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In type IIB Fibre Inflation models the inflaton is a Kähler modulus which is kinetically coupled
to the corresponding axion. In this setup the curvature of the field space induces tachyonic isocur-
vature perturbations normal to the background inflationary trajectory. However we argue that the
associated instability is unphysical since it is due to the use of ill-defined entropy variables. In
fact, upon using the correct relative entropy perturbation, we show that in Fibre Inflation axionic
isocurvature perturbations decay during inflation and the dynamics is essentially single-field.

I. INTRODUCTION

A class of well-studied string inflationary models is Fi-
bre Inflation (FI) whose name originates from the fact
the inflaton is a type IIB Kähler modulus controlling the
size of a K3 or T 4 fibre over a P

1 base. These mod-
els have been built with the framework of Large Volume
Scenarios [1, 2]. The inflaton is a leading order flat direc-
tion whose potential can be generated by different com-
binations of perturbative corrections: 1-loop open string
Kaluza-Klein (KK) and winding effects [3], 1-loop KK
corrections and higher order α′ terms [4], or 1-loop wind-
ing contributions and α′ corrections [5].

Besides moduli stabilisation, these models features sev-
eral promising properties, including an approximate shift
symmetry for the inflaton potential [6, 7], global Calabi-
Yau orientifold constructions with chiral matter [8–10],
and a detailed understanding of the post-inflationary
evolution. In particular, preheating effects turn out to
be negligible [11] while standard perturbative reheating
[12, 13] can lead to an epoch of radiation domination
with initial temperature which is low enough to avoid
any decompactification due to finite-temperature effects
[14]. Together with Standard Model particles, the infla-
ton decay produces also ultra-light bulk axions behaving
as extra relativistic species which contribute to Neff .

Interestingly, the potential of FI models resembles
Starobinsky inflation [15] and supergravity α-attractors
[16, 17] since it features a trans-Planckian plateau fol-
lowed by a steepening at large inflaton values that can
produce a CMB power loss at large scales [18–20] and
primordial black hole dark matter [21]. Moreover the
extra-dimensional geometry constrains the inflaton field
range to values of O(5) in Planck units [22]. This, in
turn, translates in a tensor-to-scalar ratio r . 0.01. A
recent work [23] determined the values of the micro-
scopic parameters of FI models which give the best fit
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to most recent cosmological data, finding at 68% CL
ns = 0.9696+0.0010

−0.0026, r = 0.00731+0.00026
−0.00072 and Neff =

3.062+0.004
−0.015 (for Planck 2018 temperature and polarisa-

tion data only).

Despite all these interesting features, it has been re-
cently pointed out [24, 25] that FI models might be
plagued by a geometrical instability [26, 27]. More pre-
cisely, isocurvature perturbations associated to one of the
two ultra-light axions typical of FI models, experience a
growth during inflation triggered by the curvature of the
underlying field space. At first sight, this effect might
seem dangerous since it would bring the system away
from the perturbative regime. However, as already no-
ticed in [25], the background trajectory remains stable.

In this paper we shall resolve this paradox by exploit-
ing the analysis performed in [28] that clarified which
is the correct entropy variable that should be used to
match the evolution of the isocurvature modes between
inflation and radiation dominance. In fact, we shall show
that the geometrical instability of FI models is just ap-
parent since it is an artifact of the decomposition of a
generic perturbation into modes tangent and orthogonal
to the inflationary trajectory. The spurious nature of the
instability resides in the fact that the normal unit vector
diverges, while no tachyonic mass for the cosmological
perturbations is seen when using the original field basis.
According to the analysis performed in [28], we therefore
used the proper variable, the relative entropy perturba-
tion, which is both gauge invariant and finite, and found
that isocurvature perturbations indeed decay during in-
flation, in full agreement with the fact that the back-
ground dynamics is stable and essentially single-field.

We therefore conclude that FI models are not plagued
by any geometrical destabilisation effect, satisfy current
isocurvature perturbation bounds, and the inflationary
evolution of the system remains always in the regime
where perturbation theory works very well.

This paper is organised as follows. In Sec. II we first
review the main features of FI models and the origin
of the apparent destabilisation effect. In Sec. III we
then show the absence of any instability by studying the
evolution of the relative entropy perturbation. We finally
present our conclusions in Sec. IV.
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II. A GEOMETRICAL INSTABILITY IN FIBRE

INFLATION?

A. Basics of Fibre Inflation

All FI models are qualitatively very similar, and so,
without loss of generality, we will focus on the origi-
nal formulation [3] which involves type IIB Calabi-Yau
orientifold compactifications with fluxes, D3/D7-branes,
O3/O7-planes and h1,1 = 3 Kähler moduli Ti = τi + iθi,
i = 1, 2, 3. The internal volume looks like:

V = α(τb
√
τf − λsτ

3/2
s ) , (1)

where α and λs are O(1) constants (which depend on the
intersection numbers), τs is a blow-up mode, τb is the
base modulus and τf controls the volume of the fibre K3
or T 4 divisor. In a large volume expansion, the moduli
potential receives contributions at 3 different orders: (i)
at leading order, Ts-dependent non-perturbative effects
and O(α′3) corrections stabilise V, τs and θs at V ≫ 1
giving them a mass larger than the Hubble scale during
inflation; (ii) at subleading order KK and winding 1-loop
open string effects develop the inflationary potential for
τf ; (iii) the two axions θb and θf are almost massless and
much lighter than τf since they become massive only via
highly suppressed V-dependent non-perturbative effects.

The inflationary potential in terms of the canonically
normalised inflaton φ reads (setting the reduced Planck
mass Mp = 1):

Vinf = V0

[

3− 4 e
−

φ
√

3 + e
−

4φ
√

3 +R
(

e
2φ
√

3 − 1
)]

, (2)

with:

V0 =
g
1/3
s W 2

0A

8πλ2V10/3
and R = 16g4s

AC

B2
, (3)

where, following the notation of [13], gs is the string
coupling, W0 is the flux-generated O(10 − 100) super-
potential, A, B and C are O(1) flux-dependent coeffi-
cients of the string loop corrections, and λ = (4A/B)2/3.
The best fit analysis of [23] found R < 4.80 × 10−6 and
1011 V0 = 6.76+0.25

−0.49 for Planck data alone at 68% CL.

Given that for R < 4.80 × 10−6, horizon exit occurs al-
ways in the plateau region where the term proportional to
R is negligible, in what follows we shall simply set R = 0
(which would imply no power loss at large angular scales).
In this case the relation between the scalar spectral index
ns and the tensor-to-scalar ratio r can approximated as
r ≃ 6(ns − 1)2 which reproduces rather well the best fit
values ns = 0.9696+0.0010

−0.0026 and r = 0.00731+0.00026
−0.00072 found

in [23]. Notice that such a large value of r could be tested
by the next generation of cosmological observations.

The reheating temperature from the inflaton decay
Trh can be written as Trh = 3 γ · 1010 GeV where

γ = 2λαvisg
4/3
s V2/3 (with αvis = g2/(4π)) controls the

branching ratio for the inflaton decay into visible sector

gauge bosons and the ultra-light axions θb and θf which
yield extra relativistic degrees of freedom parametrised
by ∆Neff . Given that the number of efoldings of infla-
tion N depends on Trh, γ determines both N and ∆Neff

as [13]:

N = 52 +
1

3
ln γ and ∆Neff =

0.6

γ2
, (4)

where the best fit for Planck data alone is 7.41 < γ . 20
(which implies N ≃ 52) and Neff = 3.062+0.004

−0.015 at 68%
CL [23]. It is straightforward to check that all these ob-
servational constraints, combined with the requirement of
having an effective field theory under control, can be sat-
isfied for rather natural choices of the underlying param-
eters W0, A, B and C, together with 0.065 . gs . 0.125
and 2500 . V . 9000.

B. Unstable isocurvature modes?

The fields V, τs and θs are heavier than the infla-
ton during inflation, and so remain fixed at their min-
ima. On the other hand, the two ultra-light axions θb
and θf source isocurvature perturbations. These axionic
fields are kinetically coupled to the inflaton since the La-
grangian contains terms of the form [24]:

L ⊃ 1

2
h2(φ) ∂µθb∂

µθb +
1

2
f2(φ) ∂µθf∂

µθf , (5)

where:

h(φ) =
α
√
c

V2/3
e

1
√

3
φ

and f(φ) =
e
− 2

√

3
φ

√
2cV2/3

, (6)

with c = g
4/3
s λ. These kinetic couplings correspond to

a curved field space which induces a tachyonic entropy
perturbation δs associated to θf [24], as we now briefly
review. The entropy perturbation variable δs has been
introduced in [29] and corresponds to perturbations or-
thogonal to the background inflationary trajectory. Con-
sidering the 2D (φ, θf ) subspace obtained by keeping the
axion θb fixed at its minimum, δs is defined as:

δs = Nφ δφ+Nf δθf , (7)

where Nφ and Nf are the components of the normal unit

vector ~N given by [30, 31]:

~N =

(

Nφ

Nf

)

=
f

√

φ̇2 + (fθ̇f )2

(

−θ̇f
φ̇

)

. (8)

When θb is massless, the effective mass-squared of δs
evaluated on the background attractor trajectory receives
contributions from the metric connection and the Ricci
scalar of the field manifold R = −8/3 which give [25]:

m2
δs ≃ − 2√

3

(

∂φVinf +
2√
3
φ̇2

)

< 0 . (9)
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where PR is the curvature power spectrum while Siγ is
the relative entropy perturbation between photons and
a different i-th species (cold dark matter, baryons or
neutrinos), with βiso < O(0.1 − 0.01) depending on the
species involved [32]. Thus in order to compare the pre-
dictions of FI models with observations, one would need
to focus on the super-horizon evolution of the relative
entropy perturbation between φ and θf defined as [33]:

Sφθf = −3H

(

δρφ
ρ̇φ

−
δρθf
ρ̇θf

)

, (13)

where ρi are the energy densities of the two fields.
Thanks to the detailed analysis of reheating performed
in [13], one should then derive Siγ from Sφθf . However,
as pointed out in [28] (see also [34]), in FI models Sφθf

is an ill-defined quantity (despite being gauge invariant
even for a curved field space) since ρ̇θf → 0 given that the
energy density of the ultra-light axions vanishes. Thus,
similarly to δs, also Sφθf would yield an unphysical di-
vergence of isocurvature perturbations.

As explained in [28], the correct physical, i.e. both
gauge invariant and finite, entropy variable which should
be used in this case is the relative entropy perturbation
Srel which can be defined starting from the notion of total
entropy perturbation S:

S =
H

Ṗ
δPnad , (14)

where δPnad is the non-adiabatic pressure perturbation
which can be obtained from the total pressure perturba-
tion δP as δPnad = δP − c2sδρ with c2s = Ṗ /ρ̇.

The relative entropy perturbation Srel is then obtained
by subtracting the intrinsic entropy perturbation Sint

from the total one, Srel = S − Sint, where Sint is given
by the sum of the entropies associated to each fluid Sint,i

[33]:

Sint =
∑

i

Sint,i =
∑

i

H

Ṗ

(

δPi − c2i δρi
)

, (15)

with c2i = Ṗi/ρ̇i denoting the sound speed of each scalar
cosmological fluid. Using δP =

∑

i δPi and δρ =
∑

i δρi,
the relative entropy perturbation hence becomes (focus-
ing on the FI case with two fields, φ and θf ):

Srel =

(

c2θf − c2φ

)

3ρ̇Ṗ
ρ̇φρ̇θfSφθf . (16)

This quantity is now well-behaved since its denominator
is independent on the vanishing quantity ρ̇θf . The pre-
scription of [28] is to study the evolution of Srel from in-
flation to radiation dominance after reheating, and then
to infer from (16) Siγ and the final prediction for βiso.

B. Decaying isocurvature perturbations

We shall now focus on FI models and show that the
power spectrum of isocurvature modes associated to Srel

decays on super-horizon scales during inflation. We start
by rewriting (16) in a form which is easier to evaluate
analytically:

Srel =
H

Ṗ

[

(

c2φ − c2s
)

δρφ +
(

c2θf − c2s

)

δρθf

]

. (17)

The energy and pressure of the two fields can be written
as:

ρφ =
1

2
φ̇2 + Vinf , ρθf =

1

2
(fθ̇f )

2 + Vf ,

Pφ =
1

2
φ̇2 − Vinf , Pθf =

1

2
(fθ̇f )

2 − Vf , (18)

where this split does not have a clear physical mean-
ing since Vf (φ, θf ). It is however useful to evaluate Srel

and to reduce to a single field dynamics since we will
see that for Vf (φ, θf ) ≪ Vinf(φ) the system very quickly
approaches an attractor background trajectory charac-
terised by (fθ̇f ) → 0 and ρθf → 0.

The total sound speed of the system is given by:

c2s = 1 +
2

3H

φ̇ ∂φVtot + θ̇f ∂θfVf

φ̇2 + (fθ̇f )2
, (19)

while the sound speeds of the fluid components are:

c2φ = 1 +
2 ∂φVinf

3Hφ̇− f∂φf θ̇2f + ∂φVf

,

c2θf = 1 +
2
(

∂θfVf θ̇f + ∂φVf φ̇
)

θ̇2f

(

3Hf2 + f∂φfφ̇− ∂φVf φ̇θ̇
−2

f

) , (20)

where we used the equations of motion given by:

φ̈ = −3Hφ̇+ f∂φfθ̇
2
f − ∂φVtot , (21)

f2θ̈f = −3Hf2θ̇f − 2f∂φfφ̇θ̇f − ∂θfVf . (22)

To compute the energy density fluctuations, we use per-
turbation theory at linear order in the spatially flat gauge
(since Srel is gauge invariant), obtaining:

δρφ = −Φφ̇2 + φ̇δφ̇+ ∂φVinfδφ , (23)

δρθf = (fθ̇f )
2

(

∂φf

f
δφ+

δθ̇f

θ̇f
− Φ

)

+ ∂φVfδφ+ ∂θfVfδθf ,

where the lapse function Φ reads:

Φ =
1

2H

(

φ̇δφ+ f2θ̇fδθf

)

. (24)

In order to obtain simple analytic results, we now con-
sider the case with Vf = 0 which gives a very good ap-
proximation of the generic behaviour of the system since
Vf ≪ Vinf (we have however performed a numerical anal-
ysis also for Vf 6= 0 whose results we present below).

The quantities derived above have to be evaluated on
the inflationary trajectory. As derived in [24], the equa-
tion of motion (22) admits a slow-roll solution which
looks like (prime denotes a derivative with respect to N):

(fθ′f ) ≃ (fθ′f )(0) e
−3N → 0 , (25)
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