 £ 0.154 = 0.096 + 0.330
21 0.676 £ 0.154 +0.103 £ 0.330
<I1b tag 0¢ 0.822 +0.144 £ 0.022 £ 0.180
2e 0.882 4 0.044 £ 0.099 £ 0.120
2 0.882 +0.044 £0.107 £ 0.120

and low-mass and high-mass sidebands (SB) with 30 <
mj, < 65GeV (LSB) and 135 < mj;; < 250GeV (HSB),
respectively. The jet mass range 65 < mj; < 105GeV, a
region enriched with boosted vector bosons (VR), is excluded
and kept blinded in order to avoid potential contamination
from a V'V resonant signal, which is the subject of dedicated
searches [16,62,63]. The background estimation consists of
two separate steps to determine, first, the number of events
and, second, the distribution of the main background in the
SR.

6.1 Background normalization

The three groups of backgrounds (V+jets, tt and single top
quark, and VV and VH) are considered separately, since each
group has different physical properties leading to a different
shape of the jet mass distribution. An appropriate analyti-
cal function is chosen to describe the background in each
case. The V+jets background’s Higgs candidate jet mass has
a smoothly falling shape with no peaks, therefore Chebyshev
polynomials of order 1-4 are chosen to model the distribu-
tion observed in data. The VV and VH backgrounds have
two peaks in the jet mass distribution, corresponding to the
W and Z bosons, and the VH background an additional peak
due to the Higgs boson. The tt and single top quark back-
grounds are considered together, because they both have two
peaks corresponding to W — qq’ decays and all-hadronic
top quark decays t — Wb — q@’b.

@ Springer

The normalization of the simulated top quark background
is corrected with a scale factor (SF) determined in high-
purity top quark control regions. In the 0¢ category, the
control region is defined by the veto on the additional b-
tagged AK4 jet being inverted. In the 2¢ categories, con-
trol region data are collected using the same trigger as for
the 2e signal region, with a requirement that lepton fla-
vors and charges are different, resulting in a lelp region,
where the leptons must have a combined invariant mass
mey > 110GeV and a vector sum p%“ > 120 GeV. Mul-
tiplicative SFs are calculated from the ratio of the event yield
between data and simulation and are applied to the simu-
lated samples in the SR. The uncertainties in the top quark
SFs originate from the limited event count in the top quark
control region and the extrapolation from the top quark con-
trol region to the SR. The systematic uncertainty in the 0£
category is derived by varying the b tagging SF. For the 2¢
categories the uncertainties in the electron and muon identi-
fication are taken into account. The electron and muon trig-
ger uncertainties only affect the 2w and not the 2e category
because the electron trigger is used to provide the control
region while the muon trigger is used to select the signal
region. A normalization uncertainty is applied to the VBF
categories to account for the limited event counts in these
control regions. The normalization uncertainty is taken as
the deviation of the top quark SF from unity as shown in
Table 2.

The background model, composed of the sum of the
V+jets, tt and single top quark, and the VV and VH tem-
plates is fitted to the SBs of the jet mass distribution in data.
The analytical function parameters and the normalization of
the top quark and VV backgrounds are fixed from the fit to
simulation, but the shape parameters from the V+jets back-
ground are not. The number of parameters for the fit to data is
determined by a Fisher F-test [64]. The number of expected
events is derived from the integral of the fitted model in the
SR. The choice of the V +jets fit function induces a systematic
uncertainty, which can be determined by fitting the V+jets
background shape with an alternative function, consisting
of the sum of an exponential and a Gaussian function, and
considering the difference between the integrals of the two
fit models in the SR as a systematic uncertainty. Figures 3
and 4 show the fits to the jet mass in the different categories.
Table 3 summarizes the expected background yield in the
SR.

6.2 Background distribution

The mx and m} distributions are estimated using the data in
the jet mass SBs. An « function is then defined as the ratio
of the two functions describing the simulated mx (or m)T()



Eur. Phys. J. C (2021) 81:688 Page 70f 31 688

Fig. 3 Fitto the m j, 137 1! (13 TeV) 137 b (13 TeV)
H . . . : L L L I ? | T ¥ E & | 2 & & &

distribution in data in the 2b .tag cMS i Data CMS i Data

(left column) and <1b tag (right 0 Z(vv),W(W)Hets [ Z(vv) W(lv)+jets

column) non-VBF categories, . : ff, t+X : tt, t+X

for 0¢ (upper row), 2e (middle SR EHSB Vv, e SHSB %¥c\)/ta\ll:kg

row), and 2 (lower row). The ; —-- Alt. func.

shaded bands around the total
background estimate represent
the uncertainty from the fit to
data in the jet mass SBs. The
observed data are indicated by
black markers. The vertical
shaded band indicates the VR
region, which is blinded and not
used in the fit to avoid potential
contamination from VV
resonant signals. The dashed
vertical lines separate the LSB,
VR, SR, and HSB. The bottom
panel shows (N9 — Nbke) /i
for each bin, where o is the
statistical uncertainty in data. In
the <1b tag, non-VBF
categories, mx or m)T< are
required to be larger than

1200 GeV to ensure the
smoothness of the background
model

L b b b b b Bl

data_y kg,
(NTF-NT7)/s
|
N_‘.O_;I\)
——
i
——
-
—e—
%
=
—e]
e
——
o]
=
e
e
——
e
e
sy
i
e
i A
-
.t

0
S TN
] £ Bt b Pt By L
200 2-_)0 gé = 50 100 150 200 250
my, (GeV) my, (GeV)

CMsS i
|

Events / 5 GeV

137 b (13 TeV) 13|7 fb! (13 Tev)
T T T T T T T

3 > L e L
Data 8 E cms i Data
Z(Il)+jets = 2e, <1b tag, non-VBF I Z(I)+jets
f, t+X 2 . ff, t+X
W, VH @ sr inse EEVV,VH

Total bkg.
Alt. func.

Total bkg.
--- Alt. func.

poolos b b b b b b |

P R B I T e A A |

(Ndala kag)
|
Nl; OLN O
e
e
—-—
Ja P,
——
——
e
.
—.—
——
.
rr—
o
o
e
i
e
S
.|
.
——
.
ot
ey
e
o
-~
-
-
—e]
-
-—
-
jata kag /s
nvhoanv o

~ t t I
T

200 %0 Z 50 100 750 200 250
m,, (GeV) m,, (GeV)

13|7 o' (13 TeV 137 fb" (13 TeV)

> — P e B

@ s0- CMS i Data o CMS t Data

- 2y, 2b tag, non-VBF [ ] Z_(")"'Jets u\; 2y, <1b tag, non-VBF I Z(I+jets

2 tt, t+X £ 80 tf, t+X

o 40 sk inse [EVV, VH o SR VvV, VH
& Total bkg = Total bkg.
--- Alt. func.

--- Alt. func. 4

poa b b b b s 100llS

0 0
| SR MATENTRIRAUIN: T D IR
e T
< 50 100 150 200 250 z 50 100 150 200 250
my, (GeV) my, (GeV)

shape in the SR and SB region of the V+jets background:

- NV+jets (m)
a(m) = - s
Ng/Bﬂets (m)

ey

where N denotes the function and m represents either mx or
m)T( The functions are normalized to the number of events
derived in Sect. 6.1 and shown in Table 3.

The V+jets background shape in the SR is thus estimated
as the product of « (7) and the shape in the data SBs after sub-

tracting the corresponding top quark and V'V contributions:

Nge™ m) = [ Ng&0m) — NgP m) — N§Y 0m) | ().

2

Finally, the expected number of background events in the
SR is derived by adding the top quark and V'V contributions
to the V+jets background distribution and taking the V+jets
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normalization from the fit to data in the jet mass SBs: distributions are found to be compatible with the expectation
in all categories.
NeRE(m) = Ngg ™™ (m) + Ngf (m) + Nag (m). 3)

The observed data, along with the expected backgrounds, are 6.3 Signal modeling
reported for each category in Figs. 5 and 6.

The background estimation method is validated by split-  In order to build a template for the signal extraction, the sim-
ting the LSB in two regions: 30 < mj; < 50GeV and  ulated signal mass points are fitted in the SR with the Crystal
50 < mj, < 65GeV. The first one is used as anew LSB and Ball function [65], which consists of a Gaussian core and
the second one as a proxy for the SR. The data yields and  a power-law function that describes the low-end tail below
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Table 3 The expected and observed numbers of background events
in the signal region for all event categories. The V+jets background
uncertainties originate from the variation of the parameters within the
fit uncertainties (fit) and the difference between the nominal and alter-
native function choice for the fit to m j,; (alt). The tt and single top quark

uncertainties arise from the m j; modeling, the statistical component of
the top quark SF uncertainties, and the extrapolation uncertainty from
the control region to the SR. The VV and VH normalization uncertain-
ties come from the m j,; modeling

Non-VBF category V+jets (£fit) (alt) tt, single top quark VV,VH Bkg. sum Observed
2b tag 0¢ 374 £34 £ 20 68 £ 8 31£10 474 £ 42 549

2e 54£5+£8 3.1+£04 79£19 65 £ 10 57

21 60£5=+1 32+£0.6 9.1+£2.1 72+5 91
<Ib tag 0¢ 637 £35 £ 51 73£09 15+4 659 £ 61 697

2e 113 £ 14 +£27 1.6+£0.2 72+1.7 122 £31 130

21 167 £8 £ 10 1.8+0.2 8.0+1.8 177 £ 13 154
VBF category V4jets (Lfit) (Falt) tt, single top quark VV,VH Bkg. sum Observed
2b tag 0¢ 28£3+3 43£2.0 0.9+0.6 33£5 26

2e 73+£2.0£2.0 04+0.2 04+0.1 8.1+£28 10

21 6.0+1.7£0.2 04+0.2 0.5+0.1 7.0+1.7 8.0
<Ib tag 0¢ 486 £13 £ 72 25+6 63+15 517+73 572

2e 137+£7+7 48+1.5 6.4+15 148 £ 10 168

2 171 £8+6 45+1.1 7.7+1.8 183 £10 222

a certain threshold. The parameterization for intermediate
mass points is determined by linearly interpolating the shape
parameters derived by fitting the generated mass points.

7 Systematic uncertainties

The systematic uncertainty in the V +jets background is dom-
inated by the statistical uncertainty of the number of data
events in the SBs. The systematic uncertainties in the shape
of the V+jets background are estimated from the covariance
matrix of the simultaneous fit of the m)T( and my distribu-
tions in data in the SBs, and in simulated V +jets background
events in the signal and SB regions. Most of the effect of
the uncertainties is correlated among the SB and SR, and
cancels out in the o ratio. The tt and VV background shape
uncertainties are propagated from the covariance matrix of
the fit to the simulation in the SR. The statistical treatment is
consistent with Ref. [16].

The uncertainty in the top quark background normaliza-
tion originates from a limited event count in data and sim-
ulated event samples in the control regions, and from the
variations on the requirements of lepton selection, b tagging
SFs, and the VBF selection used to select events in the con-
trol region. The uncertainties are reported in Table 2. The
uncertainties in the trigger, identification, and isolation effi-
ciencies of leptons affect the normalization and shape of the
simulated signal and diboson background. The uncertainties
are evaluated by moving the SFs, derived as the efficiency in

data over the efficiency in simulation, up and down by one
standard deviation, and amount to 1-7%.

The lepton scale and resolution affect both shape and nor-
malization of the signal, leading to an uncertainty of 1-3%.
The uncertainty from the effect of the prTniss scale and reso-
lution on the normalization of the signal and VV,VH back-
ground is 1%. The jet energy scale and resolution uncertain-
ties amount to a 1% systematic uncertainty in the normaliza-
tion and a shape variation in the distribution of the signal and
diboson background events. The uncertainty in the jet mass
scale (resolution) adds a contribution of 0.6 (9.0)%) to the
uncertainty in the signal and the diboson background nor-
malization. The jet mass scale and resolution depend on the
choice of the parton shower model, which affects the Higgs
boson tagging and leads to an additional uncertainty of 6% in
the signal normalization. The uncertainty was evaluated by
using HERWIG++ 2.7.1 [66] as an alternative showering algo-
rithm. The impact of the b tagging systematic uncertainty in
the signal efficiency depends on the mass of the resonance
and has a range of 4—15% for the 2b tag categories and 1—
6% for the <1b tag categories. The uncertainty is treated as
anti-correlated between the two b tag categories.

The event yields and acceptances are affected by the
choice of the parton distribution functions (PDFs) and the
QCD factorization and renormalization scale uncertainties.
The effects of the PDF choice on the acceptance and nor-
malization of the Z’ signal are derived according to the
PDF4LHC recommendations [67] and amount to 0.5% in
the acceptance and 8-30% in the normalization of the sig-
nal, 0.2% in the acceptance and 4.7% in the normalization
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Fig. 5 Distributions in data in
the 2b tag (left column) and
<1b tag (right column)
non-VBF categories, of m)T( for
0¢ (upper row), and mx for 2e
(middle row), and 2 (lower
row). The distributions are
shown up to 4000 GeV, which
corresponds to the event with
the highest mx or m)T( observed
in the SR. The shaded bands
represent the uncertainty from
the background estimation. The
observed data are represented by
black markers, and the potential
contribution of a resonance
produced in the context of the
HVT model B at

my = 2000 GeV is shown as a
dotted red line. The bottom
panel shows (N9 — Nbke) /o
for each bin, where o is the
statistical uncertainty in data

of the VV,VH background, and 0.1% in the acceptance and
0.1% in the normalization of the tt background. The factor-
ization and renormalization scale uncertainties are 3—15%,
depending on the resonance mass for the signal, 18.9% for
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the VV,VH background, and 1% for the extrapolation of the

top quark SFs to the SR.

The darkening of ECAL crystals, due to radiation dam-

age, leads to a gradual timing shift, which was not properly

8 Results

propagated to the level 1 trigger for 2016 and 2017 [68]. This

effect is accounted for by adding a 1% systematic uncertainty
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in the signal normalization. Additional systematic uncertain-
ties come from estimations of the pileup contribution and the
integrated luminosity [69-71]. A list of all systematic uncer-
tainties is given in Table 4.

Results are obtained from a combined profile likelihood fit

to the unbinned m)T( and mx distributions of signal and back-
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ground, shown in Figs. 5 and 6. Systematic uncertainties are
treated as nuisance parameters and are profiled in the statis-
tical interpretation [72—74]. The uncertainties in the signal
normalization that are derived from the signal cross section
are not profiled in the likelihood, and are reported separately
as the uncertainty band of the theoretical cross section. The
statistical methods, including the treatment of the nuisance
parameters, are described in more detail in Ref. [16].

The background-only hypothesis is tested against a
hypothesis also considering Z' — ZH signal in all cate-
gories. A modified frequentist method is used to determine

95% confidence level (CL) upper limits on the product of
cross section and branching fraction as a function of mx, in
which the distribution of the profile likelihood test statistic
is derived using an asymptotic approximation [75].

The exclusion limits on the product of resonance cross
section and branching fraction B(Z' — ZH) are reported
as a function of the resonance mass in Fig. 7 for all cat-
egories, separately for the non-VBF and the VBF signals.
The 2¢ categories dominate the sensitivity for heavy res-
onance masses smaller than 1TeV because of the smaller
backgrounds combined with the better experimental resolu-
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Table 4 Summary of systematic uncertainties for the background and
signal samples. The entries labeled with § are also propagated to the
shapes of the distributions. Uncertainties marked with # impact the sig-

nal cross section. Uncertainties in the same line are treated as correlated.
All uncertainties except for in the integrated luminosity are considered
correlated across the three years of data taking

V+jets tt, single top quark VV,VH Signal
Bkg. normalization 6-40% - - -
Top quark background SFs - 0.4-9.5% - -
Electron id., isolation - - 3.6%
Muon id., isolation - - 4.9%
Electron trigger - - 0.9%
Muon trigger - - 7%
Lepton scale and resolution - - - 1-3%
p?i“ scale and resolution - - 1%
Jet energy scale ¥ - - 1.0% 1.0%
Jet energy resolution - - 0.1% 0.1%
Jet mass scale - - 0.6% 0.6%
Jet mass resolution - - 9.0% 9.0%
Higgs boson tagging - - - 6%
b tagging - 1.4% (0¢) 0.6% (<1b), 6.5% (2b) 1-6% (<1b), 4-15% (2b)
PDF, normalization - 0.1% 4.7% 8-30% *%
PDF, acceptance - 0.1% 0.2% 0.5%
QCD renormalization and factorization scales - - 18.9% 3-15% %
Factorization and renorm. scales extrapolation - 1% - -
Level 1 trigger - - - 1%
Pileup - - 0.1% 0.1%
Integrated luminosity - - 1.8% 1.8%

tion; at larger masses, the 0¢ categories are more sensitive
thanks to the larger branching fraction of the Z boson to neu-
trinos. The exclusion limits are shown up to 4.6 TeV, which
corresponds to the event with the highest mx or m)T( observed
either in the SB or SR.

The largest excess for the non-VBF signal, corresponding
to a local significance of 3 standard deviations, is observed at
mx = 1TeV. A Z' boson with a mass smaller than 3.5 TeV
is excluded at 95% CL in HVT model A, and a Z’ with mass
smaller than 3.7 TeV is excluded in model B. The upper limit
of the excluded mass range is increased by 0.85 (0.87) TeV
and 1.3 (1.4)TeV) in HVT model A (model B) compared
to searches using 2016 data and the same final state by the
ATLAS and CMS Collaborations, respectively [14, 15]. If the
Z’ couples only to the SM bosons and is produced exclusively
through VBF as in HVT model C, the data set analyzed is
not large enough to exclude any range of mass. Upper limits
on the product of the cross section and branching fraction
are set between 23 and 0.3 b for a Z’ mass between 0.8 and
4.6 TeV, respectively.

The exclusion limit of the non-VBF signal shown in Fig. 7
(upper) can be interpreted as a limit in the space of the HVT
model parameters [gvch, gch /gv]. Combining all cate-
gories, the excluded region in such a parameter space for

@ Springer

narrow resonances is shown in Fig. 8. The region of parame-
ter space where the natural resonance width is larger than the
typical experimental resolution of 4%, for which the narrow
width assumption is not valid, is shaded.

9 Summary

A search for a heavy resonance with a mass between 0.8
and 5.0 TeV, decaying to a Z boson and a Higgs boson, has
been described. The data samples were collected by the CMS
experiment in the period 2016-2018 at /s = 13 TeV and cor-
respond to an integrated luminosity of 137 fb~!. In the final
states explored the Z boson decays leptonically, resulting in
events with either zero or two electrons or muons. Higgs
bosons with a large Lorentz boost are reconstructed via their
decays to hadrons. For models with a narrow spin-1 reso-
nance, a new heavy vector boson Z" with mass below 3.5 and
3.7 TeV is excluded at 95% confidence level in models where
the heavy vector boson couples predominantly to fermions
and bosons, respectively. These are the most stringent limits
placed on the Heavy Vector Triplet Z’ model to date. If the
heavy vector boson couples exclusively to standard model
bosons, upper limits on the product of the cross section and
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Fig. 7 Observed and expected 95% CL upper limit on o B(Z' — ZH)
with all categories combined, for the non-VBF signal (upper) and VBF
signal (lower), including all statistical and systematic uncertainties. The
inner green band and the outer yellow band indicate the regions contain-
ing 68 and 95%, respectively, of the distribution of expected limits under
the background-only hypothesis. The solid curves and their shaded areas
correspond to the product of the cross section and the branching frac-
tions predicted by the HVT models A and B (upper) and HVT model
C (lower), and their relative uncertainties. The CMS search for a heavy
resonance using 2016 data and the same final state [14] is shown as a
comparison

branching fraction are set between 23 and 0.3 fb for aZ’ mass
between 0.8 and 4.6 TeV, respectively. This is the first limit
set on a heavy vector boson coupling exclusively to standard
model bosons in its production and decay.
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